414 research outputs found

    The Security and Performance of the Galois/Counter Mode of Operation (Full Version)

    Get PDF
    The recently introduced Galois/Counter Mode (GCM) of operation for block ciphers provides both encryption and message authentication, using universal hashing based on multiplication in a binary finite field. We analyze its security and performance, and show that it is the most efficient mode of operation for high speed packet networks, by using a realistic model of a network crypto module and empirical data from studies of Internet traffic in conjunction with software experiments and hardware designs. GCM has several useful features: it can accept IVs of arbitrary length, can act as a stand-alone message authentication code (MAC), and can be used as an incremental MAC. We show that GCM is secure in the standard model of concrete security, even when these features are used. We also consider several of its important system-security aspects

    Authentication Key Recovery on Galois Counter Mode (GCM)

    Get PDF
    GCM is used in a vast amount of security protocols and is quickly becoming the de facto mode of operation for block ciphers due to its exceptional performance. In this paper we analyze the NIST stan- dardized version (SP 800-38D) of GCM, and in particular the use of short tag lengths. We show that feedback of successful or unsuccessful forgery attempt is almost always possible, contradicting the NIST assumptions for short tags. We also provide a complexity estimation of Ferguson’s authentication key recovery method on short tags, and suggest several novel improvements to Fergusons’s attacks that significantly reduce the security level for short tags. We show that for many truncated tag sizes; the security levels are far below, not only the current NIST requirement of 112-bit security, but also the old NIST requirement of 80-bit security. We therefore strongly recommend NIST to revise SP 800-38D

    Collision Attacks on Galois/Counter Mode (GCM)

    Get PDF
    Advanced Encryption Standard Galois/Counter Mode (AES-GCM) is the most widely used Authenticated Encryption with Associated Data (AEAD) algorithm in the world. In this paper, we analyze the use of GCM with all the Initialization Vector (IV) constructions and lengths approved by NIST SP 800-38D when encrypting multiple plaintexts with the same key. We derive attack complexities in both ciphertext-only and known-plaintext models, with or without nonce hiding, for collision attacks compromising integrity and confidentiality. Our analysis shows that GCM with random IVs provides less than 128 bits of security. When 96-bit IVs are used, as recommended by NIST, the security drops to less than 97 bits. Therefore, we strongly recommend NIST to forbid the use of GCM with 96-bit random nonces

    Parallel Multiplier Designs for the Galois/Counter Mode of Operation

    Get PDF
    The Galois/Counter Mode of Operation (GCM), recently standardized by NIST, simultaneously authenticates and encrypts data at speeds not previously possible for both software and hardware implementations. In GCM, data integrity is achieved by chaining Galois field multiplication operations while a symmetric key block cipher such as the Advanced Encryption Standard (AES), is used to meet goals of confidentiality. Area optimization in a number of proposed high throughput GCM designs have been approached through implementing efficient composite Sboxes for AES. Not as much work has been done in reducing area requirements of the Galois multiplication operation in the GCM which consists of up to 30% of the overall area using a bruteforce approach. Current pipelined implementations of GCM also have large key change latencies which potentially reduce the average throughput expected under traditional internet traffic conditions. This thesis aims to address these issues by presenting area efficient parallel multiplier designs for the GCM and provide an approach for achieving low latency key changes. The widely known Karatsuba parallel multiplier (KA) and the recently proposed Fan-Hasan multiplier (FH) were designed for the GCM and implemented on ASIC and FPGA architectures. This is the first time these multipliers have been compared with a practical implementation, and the FH multiplier showed note worthy improvements over the KA multiplier in terms of delay with similar area requirements. Using the composite Sbox, ASIC designs of GCM implemented with subquadratic multipliers are shown to have an area savings of up to 18%, without affecting the throughput, against designs using the brute force Mastrovito multiplier. For low delay LUT Sbox designs in GCM, although the subquadratic multipliers are a part of the critical path, implementations with the FH multiplier showed the highest efficiency in terms of area resources and throughput over all other designs. FPGA results similarly showed a significant reduction in the number of slices using subquadratic multipliers, and the highest throughput to date for FPGA implementations of GCM was also achieved. The proposed reduced latency key change design, which supports all key types of AES, showed a 20% improvement in average throughput over other GCM designs that do not use the same techniques. The GCM implementations provided in this thesis provide some of the most area efficient, yet high throughput designs to date

