545 research outputs found

    Polytopes of Minimum Positive Semidefinite Rank

    Full text link
    The positive semidefinite (psd) rank of a polytope is the smallest kk for which the cone of k×kk \times k real symmetric psd matrices admits an affine slice that projects onto the polytope. In this paper we show that the psd rank of a polytope is at least the dimension of the polytope plus one, and we characterize those polytopes whose psd rank equals this lower bound. We give several classes of polytopes that achieve the minimum possible psd rank including a complete characterization in dimensions two and three

    Exact Solution Methods for the kk-item Quadratic Knapsack Problem

    Full text link
    The purpose of this paper is to solve the 0-1 kk-item quadratic knapsack problem (kQKP)(kQKP), a problem of maximizing a quadratic function subject to two linear constraints. We propose an exact method based on semidefinite optimization. The semidefinite relaxation used in our approach includes simple rank one constraints, which can be handled efficiently by interior point methods. Furthermore, we strengthen the relaxation by polyhedral constraints and obtain approximate solutions to this semidefinite problem by applying a bundle method. We review other exact solution methods and compare all these approaches by experimenting with instances of various sizes and densities.Comment: 12 page

    Equivariant semidefinite lifts and sum-of-squares hierarchies

    Full text link
    A central question in optimization is to maximize (or minimize) a linear function over a given polytope P. To solve such a problem in practice one needs a concise description of the polytope P. In this paper we are interested in representations of P using the positive semidefinite cone: a positive semidefinite lift (psd lift) of a polytope P is a representation of P as the projection of an affine slice of the positive semidefinite cone S+d\mathbf{S}^d_+. Such a representation allows linear optimization problems over P to be written as semidefinite programs of size d. Such representations can be beneficial in practice when d is much smaller than the number of facets of the polytope P. In this paper we are concerned with so-called equivariant psd lifts (also known as symmetric psd lifts) which respect the symmetries of the polytope P. We present a representation-theoretic framework to study equivariant psd lifts of a certain class of symmetric polytopes known as orbitopes. Our main result is a structure theorem where we show that any equivariant psd lift of size d of an orbitope is of sum-of-squares type where the functions in the sum-of-squares decomposition come from an invariant subspace of dimension smaller than d^3. We use this framework to study two well-known families of polytopes, namely the parity polytope and the cut polytope, and we prove exponential lower bounds for equivariant psd lifts of these polytopes.Comment: v2: 30 pages, Minor changes in presentation; v3: 29 pages, New structure theorem for general orbitopes + changes in presentatio

    Linear Programming Relaxations for Goldreich's Generators over Non-Binary Alphabets

    Full text link
    Goldreich suggested candidates of one-way functions and pseudorandom generators included in NC0\mathsf{NC}^0. It is known that randomly generated Goldreich's generator using (r−1)(r-1)-wise independent predicates with nn input variables and m=Cnr/2m=C n^{r/2} output variables is not pseudorandom generator with high probability for sufficiently large constant CC. Most of the previous works assume that the alphabet is binary and use techniques available only for the binary alphabet. In this paper, we deal with non-binary generalization of Goldreich's generator and derives the tight threshold for linear programming relaxation attack using local marginal polytope for randomly generated Goldreich's generators. We assume that u(n)∈ω(1)∩o(n)u(n)\in \omega(1)\cap o(n) input variables are known. In that case, we show that when r≥3r\ge 3, there is an exact threshold μc(k,r):=(kr)−1(r−2)r−2r(r−1)r−1\mu_\mathrm{c}(k,r):=\binom{k}{r}^{-1}\frac{(r-2)^{r-2}}{r(r-1)^{r-1}} such that for m=μnr−1u(n)r−2m=\mu\frac{n^{r-1}}{u(n)^{r-2}}, the LP relaxation can determine linearly many input variables of Goldreich's generator if μ>μc(k,r)\mu>\mu_\mathrm{c}(k,r), and that the LP relaxation cannot determine 1r−2u(n)\frac1{r-2} u(n) input variables of Goldreich's generator if μ<μc(k,r)\mu<\mu_\mathrm{c}(k,r). This paper uses characterization of LP solutions by combinatorial structures called stopping sets on a bipartite graph, which is related to a simple algorithm called peeling algorithm.Comment: 14 pages, 1 figur

    Lower bounds on the size of semidefinite programming relaxations

    Full text link
    We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on nn-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nc2^{n^c}, for some constant c>0c > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1)O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds
    • …
    corecore