465 research outputs found

    Hardness of Bounded Distance Decoding on Lattices in ?_p Norms

    Get PDF
    Bounded Distance Decoding BDD_{p,?} is the problem of decoding a lattice when the target point is promised to be within an ? factor of the minimum distance of the lattice, in the ?_p norm. We prove that BDD_{p, ?} is NP-hard under randomized reductions where ? ? 1/2 as p ? ? (and for ? = 1/2 when p = ?), thereby showing the hardness of decoding for distances approaching the unique-decoding radius for large p. We also show fine-grained hardness for BDD_{p,?}. For example, we prove that for all p ? [1,?) ? 2? and constants C > 1, ? > 0, there is no 2^((1-?)n/C)-time algorithm for BDD_{p,?} for some constant ? (which approaches 1/2 as p ? ?), assuming the randomized Strong Exponential Time Hypothesis (SETH). Moreover, essentially all of our results also hold (under analogous non-uniform assumptions) for BDD with preprocessing, in which unbounded precomputation can be applied to the lattice before the target is available. Compared to prior work on the hardness of BDD_{p,?} by Liu, Lyubashevsky, and Micciancio (APPROX-RANDOM 2008), our results improve the values of ? for which the problem is known to be NP-hard for all p > p? ? 4.2773, and give the very first fine-grained hardness for BDD (in any norm). Our reductions rely on a special family of "locally dense" lattices in ?_p norms, which we construct by modifying the integer-lattice sparsification technique of Aggarwal and Stephens-Davidowitz (STOC 2018)

    Parameterized Intractability of Even Set and Shortest Vector Problem

    Get PDF
    The -Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over , which can be stated as follows: given a generator matrix and an integer , determine whether the code generated by has distance at most , or, in other words, whether there is a nonzero vector such that has at most nonzero coordinates. The question of whether -Even Set is fixed parameter tractable (FPT) parameterized by the distance has been repeatedly raised in the literature; in fact, it is one of the few remaining open questions from the seminal book of Downey and Fellows [1999]. In this work, we show that -Even Set is W[1]-hard under randomized reductions. We also consider the parameterized -Shortest Vector Problem (SVP), in which we are given a lattice whose basis vectors are integral and an integer , and the goal is to determine whether the norm of the shortest vector (in the norm for some fixed ) is at most . Similar to -Even Set, understanding the complexity of this problem is also a long-standing open question in the field of Parameterized Complexity. We show that, for any , -SVP is W[1]-hard to approximate (under randomized reductions) to some constant factor

    On the Lattice Isomorphism Problem

    Full text link
    We study the Lattice Isomorphism Problem (LIP), in which given two lattices L_1 and L_2 the goal is to decide whether there exists an orthogonal linear transformation mapping L_1 to L_2. Our main result is an algorithm for this problem running in time n^{O(n)} times a polynomial in the input size, where n is the rank of the input lattices. A crucial component is a new generalized isolation lemma, which can isolate n linearly independent vectors in a given subset of Z^n and might be useful elsewhere. We also prove that LIP lies in the complexity class SZK.Comment: 23 pages, SODA 201

    Reduction algorithms for the cryptanalysis of lattice based asymmetrical cryptosystems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2008Includes bibliographical references (leaves: 79-91)Text in English; Abstract: Turkish and Englishxi, 119 leavesThe theory of lattices has attracted a great deal of attention in cryptology in recent years. Several cryptosystems are constructed based on the hardness of the lattice problems such as the shortest vector problem and the closest vector problem. The aim of this thesis is to study the most commonly used lattice basis reduction algorithms, namely Lenstra Lenstra Lovasz (LLL) and Block Kolmogorov Zolotarev (BKZ) algorithms, which are utilized to approximately solve the mentioned lattice based problems.Furthermore, the most popular variants of these algorithms in practice are evaluated experimentally by varying the common reduction parameter delta in order to propose some practical assessments about the effect of this parameter on the process of basis reduction.These kind of practical assessments are believed to have non-negligible impact on the theory of lattice reduction, and so the cryptanalysis of lattice cryptosystems, due to thefact that the contemporary nature of the reduction process is mainly controlled by theheuristics
    • …
    corecore