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Abstract

The Galois/Counter Mode of Operation (GCM), recently standardized by NIST, si-

multaneously authenticates and encrypts data at speeds not previously possible for

both software and hardware implementations. In GCM, data integrity is achieved

by chaining Galois field multiplication operations while a symmetric key block ci-

pher such as the Advanced Encryption Standard (AES), is used to meet goals of

confidentiality. Area optimization in a number of proposed high throughput GCM

designs have been approached through implementing efficient composite Sboxes for

AES. Not as much work has been done in reducing area requirements of the Galois

multiplication operation in the GCM which consists of up to 30% of the overall

area using a bruteforce approach. Current pipelined implementations of GCM also

have large key change latencies which potentially reduce the average throughput

expected under traditional internet traffic conditions. This thesis aims to address

these issues by presenting area efficient parallel multiplier designs for the GCM

and provide an approach for achieving low latency key changes. The widely known

Karatsuba parallel multiplier (KA) and the recently proposed Fan-Hasan multiplier

(FH) were designed for the GCM and implemented on ASIC and FPGA architec-

tures. This is the first time these multipliers have been compared with a practical

implementation, and the FH multiplier showed note worthy improvements over the

KA multiplier in terms of delay with similar area requirements.

Using the composite Sbox, ASIC designs of GCM implemented with subquadratic

multipliers are shown to have an area savings of up to 18%, without affecting the

throughput, against designs using the brute force Mastrovito multiplier. For low

delay LUT Sbox designs in GCM, although the subquadratic multipliers are a

part of the critical path, implementations with the FH multiplier showed the high-

est efficiency in terms of area resources and throughput over all other designs.

FPGA results similarly showed a significant reduction in the number of slices using

subquadratic multipliers, and the highest throughput to date for FPGA imple-

mentations of GCM was also achieved. The proposed reduced latency key change

design, which supports all key types of AES, showed a 20% improvement in av-

erage throughput over other GCM designs that do not use the same techniques.

The GCM implementations provided in this thesis provide some of the most area

efficient, yet high throughput designs to date.
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Chapter 1

Introduction and Motivation

Achieving security goals of data integrity and confidentiality for high speed net-

work applications has been a difficult problem to solve. Applying security features

to network traffic generally cannot be performed at link speeds because of high com-

putational costs. A recently standardized authentication and encryption scheme,

the Galois/Counter Mode of Operation (GCM), has been promising in its ability

to deliver high speed software and hardware implementations not previously possi-

ble. GCM has a number of different properties such as the ability to process data

both sequentially and in parallel that distinguishes it from other similar schemes.

The IEEE and the NIST have both applied this mode of operation in a number of

different applications ranging from, network, tape storage and link level security.

In GCM, authenticity of messages is met by universal hashing over Galois fields

while confidentiality is met by a symmetric block cipher such as the Advanced En-

cryption Standard (AES). Efficient Galois field operations such as multiplication

have been researched extensively for their applications in Elliptic Curve Cryptogra-

phy and numerous implementations have been presented for the AES block cipher

since its acceptance as a NIST Standard. GCM integrates this large body of work,
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and several high throughput hardware designs of GCM have been proposed in the

literature [28, 31, 29, 39, 15].

The driving focus for many of these designs has been in modifying the AES block

in order to achieve both area efficient and high speed datapaths. Not much work,

however, has been done in reducing area requirements of the Galois multiplication

operation in the GCM which consists of up to 30% of the overall area using a

bruteforce Mastrovito multiplier. Since this type of multiplier has a low delay, for

GCM designs using the composite Sbox, the multiplier is not a part of the critical

path by a large margin. The larger delay of the composite Sbox means pipelined

stages are unbalanced and result in wasted area resources. Subquadratic parallel

multipliers provide a smaller area footprint in hardware and therefore provide an

alternative to the brute force approach. Although the delay is higher for this class

of multipliers, it is possible to balance the pipelined stages of the GCM in order to

get more area efficient designs that do not effect the throughput significantly.

Besides area efficiency, there are other improvements possible for the hardware

implementations of GCM. Internet Protocol Security (IPSec) uses the GCM in

one of its mode of operations to help authenticate and encrypt packet data at the

network layer (Layer 3 in the OSI network model). Since this protocol enables

security operations at a lower level, hardware performance is an important factor

to consider. In IPSec, a key change usually occurs in a single session based on

timeouts or when a threshold is reached for data processed. Within this set limit,

numerous packets could potentially be authenticated and encrypted without a key

change occurring between a single link of communication, also known as a Security

Association (SA). High speed hardware implementations of GCM would maintain

hundreds to thousands of SA’s at a time for IPSec. A large number of keys are

maintained in memory and accessed when needed for performing security operations
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on different links of communication [35]. Key changes are expected to occur very

frequently for these cases so latency for changing keys, especially for smaller packet

sizes, can affect performance significantly. Current GCM designs in the literature

have large key change latencies equivalent to the latency in the AES pipeline used,

making the average throughput of these designs much lower then expected.

1.1 Contributions

The following list summarizes the work done in this thesis in order to address the

current issues observed in GCM designs presented in the literature.

. • Provide designs of subquadratic parallel multipliers for GCM

. • Propose key schedule designs for GCM with low key change latency

. • Implement the proposed GCM designs on FPGA and ASIC

The use of subquadratic Galois field multipliers in the GCM is the main contribu-

tion of this thesis. This class of multipliers helps realize area efficient GCM designs

for both ASIC and FPGA architectures without compromising throughput rates

significantly. Two subquadratic space complexity multipliers, the Karatsuba mul-

tiplier (KA) [24] and a recently proposed multiplier by Fan and Hasan (FH) [6],

were the multipliers designed for the GCM. Although the multipliers are designed

specifically for the GCM, the techniques used in this thesis may be generalized

for other applications as well. The FH multiplier is theoretically one of the most

area and delay efficient subquadratic multiplier design in the literature for inter-

mediate size operands, but actual implementations of this multiplier have not been

presented. The main Galois multiplier designs are therefore compared individually

before implementing them with full GCM designs.
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1.2 Structure

Chapter 2 will provide some background to finite field arithmetic which is useful

in understanding the multiplication operation in GCM. An introduction to AES,

with a focus on hardware based implementations will also be provided along with

a functional specification of GCM. Parallel Galois field multipliers for the GCM

will be given in Chapter 3 with implementation results. The GCM datapath and

improvement made to reduce key change latencies will be described in Chapter 4.