    SGCM: The Sophie Germain Counter Mode

    Get PDF
    Sophie Germain Counter Mode (SGCM) is an authenticated encryption mode of operation, to be used with 128-bit block ciphers such as AES. SGCM is a variant of the NIST standardized Galois / Counter Mode (GCM) which has been found to be susceptible to weak key / short cycle forgery attacks. The GCM attacks are made possible by its extremely smooth-order multiplicative group which splits into 512 subgroups. Instead of GCM\u27s GF(2128)GF(2^{128}), we use GF(p)GF(p) with p=2128+12451p=2^{128}+12451, where p12\frac{p-1}{2} is also a prime. SGCM is intended for those who want a concrete, largely technically compatible alternative to GCM. In this memo we give a technical specification of SGCM, together with some elements of its implementation, security and performance analysis. Test vectors are also included

    XOCB: Beyond-Birthday-Bound Secure Authenticated Encryption Mode with Rate-One Computation (Full Version)

    Get PDF
    We present a new block cipher mode of operation for authenticated encryption (AE), dubbed XOCB, that has the following features: (1) beyond-birthday-bound (BBB) security based on the standard pseudorandom assumption of the internal block cipher if the maximum block length is sufficiently smaller than the birthday bound, (2) rate-1 computation, and (3) supporting any block cipher with any key length. Namely, XOCB has effectively the same efficiency as the seminal OCB while having stronger quantitative security without any change in the security model or the required primitive in OCB. Although numerous studies have been conducted in the past, our XOCB is the first mode of operation to achieve these multiple goals simultaneously

    Computing on Masked Data to improve the Security of Big Data

    Full text link
    Organizations that make use of large quantities of information require the ability to store and process data from central locations so that the product can be shared or distributed across a heterogeneous group of users. However, recent events underscore the need for improving the security of data stored in such untrusted servers or databases. Advances in cryptographic techniques and database technologies provide the necessary security functionality but rely on a computational model in which the cloud is used solely for storage and retrieval. Much of big data computation and analytics make use of signal processing fundamentals for computation. As the trend of moving data storage and computation to the cloud increases, homeland security missions should understand the impact of security on key signal processing kernels such as correlation or thresholding. In this article, we propose a tool called Computing on Masked Data (CMD), which combines advances in database technologies and cryptographic tools to provide a low overhead mechanism to offload certain mathematical operations securely to the cloud. This article describes the design and development of the CMD tool.Comment: 6 pages, Accepted to IEEE HST Conferenc

