2 research outputs found

    A Family of Fault-Tolerant Efficient Indirect Topologies

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.On the one hand, performance and fault-tolerance of interconnection networks are key design issues for high performance computing (HPC) systems. On the other hand, cost should be also considered. Indirect topologies are often chosen in the design of HPC systems. Among them, the most commonly used topology is the fat-tree. In this work, we focus on getting the maximum benefits from the network resources by designing a simple indirect topology with very good performance and fault-tolerance properties, while keeping the hardware cost as low as possible. To do that, we propose some extensions to the fat-tree topology to take full advantage of the hardware resources consumed by the topology. In particular, we propose three new topologies with different properties in terms of cost, performance and fault-tolerance. All of them are able to achieve a similar or better performance results than the fat-tree, providing also a good level of fault-tolerance and, contrary to most of the available topologies, these proposals are able to tolerate also faults in the links that connect to end nodes.This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO) and by FEDER funds under Grant TIN2012-38341-C04-01.Bermúdez Garzón, DF.; Gómez Requena, C.; Gómez Requena, ME.; López Rodríguez, PJ.; Duato Marín, JF. (2016). A Family of Fault-Tolerant Efficient Indirect Topologies. IEEE Transactions on Parallel and Distributed Systems. 27(4):927-940. https://doi.org/10.1109/TPDS.2015.2430863S92794027

    Mesh-of-Trees Interconnection Network for an Explicitly Multi-Threaded Parallel Computer Architecture

    Get PDF
    As the multiple-decade long increase in clock rates starts to slow down, main-stream general-purpose processors evolve towards single-chip parallel processing. On-chip interconnection networks are essential components of such machines, supporting the communication between processors and the memory system. This task is especially challenging for some easy-to-program parallel computers, which are designed with performance-demanding memory systems. This study proposes an interconnection network, with a novel implementation of the Mesh-of-Trees (MoT) topology. The MoT network is evaluated relative to metrics such as wire area complexity, total register count, bandwidth, network diameter, single switch delay, maximum throughput per area, trade-offs between throughput and latency, and post-layout performance. It is also compared with some other traditional network topologies, such as mesh, ring, hypercube, butterfly, fat trees, butterfly fat trees, and replicated butterfly networks. Concrete results show that MoT provides higher throughput and lower latency especially when the input traffic (or the on-chip parallelism) is high, at comparable area cost. The layout of MoT network is evaluated using standard cell design methodology. A prototype chip with 8-terminal MoT network was taped out at 90nm90nm technology and tested. In the context of an easy-to-program single-chip parallel processor, MoT network is embedded in the eXplicit Multi-Threading (XMT) architecture, and evaluated by running parallel applications. In addition to the basic MoT architecture, a novel hybrid extension of MoT is proposed, which allows significant area savings with a small reduction in throughput
    corecore