ASIC and FPGA results of GCM designs with parallel multipliers is also given in

that chapter. Concluding remarks on the contributions made in this thesis and

possible areas of improvement for future work are presented in Chapter 5.
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Chapter 2

Background

The Galois/Counter Mode (GCM) of operation is built using two main components,

namely a finite field multiplier and a 128 bit symmetric block cipher. In order to

understand the GCM better, a brief introduction to finite field arithmetic will be

provided in this chapter. Although any block cipher may be used within the GCM,

since the Advanced Encryption Standard (AES) is the preferred choice, an overview

of that block cipher will be given as well. The general functionality of GCM will

then be provided in Section 2.3 with a literature survey of previous state of the art.

2.1 Finite Fields

Finite fields, also known as Galois Fields (GF), are algebraic structures with a fi-

nite number of elements. Many cryptographic and signal processing applications

use Galois Fields because of their concise representation in hardware and efficient

arithmetic operations. They have both multiplication and addition operations de-

fined over the field and contain a prime, or a power of prime number of elements.

They are denoted by GF(p) where p is a prime number representing the order, or
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in the case of an extension field, GF(pm) where m is an integer [21].

2.1.1 Galois Field Representation

Galois fields are succinctly stored in hardware by mapping their polynomial rep-

resentations into binary. The binary field GF(2m) is particularly suited for this

and is widely used as a result. Depending on the bases used, a polynomial rep-

resentation can be constructed in the following manner. Given GF(2)[x], a set of

all polynomials with coefficients in GF(2) ∈ {0, 1}, and F (x), an irreducible poly-

nomial within that set, then GF(2)[x]/F (x) is a Galois field with 2m polynomial

elements. In other words, this construction is taking all possible polynomials and

creating a set modulo F (x). The number of polynomials in that reduced set is

2m, and it can therefore be isomorphically mapped to the Galois field GF(2m).

F (x) is called the field generating polynomial and can be selected from any irre-

ducible polynomial of degree m. A polynomial that cannot be factored into any

polynomials in GF(2)[x] is said to be irreducible [21]. Any element within GF(2m)

is representable by polynomials modulo F (x) and all addition and multiplication

operations are also performed modulo the irreducible field polynomial. Since the

polynomial coefficients are either {0,1} they can be easily stored as binary strings.

Basis of Representation

There are different bases of representation that are possible for representing GF(2m)

mapped polynomials and their choice impact how Galois arithmetic computations

are performed. Polynomial basis and normal basis representations are most com-

monly used for cryptographic applications [36, 25, 7], but there are other bases such

as the dual, shifted polynomial, and triangular basis that have also been found use-

ful in the literature [3, 5, 9]. For the binary extension field, a polynomial basis (PB)
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is constructed by finding any element x ∈ GF(2m) such that {1, x, x2, · · · , xm−1}

forms a basis, or a linearly independent set, of GF(2m) over GF(2) [20]. All ele-

ments in GF(2m) can be written with respect to the polynomial basis. The following

equation shows a PB representation of an element A(x) ∈ GF(2m) with coefficients

ai ∈ GF(2).

A(x) =
m−1∑
i=0

aix
i = am−1x

m−1 + am−2x
m−2 + · · ·+ a1x

1 + a0 (2.1)

The normal basis for the binary extension field can similarly be created by

finding any element β ∈ GF(2m) such that {x20
, x21

, x22
, · · · , x2m−1} forms a basis

of GF(2m) over GF(2). It is well prooven that a normal and polynomial basis exists

for all fields GF(pn) [20]. A normal basis representation of an element A(x) is given

in the following equation.

A(x) =
m−1∑
i=0

aix
2i

= ai−1x
2i−1

+ am−2x
2m−2

+ · · ·+ a1x
21

+ a0x
20

(2.2)

The normal basis has some interesting properties that allow for an efficient

implementation of the squaring operation which can be computed by a cyclic shift

of bits. As a result, it has been applied to Elliptic Curve crypto systems which

have frequent squaring operations. Elliptic Curve Cryptography (ECC) makes use

of elliptic curves over finite fields to create schemes for public key cryptography.

2.1.2 Polynomial Basis Galois Field Arithmetic

The GCM described in this paper uses a polynomial basis of representation so Galois

arithmetic operations performed over the binary extension fields with respect to the

polynomial basis will be described here.
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Galois Field Addition

The addition of elements in GF(2)m is equivalent to the addition of mapped poly-

nomials. Since the coefficients in binary extension fields are in GF(2) ∈ {0, 1},

the additions are modulo 2 which is equivalent to a exclusive-or (XOR) operation.

Refer to Eq.(2.3) for this construction. Since there is no carry involved in element

by element addition, the overall computation is simply a XOR operation performed

on bit strings. The additive inverse, or subtraction is also defined for the field, and

for the binary extension field is also computed using the XOR operation.

A(x), B(x) ∈ GF(2m)

C(x) ≡ A(x) +B(x) ≡
m−1∑
i=0

(bi ⊕ ai)xi
(2.3)

Galois Field Multiplication

Galois field multiplication in relation to addition is slightly more involved since

it consists of a polynomial multiplication followed by a modulo reduction using

the field polynomial. Given two elements to be multiplied, A(x), B(x) ∈ GF(2m),

and F (x), the field polynomial, the result can be computed from Eq.(2.4). The

coefficients of the polynomials A(x) and B(x) are denoted by the vectors (a) and

(b) respectively.

C(x) ≡ A(x) ·B(x) mod F (x)

C(x) ≡
m−1∑
i=0

bix
i · a mod F (x)

C(x) ≡ (b0 · a+ b1x · a+ b2x
2 · a+ · · ·+ bm−1x

m−1 · a) mod F (x)

(2.4)
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A simple method of computing this involves the use of a linear feedback shift

register (LFSR). The pseudo code for this multiplier given below simply loops

through the summation in Eq.(2.4) and accumulates a modulo reduced answer.