    Cryptanalysis of the Counter mode of operation

    Get PDF
    International audienceThe counter mode of operation (CTR mode) is nowadays one of the most widely deployed modes of operation due to its simplicity, elegant design and performance. Therefore understanding more about the security of the CTR mode helps us understand the security of many applications used over the modern internet. On the security of the CTR mode, there is a well-known proof of indistinguishability from random outputs up to the birthday bound that is O(2 n/2) encrypted n-bit blocks. This acts as a proof that no attack that can retrieve useful information about the plaintext exists with a lower complexity. In other words, any attack that breaks the confidentiality of the plaintext will require Ω(2 n/2) blocks of ciphertext. Research problem While we have a lower bound on the complexity of a potential attack, it is not well understood how such attack would work and what would be its complexity not only in terms of data but also computationally (time and memory complexities). Most often the CTR mode is combined with the AES block cipher which acts on 128-bits blocks. In that setting, the birthday bound may appear sufficient to guarantee security in most if not all of today's internet applications as 2 128/2 × 128 bits = 256 exbibytes, a comfortable margin. However if used alongside a 64-bits block cipher, like 3DES, the birthday bound stands at 2 64/2 × 64 bits = 32 gibibytes, an amount of data quickly exchanged in today's internet. Moreover, the proof of indistinguishability says nothing at how quickly information on the plaintext is leaked when nearing the birthday bound. The goal of this internship is to devise efficient message recovery attacks under realistic assumptions and study their complexity to gain a better understanding of the security of the CTR mode. Contribution We give a concrete definition of the algorithmic problem naturally posed by the counter mode of operation, the missing difference problem, upon the resolution of which we can recover part of the unknown plaintext. Then we propose two algorithms to recover a block or more of secret plaintext in different settings motivated by real-life attacker models and compare the results with the work done by McGrew [McG12] on that same topic. We improve McGrew's results in two cases : the case where we know half of the secret plaintext, then we achieve time complexity of˜Oof˜ of˜O(2 n/2) compared tõ O(2 3n/4) for McGrew's searching algorithm and the case where we have no prior information on the secret where we achieve˜Oachieve˜ achieve˜O(2 2n/3) in time and query compared to the previous˜Oprevious˜ previous˜O(2 n/2) queries and˜Oand˜ and˜O(2 n) time. This improvement allows better attack on the mode for a realistic attacker model than what had been described so far in the literature. In fact, we found out that the CTR mode does not offer much more security guarantees than the CBC mode as real attacks are of similar complexities. We described these attacks on the CTR mode and could even extend those to some message authentication code (MAC) schemes GMAC and Poly1305 based on the Wegman-Carter style construction. Arguments supporting its validity Not only do we provide some proofs for the asymptotic complexity but also implementations of these algorithms show that they are practical for blocks sizes n 64 bits and so are the associated attacks. These attacks rely on the repeated encryption of a secret under the same key so frequent rekeying will prevent those attacks from happening and thus we encourage any implementation of the CTR mode to force rekeying well before the birthday bound. Summary and future work We formalized an algorithmic problem that is naturally encountered in some cryptographic schemes, we called it the missing difference problem, and developed tools to solve it efficiently. These tools then help the cryptanalysis of different modes of operation and thus help understanding the security of popular real-world protocols. Now we hope to publish these results and make users aware that using CTR is not much more secure than CBC (though CTR still offers other advantages). Especially when coupled with 64-bits block ciphers, it may not offer enough guarantee for most modern uses as 64-bits CBC mode was shown to be insecure in a recent work by Bhargavan and Leurent [BL16]

    Reliable and High-Performance Hardware Architectures for the Advanced Encryption Standard/Galois Counter Mode

    Get PDF
    The high level of security and the fast hardware and software implementations of the Advanced Encryption Standard (AES) have made it the first choice for many critical applications. Since its acceptance as the adopted symmetric-key algorithm, the AES has been utilized in various security-constrained applications, many of which are power and resource constrained and require reliable and efficient hardware implementations. In this thesis, first, we investigate the AES algorithm from the concurrent fault detection point of view. We note that in addition to the efficiency requirements of the AES, it must be reliable against transient and permanent internal faults or malicious faults aiming at revealing the secret key. This reliability analysis and proposing efficient and effective fault detection schemes are essential because fault attacks have become a serious concern in cryptographic applications. Therefore, we propose, design, and implement various novel concurrent fault detection schemes for different AES hardware architectures. These include different structure-dependent and independent approaches for detecting single and multiple stuck-at faults using single and multi-bit signatures. The recently standardized authentication mode of the AES, i.e., Galois/Counter Mode (GCM), is also considered in this thesis. We propose efficient architectures for the AES-GCM algorithm. In this regard, we investigate the AES algorithm and we propose low-complexity and low-power hardware implementations for it, emphasizing on its nonlinear transformation, i.e., SubByes (S-boxes). We present new formulations for this transformation and through exhaustive hardware implementations, we show that the proposed architectures outperform their counterparts in terms of efficiency. Moreover, we present parallel, high-performance new schemes for the hardware implementations of the GCM to improve its throughput and reduce its latency. The performance of the proposed efficient architectures for the AES-GCM and their fault detection approaches are benchmarked using application-specific integrated circuit (ASIC) and field-programmable gate array (FPGA) hardware platforms. Our comparison results show that the proposed hardware architectures outperform their existing counterparts in terms of efficiency and fault detection capability
    corecore