The LFSR contains one of the operands A, and depending on its most significant

bit, the field polynomial is XORed to the LFSR at each step. The result of the

multiplication is generated in the register C by the end of m iterations. This

register adds the value of A at each step depending on the coefficients of the other

multiplicand H. This design is called a serial multiplier design, and other multiplier

designs exist such as the parallel multiplier that is able to compute C(x) in a single

iteration. More details will be provided in Section 3.1 for converting Eq.(2.4) into

a parallel multiplier structure.

Algorithm 1 GF(2m) multiplier. [3]

Input A,H ∈ GF(2m), F (x) Field Polynomial.
Output C(x)
C = 0
for i = 0 to m do

if Hi = 1 then
C ← C ⊕ A

end if
if A127 = 0 then
A← rightshift(A)

else
A← rightshift(A)⊕ F (x)

end if
end for
return C
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2.2 Advanced Encryption Standard (AES)

The Advanced Encryption standard is a 128 bit block cipher that has been widely

used since its acceptance in 2001 [23]. The design of AES was intended to be

a more secure replacement of DES (Data Encryption Standard). Many efficient

hardware and software designs have been documented, taking into consideration

various tradeoffs of speed and area resources. The following sections will provide

a general functional description of AES with an increased focus on the hardware

design of AES components. High speed hardware datapaths that will be relevant in

understanding the GCM datapath will be presented toward the end of this section.

2.2.1 AES Round Block

Each round of AES is modular and consists of four main computations namely, Byte

Substitution, Mix Columns, Shift Rows, and Round Key addition. All rounds in

AES are identical with the exception of the last round which has no Mix Columns

operation. Byte Substitution consists of 16, 8 bit word substitutions while the

Mix Columns operation is constructed from a matrix multiplication. Both of these

operations are defined by Galois field operations in GF(28), but there are different

means to implement them. The Shift Rows operation is simply a permutation on

the inputs, and the Round Key operation consists of XORing key values generated

from a Key Schedule component. The following diagram illustrates the general

round structure of AES which is repeated based on the key input. For a 128 bit

key, a single round repeats 10 times, while the 192 and 256 bit keys have 12 and

14 rounds of computation respectively for increased security.
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Figure 2.1: AES Round Structure

Different hardware datapaths can be created from this modular round structure.

An iterative design can use the same design given above but simply adds a 128 bit

data register at the end of the round structure. After a maximum of 14 cycles the

AES encryption result can be obtained. This iterative design can be unrolled to

create a pipelined implementation that has registers placed between round blocks.

This is an outer pipelined AES design and a 128 bit output can be generated

at each clock cycle with a full pipeline. There is enough flexibility, however, in

choosing locations of the pipelined registers. Within each of the round components,

additional pipelined stages can be added within the Sub-bytes operation which will

be described in Section 2.2.2. This is labeled as an inner pipelined AES design, and

although a higher latency and area is present, higher throughputs are possible.

The 128 bit plain text input is mapped into a state array which is a 4x4 block of

8 bit words that is manipulated in each round. For the following sections the state
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array block will be used to describe the different round operations so it is important

to understand how the input is transformed into the state array. Figure 2.2 shows

this transformation, by filling bytes of data into the state array by columns. After

the AES encryption round, the last state array outputted is transformed back into

a 128 bit stream.

Figure 2.2: AES Round State Array Transformation

2.2.2 Byte Substitution (Subbytes)

The subbytes operation uses multiple substitution box components (Sbox) each of

which performs an 8 bit substitution. Each 8-bit word of data in the state array,

is substituted using the Sbox. This results in 16 Sbox components used for each

round block, and is the most hardware area consuming part of an AES round. The

Sbox computation is essentially a multiplicative inverse in GF(28) followed by an

affine transformation which is a linear mapping from one vector space to another

[30]. A lookup table of 28 values can be used to implement the Sbox component,

but it can also be mathematically computed using logic gates.
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Sbox Designs

Rijimen, one of the creators of AES showed in [26] a method of computing the Sbox

by breaking operations in GF(28) down to a composite field GF((24)2) resulting

in significant hardware area savings which would otherwise not be possible using

look-up table implementations. The inverse formula for the Sbox is given in its

reduced version, in Eq.(2.5), where λ is (1100)2. The addition, multiplication, and

inverse operations are computed in GF((24)2), and can be further broken down to

the smaller composite fields, GF((22)2) and GF(22), using the divide and conquer

method.

a′x+ b′ = (ax+ b)−1 = a(a2λ+ b(a+ b))−1x+ (b+ a)(a2λ+ b(a+ b))−1 (2.5)

Figure 2.3 shows a visual diagram of the composite Sbox. The isomorphic

mapping to the composite field, (GF(28) → GF((24)2)) can be implemented us-

ing a matrix vector multiplication. The affine transformation consists of a linear

transformation followed by a translation which can be achieved by a matrix vector

multiplication and vector addition respectively. The isomorphic mapping and affine

transformation both use fixed matrices that are sparse so the computation costs of

these operations are minimal [30].
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Figure 2.3: AES Composite Sbox design

The area consumed by the composite Sbox circuit is very low in comparison

with the lookup table approach (LUT). In the above design by Satoh, the Sbox

component consumes 250 gates while a LUT implementation is more than 4 times

larger in area [30]. The computational cost does increase the circuit delay, so for

high speed designs, LUT, and Binary Decision Diagram (BDD) Sbox implementa-

tions are preferred. The BDD implementation provides a slightly faster alternative

to the LUT Sbox consuming less area resources. Each bit of the 8-bit output is

associated with a binary tree and based on the input bits, each tree helps decide

what the output bits should be. The 8 bit input is used as selector values for sev-

eral layers of multiplexers in order to realize the binary trees in hardware. This

type of construction faces large fan out issues for the initial multiplexer layers. An

improved alternative to the BDD that improves these issues is the Twisted-BDD

and is the fastest reported Sbox in the literature. The area requirements of this

design, however, is almost double that of the LUT Sbox design [22].
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2.2.3 Shift Rows

The Shift Rows operations consists of cyclically moving elements around in all but

the first row of the 128 bit input block. The rows are left shifted by 1, 2, and

3 times respectively for rows 2, 3 and 4. The following mapping illustrates this

process. In hardware no logic is required for this step and simple wire connections

are used for this step to route the input to the output.

Figure 2.4: AES Shift Rows

2.2.4 Mix Columns

The mix columns operation consists of a multiplication and reduction operation

over GF(28). Each column of the state array is multiplied by the polynomial 3x3 +

x2+x+2 and reduced modulo the field generating polynomial x4+1. This operation

is generally optimized into a single matrix vector product. The four column blocks

are used as the vectors, while a constant 4x4 matrix is used that combines the

modulo operation. The result vector is stored in the next state array at the same

location as the original column vector. All elements are 8 bits in width and the

multiplication and addition operations are performed over GF(28).



2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2


•



a0

a1

a2

a3


(2.6)
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Since the elements of the matrix are of low degree the multiplications are sim-

plified. A multiplication with 2 in GF(28) consists of a shift operation along with

a modulo reduction if an overflow occurs. This operation can be reused with mul-

tiplying by 3, but an extra addition is required since 3·ai = (2·ai)⊕ ai.

2.2.5 Key Schedule

Round keys are XORed at the end of every round and are generated using a Key

Schedule. These keys can be precomputed or generated at each round. The Sbox

components used in the subbytes section are also used here for the round key

generation. For each inputted key length, the method of generating keys is slightly

different, but they contain similar logic components.

The 128 bit key has an Sbox operation done on the last column of the cipher

key state array after the column bytes are rotated. This is followed by a rcon value

XOR addition. The rcon value is generated based on the exponentiation formula

rcon(i) = x254+i mod x8 + x4 + x3 + x + 1 performed over GF(28). These values

are usually precomputed and once the rcon value is added there is an XOR chain

on the columns of the state array that creates the next 128 bit round key. Figure

2.5 shows a single round key computation. This process is repeated by using the

round key as a cipher for generating the next 128 bits of key material. The rcon i

value starts at 1 and increments for each round key.
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Figure 2.5: AES 128 bit Key Schedule Round

The 192 bit key schedule is similarly defined but the XOR chain is extended for

another 2 columns to achieve a full 192 bits of key material. Each round unit of

AES, however, only uses 128 bits of key material at a time, so the remaining bits

are carried over for the next round. Figure 2.6 shows this key generation process.

The six column vectors of the key state array are condensed here and shown as

{A0, A1, · · · , A5}.

Figure 2.6: AES 192 bit Key Schedule Round

The 256 bit key schedule has an additional Sbox computation involved in gen-

erating key material. The first 128 bits of key material is generated as shown in

Figure 2.5. For the next 128 bits of key material, an Sbox computation is performed

on the fourth column and this follows another chain of XOR statements. Note that
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the rcon operation is not performed here with the Sbox.

Figure 2.7: AES 256 bit Key Schedule Round

In order to compute the key schedule operation in hardware most designs gen-

erally precompute roundkeys before starting data encryption or decryption. Com-

puting the key schedule on the fly, while rounds are being computed is possible for

encryption, and has been implemented for iterative AES [16, 1]. There is added

complexity when supporting all keys primarily because of the overlap occurring in

operations. Figure 2.8 shows that although 128 bits of key material are generated

at each round, there is still key material computed from previous round keys for the

192 and 256 bit key schedules. The Srcon represents a Sbox computation with an

rcon computation, while an S represents a simple Sbox computation. The arrows

represent the XOR chaining of column vectors.

Figure 2.8: AES Key Schedule Pattern
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For an Iterative key schedule the Sbox components are needed only once in each

iteration for all round keys as can be seen in Figure 2.8. Although the 192 bit key

has an Sbox in the middle of the round, it can still be used with the other key

types. The delay of the design in this way is also limited to have only Sbox, rcon,

and an XOR chain of computations regardless of the key used, so compared to a

AES round block, it would not be apart of the critical path. The rcon values may

or may not be included depending on if the key is 256 bits. The control unit for this

key schedule drives multiplexers to guide input into the Sboxes, and direct outputs

to the correct round key registers based on the key type.

Iterative key schedules have been used in pipelined designs for pre-computing

keys, but there is a key latency cost associated with such an integration. If key

changes occur more frequently for a flow of data the throughput in pipelined de-

signs would be affected since clock cycles are wasted in updating key material.

Having lower key change latencies therefore is very relevant for increasing the av-

erage throughput for AES.

2.3 GCM Overview

There have been several schemes devised which combine security goals of both au-

thentication and confidentiality. Data authentication provides a means to detect

accidental and unauthorized modifications of data while confidentiality helps en-

sure that data is readable only by the individuals it was intended for. Schemes

such as CCM[34] and EAX[2] meet those goals by using existing authentication

schemes in conjunction with a block cipher encryption in counter mode for achiev-

ing confidentiality. The authentication and encryption steps for these schemes are

computed separately in two passes so pipelining and processing data in parallel is
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not possible. These schemes are therefore unable to achieve the high throughput

rates needed for network applications. The Offset Code Book (OCB) is a scheme

that overcame these deficiencies by providing a single pass computation for both

the authentication and encryption steps, and is one of the fastest schemes in use

today [27]. Despite the advantages of the scheme, since it has been patented, its

use has been limited in standards.

The Galois/Counter mode of operation is a combined authentication and en-

cryption scheme designed by David Mcgrew and John Viega, and is seen in a number

of recent standards by the NIST and the IEEE. The GCM helped fill a need in the

industry since it allows for fast software and hardware implementations that do not

have intellectual property restrictions [18]. The GCM is a fully piplinable and par-

allel scheme, that shows throughput performance that far exceeds 10 Gbps and in

some cases also has performance which rivals the OCB scheme [19]. The GCM uses

a 128 bit symmetric block cipher such as AES in a counter mode to achieve data

confidentiality, while a chained Galois multiplication operation is used for achieving

data authentication. Both of these operations are performed sequentially on data

blocks, so data can be fed in continuously in a pipeline form. A formal definition

of GCM is given here with reference to the NIST SP80038D Standard [4].

2.3.1 GCM specification

The input to GCM includes AAD (Additional Authenticated Data), P (Plaintext),

K (AES encryption key), and IV (Initialization vector). The inputted AAD and P

are streams of bits broken up into 128 bit blocks, given by A0, A1, A2, · · · , As and

P0, P1, P2, · · · , Pt. If the last block is not 128 bits in length then 0’s are padded

to both the AAD and P streams accordingly. The number of of blocks in AAD is

defined by s while the number of blocks in P is t. The IV is also set to 96 bits
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and this is the ideal for hardware designs since additional operations are required

for other IV lengths.

The output of the scheme is C, a stream of 128 bit cipher text blocks, and the

authentication tag T , which is also 128 bits. The entire tag does not need to be sent

and a predefined number of most significant bits may be sent instead. Although

forgery attacks are possible with smaller tags, the choice of smaller tags may be

necessitated for video or voice applications that stream a large amount of smaller

packets. The NIST has recommneded 32 bit and 64 bit tags for these types of

applications with some additional security considerations limiting the amount of

data encrypted per IV [4]. The following equation illustrates the GCM operation.

For a simpler definition, it is assumed that AAD and P variables have already been

padded with zeros and their lengths are divisible by 128. The Yi values given below

represent counter values for AES input.

.

Y0 = IV ‖0311

Yi = Yi−1 + 1

H = AESk(0
128)

EK0 = AESk(Y0)

Ci = Pi ⊕ AESk(Yi+1)

T = GHASH(H,A,C)⊕ EK0

(2.7)

The following is the GHASH function description that has the Galois field

multiplication operation. The field polynomial for the multiplication operation

is x128 + x7 + x2 + x + 1. The key H is one of the operands for the multiplier

and is generated by performing an AES encryption with an all zeros input (0128).

The other multiplicand is chosen from Ai, Ci, or the length data block. The len()

function, used for generating the length block, computes the total number of bits
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in the operand and returns a 64 bit wide value. AAD and the plaintext are fed into

the len function and the result is then concatenated for creating the length block

(len(A) ‖ len(P )).

GHASH(H,A,C) = Xs+t+1

Xi =


(Xi−1 ⊕ Ai) ·H for i = 1 to s

(Xi−1 ⊕ Ci−s) ·H for i = s+ 1 to s+ t

(Xi−1 ⊕ (len(A)||len(P ))) ·H for i = s+ t+ 1

(2.8)

A graphical view of the above equation is provided here with more details on the

functionality of GCM. Block ciphers such as AES have different modes of operation,

and the counter mode of operation is used with GCM as shown in Figure 2.9. A

passed initialization vector (IV ) is constantly incremented and fed into a AES block

for the encryption. Plain text blocks are XORed with the encrypted counter values

in order to obtain ciphertext blocks. The first counter value encryption is later used

for generating the authentication tag.

Figure 2.9: Counter mode AES used for GCM
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GCM supports the authentication of both encrypted and unencrypted data.

This is a useful feature that is included in the IPSec standard, where packet IP

information that needs to be in the clear and read by routers, is authenticated

along with the encrypted payload. The unencrypted data blocks are provided first

into a Galois field multiplier chain followed by the ciphertext blocks. Figure 2.10

shows this process. After all the cipher text blocks are exhausted, the length block

that appends the number of bits in unencrypted and encrypted data blocks is fed

into the GF multiplier. The Ek(Y0) value that was the first encrypted counter value,

is XORed at the end to get the final authentication tag.

Figure 2.10: Galois Multiplier Blocks in GCM

The authentication tag is transmitted with the unencrypted and cipher text

blocks to the destination. The decryption operation is similar to encryption, with

the only change being that the cipher text blocks are XORed with the counter

encryptions resulting in plain text blocks as the output. In Figure 2.9 this can be

visualized by swapping the plaintext and ciphertext blocks. The authentication tag

is generated in the same way at the destination by using the transmitted authen-

ticated data and ciphertext blocks. If the generated tag matches the tag that was

transmitted then the data can be excepted as valid, otherwise it is discarded.
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2.3.2 High Speed GCM Implementations

ASIC implementations of GCM reported in the literature have throughputs of up

to 42 Gbps using outer pipelined AES rounds and a parallel Mastrovito multiplier

for the Galois operation [29]. Composite Sbox implementations were used to get

more area efficient designs, and for higher throughput GCM, the BDD Sboxes

were used. The datapath width of the design is 128 bits, so at every clock cycle

a block is outputted. Commercial designs have reported similar throughputs for

standalone GCM implementations [32, 13]. A parallel architecture that computes

four GCM operations simultaneously was proposed by Satoh and is the highest

reported throughput to date capable of up to 160 Gbps [28]. This design, however,

has an increased number of input pads required for each parallel GCM operation.

A pipelined multiplier architecture was proposed in [31] achieving 54.9 Gbps in

a synthesized version of the design. This design made use of an inner and outer

pipelined AES block with a low latency pipelined multiplier which was constructed

from the parallel architecture GCM. By using this type of construction, the feedback

condition for the multiplier was maintained and a high throughput was achieved

due to the increased pipelined stages. The higher key change latency which ranges

from 40 to 56 cycles, reduces the overall efficiency if there are more cold starts that

occur as a result of key updates.

FPGA designs have also been proposed for the GCM in [15] and using a Shifted

Polynomial basis parallel multiplier their designs achieved up to 15.3 Gbps. The

width of the datapath proposed ranged from 8 to 128 bits, and provided designs

with varying latency and area tradeoffs. Three Sbox solutions, the LUT, composite

and a Block Ram implementation were used in the GCM. Another FPGA design

with notable results was presented in [39] which provided a Karatsuba Algorithm

multiplier(KA) implementation. This design made use of the composite Sbox with
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the KA multiplier to achieve a throughput rate of 15.23 Gbps using outer round

pipelining. Using inner round pipelining and a brute force multiplier a 20.61 Gbps

throughput was achieved but had double the latency. This implementation also

only supported 128 bit AES keys unlike the implementation given in [15] which

supports all key types.
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Chapter 3

Parallel Multiplier Designs for

GCM

Due to the feedback chaining present for the Galois multiplication operation in the

GCM, pipelined designs have generally chosen parallel multipliers to complete the

multiplication step in a single clock cycle. The Mastrovito multiplier has been a

prime choice for its low critical path but it unfortunately has a quadratic space

complexity. Parallel multipliers that have subquadratic area are therefore a good

option to replace the Mastrovito design in GCM. A popular subquadratic multiplier

based on the Karatsuba multiplication algorithm (KA) will be introduced in Section

3.3 and a recently proposed subquadratic multiplier design by Fan-Hasan(FH) will

be introduced in Section 3.4. The Mastrovito multiplier is also presented in order

to allow a better comparison between the multiplier designs.

The three multipliers presented are separable into two categories based on the

approach taken to multiply field elements. The Mastrovito and FH multipliers

use a matrix vector product (MVP) which can compute a modulo reduced result

in a single step. The matrix used in the operation is constructed from the field
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defining polynomial, so this method is applicable when a field polynomial or a set

of polynomials is known ahead of time which is the case for GCM. The KA multiplier

on the other hand is not as tightly coupled with the field polynomial, but computes

multiplication and modulo reduction in two separate steps. The MVP approach is

first described before going into specific multiplier designs for GCM. A comparison

of these parallel multipliers, with FPGA and ASIC implementation results will be

provided toward the end of the chapter. The multipliers are designed specifically

for the GCM operation but may be generalized for other applications as well.

3.1 Matrix Vector Product Based Multiplication

The original GF multiplication operation given in Eq.(2.4) can be modified to

formulate the matrix vector product and the rearranged equation is provided below.

The polynomial matrix P is computed using the coefficients of A(x) while the vector

portion is simply the transposed coefficients of B(x). The matrix vector product

shown here computes the multiplication and reduction operations in a single step

and is applicable to both the Mastrovito and FH multipliers presented in this

chapter.

C(x) ≡ A(x) ·B(x) mod F (x)

C(x) ≡
m−1∑
i=0

(xi · a mod F (x)) · bi

C = P · bT

P = {a(0), a(1), a(2), ..., a(m−1)}

(3.1)

In Eq.(3.1), C is the column vector corresponding to the polynomial C(x). An

expansion of the polynomial matrix P is given in Eq.(3.2). The a(i) coefficients are

27



essentially column vectors that are modulo reduced versions of xia mod F (x).

a ≡ ax0 mod F (x)

a(1) ≡ ax1 mod F (x)

a(2) ≡ ax2 mod F (x) ≡ a(1)x mod F (x)

a(3) ≡ ax3 mod F (x) ≡ a(2)x mod F (x)

...

a(i) ≡ a(i−1)x mod F (x)

(3.2)

The first column of P , a(0) has the coefficients of A(x) while each subsequent

column is the previous column multiplied by x and modulo reduced by F (x). When

this matrix is multiplied by the coefficients of B(x), the result C(x) is achieved.

3.1.1 GCM Polynomial Matrix

A polynomial matrix P was created with the GCM field generating pentanomial,

x128 + x7 + x2 + x + 1, based on the method given in Eq.(3.2). The top left hand

side of the GCM polynomial matrix is shown in Eq.(3.3) to give a better idea of

what this matrix looks like. Coefficient terms listed such as (a0a127a126) denote the

XOR addition operation (a0 ⊕ a127 ⊕ a126). The repeated elements occurring at

the diagonals of the polynomial matrix are useful in optimizing the multiplication

operation and is utilized in both the Mastrovito and FH multipliers. For the GCM

polynomial, rows 3 to 7 and rows 8 to 128 show this repetition at the diagonals.
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P =



a0 a127 a126 a125 a124 a123 · · ·

a1 a0a127 a127a126 a126a125 a125a124 a124a123 · · ·

a2 a1a127 a0a127a126 a127a126a125 a126a125a124 a125a124a123 · · ·

a3 a2 a1a127 a0a127a126 a127a126a125 a126a125a124 · · ·

a4 a3 a2 a1a127 a0a127a126 a127a126a125 · · ·

a5 a4 a3 a2 a1a127 a0a127a126 · · ·

a6 a5 a4 a3 a2 a1a127 · · ·

a7 a6a127 a5a126 a4a125 a3a124 a2a123 · · ·
...

. . .
. . .

. . .
. . .

. . .
. . .



(3.3)

3.2 Mastrovito Multiplier Design using MVP

The Mastrovito multiplier is a widely used parallel multiplier with a quadratic

space complexity [17]. The design is essentially a brute force multiplier in the sense

that the MVP is computed like traditional matrix multiplication. It does optimize

the operation since the repeated values that are present in the polynomial matrix

can be computed once and then reused as signals in hardware for the brute force

multiplication portion. Hardware resources are saved to some extent in this way.

Elements in P are in GF(2), so AND and XOR gates are used for element wise

multiplication and addition respectively. Since the Mastrovito multiplier uses the

brute force approach, after computing elements in P , the Mastrovito design has

a single layer of AND gates for element multiplication followed by layers of XOR

gates to compute the final result. The simplicity of the Mastrovito design is evident

in Figure 3.1 which provides an overview of the multiplier. The design is easy to

code into a low level design using any hardware description language such as VHDL.
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Figure 3.1: Mastrovito multiplier for GCM

The area complexity of the Mastrovito multiplier design for the brute force

portion is m2 AND gates while the number of XOR gates is m2 − m. The XOR

gate count for the polynomial matrix computations will vary based on the field

polynomial, and is computed using the Hamming weight of the matrix. For the

GCM this is equal to 784 XOR gates.

The time complexity can be summarized as TA + (dlog2me + dlog2 θ + 1e)TX ,

where TA and TX is the AND gate and XOR gate delays respectively. The θ constant

is the maximum Hamming weight from all the columns of the polynomial matrix.

Figure 3.2 which shows the number of XOR gate computations required for the top

part of the polynomial matrix created from the GCM field pentanomial (20 rows

shown). The bottom portion of the P matrix has elements repeated at the diagonals

and does not show any other interesting areas. The maximum Hamming weight per

column from this can be seen to be θ = 6 so the maximum delay that is observed

for creating the polynomial matrix is equivalent to a dlog2(6 + 1)eTX = 3 · TX gate

delay.

Figure 3.2: GCM Polynomial Matrix XOR gate counts per element
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3.3 Karatsuba Algorithm Subquadratic Multiplier

The Karatsuba Algorithm (KA) was originally used to compute digit multiplication

[14], and was mapped to polynomials by [24]. It has a subquadratic area complexity

but with a larger delay in comparison with the Mastrovito multiplier. Subquadratic

multipliers such as KA generally decrease the number of multiplication operations

while increasing the number of addition computations. Since the cost of adding

GF elements is low and equivalent to XORing bit streams in hardware, the KA is a

suitable approach for GF multiplication. Using divide and conquer techniques the

multiplication operation is divided up into smaller and smaller operations followed

by an expansion to get the final product. This reduction and subsequent expansion

is constructed by levels of XOR operations and as a result causes the delay of the

multiplier to increase.

3.3.1 KA Multiplier Formulation

The elements A(x), B(x) ∈ GF(2m) are first each split into two polynomials of max

degree m
2
− 1. Ah and Bh represents the upper polynomial coefficients while Al and

Bl represents the lower coefficients of the elements. The following equations show

A(x) split into two smaller polynomial elements, Ah and Al

A(x) = x
m
2 Ah + Al

Ah = (am−1, am−2, · · · , am/2+2, am/2+1)

Al = (am
2
, am/2−1, · · · , a1, a0)

(3.4)

The multiplication of the two elements in GF(2m) is first computed to get a

polynomial of max degree 2m− 2 (C ′(x)). The ⊕ operation represents XORing bit

streams in Eq.(3.5) and multiplication operations shown are with sub-polynomials.
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The original multiplication is divided into three lower degree polynomial multipli-

cations and this can be further split recursively. The C ′(x) element is obtained

once the recursion unrolls, and this is then modulo reduced separately to get the

final C(x) element.

D0, D1, D2 have max degree m/2− 1

.

D0 = AlBl

D1 = (Ah ⊕Bl)(Al ⊕Bh)

D2 = AhBh

C ′(x) = xmD2 ⊕ x
m
2 (D1 ⊕D0 ⊕D2)⊕D0

C(x) = C ′(x) mod F (x)

(3.5)

3.3.2 Modulo Reduction

Modulo reduction of C ′(x) using the field polynomial can be performed by a mul-

tiplication with a fixed reduction matrix. Using the GCM field polynomial as an

example, the higher order coefficients of C ′(x) can be modulo reduced based on the

following equations.

0 ≡ x128 + x7 + x2 + x+ 1 mod F (x)

x128 ≡ x7 + x2 + x+ 1 mod F (x)

x129 ≡ x8 + x3 + x2 + x mod F (x)

· · ·

(3.6)

The reduction matrix has 2m− 2 columns and m rows. The matrix essentially

maps C ′(x) to C(x) and is shown in Figure 3.3 for the GCM. The first m columns of

the matrix form an identity matrix since elements of degree 1 to m− 1 do not need

to be reduced. Using Eq.(3.6), all elements of degree m to 2m− 2 can be modulo
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reduced and then used in creating the remaining m − 2 columns of the reduction

matrix. The cost of this operation in relation to the KA multiplication is small

and is dependent on the field polynomial. The Hamming weight of the reduction

matrix for the GCM shows that this operation requires 527 XOR gates. Having

low order terms within the field polynomial helps reduce the cost of the operation

since higher order terms have additional feedback terms which increase the cost

of the operation. For a field polynomial such as x128 + x40 + x2 + x + 1 the cost

of the operation is 623 XOR gates. The delay for the reduction operation can be

computed by (dlog2 θ+1e)TX , where θ is the largest Hamming weight computed by

row of the reduction matrix. For the GCM reduction matrix this delay is computed

to be 3TX .

Figure 3.3: Reduction Matrix for GCM
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3.3.3 KA Multiplier Design for GCM

The Karatsuba algorithm generally works best with elements of even degree since

each step in the recursion splits polynomials equally. The input element size for

the GCM Galois operation is 128 bits, a power of 2, so the KA multiplier can be

easily applied without any changes required. A high level view of the Karatsuba

multiplier is provided here with all the major components required.

Figure 3.4: Abstract view of the Karatsuba Multiplier

The polynomial elements can be conveniently split down to single element mul-

tiplications but this is not always desirable in terms of area efficiency. When the

ending condition of the recursion is changed and brute force multiplication per-

formed instead, this leads to some savings in terms of AND and XOR gates. The

following table shows the number of gates required for halting at different polyno-

mial sizes. The gate counts do not include the reduction operation which has a

fixed number of gates and a fixed delay of 3TX . The ending condition delays are

based on the brute force multiplication delay which is TA + log2(n)TX where n is

the halting value.
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Table 3.1: Area of the KA Multiplier with varied ending conditions

Halt XOR gates AND gates Total Gates NAND Gates Delay
2 9913 2916 12829 45484 TA + 19TX
4 8455 3888 12343 41596 TA + 17TX
8 7969 5184 13153 42244 TA + 15TX
16 8455 6912 15367 47644 TA + 13TX
32 9913 9216 19129 58084 TA + 11TX
64 12415 12288 24703 74236 TA + 9TX

We can see from Table 3.1 that it is worthwhile halting the KA when the

polynomial size is 4 since it provides the lowest area and delay complexity. Since

the cost of XOR gates in hardware is usually larger than that of AND gates, in

order to get more accurate area estimates for ASIC implementations, the NAND

gate count is included. The area cost of 1 XOR gate is bounded by the area of 4

NAND gates while one AND gate is bounded by the area of 2 NAND gates. When

taking the NAND gate count into consideration the results still showed halting at

4 as the optimal choice in terms of area.

3.4 Fan-Hasan Subquadratic Multiplier

The FH multiplier is a subquadratic area, parallel multiplier that was recently

proposed in [6, 8]. Its asymptotic space complexity is quoted to be 8% lower

than that of KA while its time complexity is 33% lower for a trinomial as the

field polynomial. When compared with the Mastrovito multiplier, although it has

a larger delay its area footprint is less than half for m = 128. The FH multiplier

takes advantage of the Toeplitz structure found in the polynomial matrix P in order

to perform more area efficient multiplication. A Toeplitz matrix vector product

(TMVP) is used for this multiplier and will be described first before going into
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implementation details for the GCM.

3.4.1 TMVP Formulation

A Toeplitz matrix is a matrix which has all diagonal elements equal. The m by

m matrix T given in Eq.(3.7) for example, is a Toeplitz matrix and has elements

in (row i, column j) equal to (i + 1, j + 1). A variant of this matrix, the Hankel

matrix, has equal diagonal elements in the opposite direction where elements (i,

j) equals (i− 1, j + 1). In order to uniquely define a Toeplitz matrix only 2n− 1

elements generated from the first row and column are needed.

The regularity present in the Toeplitz matrix can be used to our advantage when

computing addition and multiplication. Addition of two square Toeplitz matrices

for example only requires 2n − 1 element additions, while the remaining elements

can be copied at the diagonals. Although a brute force method of multiplication

on a TMVP does not provide any benefit, by creating a recursive multiplier design

similar to the KA, it is possible to reduce the area complexity. An important quality

of T useful for the recursive formulation is that all sub matrices of T are in Toeplitz

form as well. Matrices T0, T1, and T2 shown here are all Toeplitz matrices within

the matrix T .

T =



a3 a4 a5 a6

a2 a3 a4 a5

a1 a2 a3 a4

a0 a1 a2 a3


=

 T1 T0

T2 T1



T1 =

[
a3 a4

a2 a3

]
, T0 =

[
a5 a6

a4 a5

]
, T2 =

[
a1 a2

a0 a1

]
.

(3.7)

Given a Toeplitz matrix T =

T1 T0

T2 T1

 and vector V =

V0

V1

, the product C = T · V can

be recursively constructed as given in Eq.(3.8). A single matrix vector product is
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broken down into three smaller products of matrices of half the size.

C =

P0 + P2

P1 + P2


P0 = (T1 + T0) · V1

P1 = (T2 + T1) · V0

P2 = T1 · (V0 + V1)

(3.8)

The addition of Toeplitz matrices given in the calculation of P0 and P1 can be

optimized based on the repeated signals [6]. Assuming T is a m by m matrix,

adding half matrices T1 and T0 is computed in m− 1 gates, and m/2− 1 of these

addition signals can be reused in computing T2 and T1. This results in having only

3m/2− 1 gates for computing both additions.

The multiplications for P0, P1 and P2 are all TMVP computations that can be

split further and the recursive design stops upon reaching single element multipli-

cations. Like the KA implementation it is possible to get more savings by halting

the recursion earlier and performing brute force matrix multiplication. Table 3.2

summarizes area of designs halting at different input sizes for a 128 bit FH multi-

plier. It is clearly seen that splitting when the matrix size is 4 has an optimal total

gate count. Taking into consideration the cost of AND and XOR gates in an ASIC

implementation with a NAND gate count, we still see halting at 4 is the optimal.

3.4.2 FH Multiplier Designs for GCM

Although the P matrix for GCM is not a complete Toeplitz matrix, it was shown

in Section 3.1.1 that there are two regions in the matrix that have Toeplitz form

(rows 3 to 7 and rows 8 to 128). Since the approach provided in the previous
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Table 3.2: Area of the FH multiplier with varied ending conditions

Halt XOR Gates AND Gates Total Gates NAND Gates Delay
2 9074 2916 11990 42128 TA + 13TX
4 7859 3888 11747 39212 TA + 12TX
8 7616 5184 12800 40832 TA + 11TX
16 8291 6912 15203 46988 TA + 10TX
32 9884 9216 19100 57968 TA + 9TX
64 12479 12288 24767 74492 TA + 8TX

section works only with square Toeplitz matrices there is some adjustment that

needs to take place on the GCM polynomial matrix. Figure 3.5 shows three possible

approaches to deal with this problem and are summarized here before going into

them in detail. The first approach performs the TMVP on the larger Toeplitz

section by extending it into a 128 x 128 Toeplitz matrix and performing brute force

multiplication on the smaller section. The second approach aims to use the TMVP

on a 122 x 122 portion of the larger Toeplitz section and get the final result by

combining brute form multiplication results of the remaining sections. The last

approach adds values to the existing polynomial matrix in order to convert it into a

full 128 x 128 Toeplitz matrix and then compensate the additions in the end result.

From these three methods the first was implemented in this thesis for its low delay.

Approach 1: Based on [8], the first row of the polynomial matrix is movable

to the bottom of the matrix without disrupting the Toeplitz form. The C0 term of

C(x) as a consequence, moves to the bottom of the result vector. When this is done

a large 122 by 128 bit section is formed that has Toeplitz structure. This section of

the polynomial matrix can be extended to create a full 128 by 128 Toeplitz matrix

by padding 6 zeros to the first column and copying elements over. The TMVP can

then be applied to this matrix. The remaining 6 rows at the top of the matrix can

be computed using the Mastrovito multiplier approach. Since 5 rows in that region
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are in Toeplitz form, it may be possible to use the TMVP, but due to the smaller

dimensions, the Mastrovito multiplier provides better results.

Approach 2: Another method would be to make a square portion out of the

large 122 by 128 bit section and compute that using the TMVP. This means a 122

by 122 matrix is formed that has a Toeplitz structure. As this matrix is being

split, there will be cases where the resulting sub matrices have non-even numbered

dimensions. In that case zeros can be padded to a row and column to create an

even matrix dimension. It is possible to remove a row and column as well but

brute force multiplications would be required to compensate the action. The first

6 columns that are unaccounted for in the 122 by 128 bit section can be computed

by brute force multiplication and the result compensated in the final C(x). The

top part of the polynomial matrix can be computed using the Mastrovito design as

done in Approach 1.

Approach 3: Since some rows at the top of the GCM polynomial matrix

prevents a full Toeplitz structure from occuring, another approach would be to

add certain elements to the problematic rows to create a Toeplitz matrix and then

compensate the changes in the end result. To describe this further, suppose we

have the following matrix vector product computation where w, x, y, and z are

polynomial matrix computations that prevent a Toeplitz structure.

Figure 3.5: Possible FH Multiplier Designs for GCM
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C =



a3 a4 a5 a6

a2 a3 ⊕ w a4 ⊕ x a5 ⊕ z

a1 a2 a3 ⊕ w a4 ⊕ x⊕ y

a0 a1 a2 a3 ⊕ w


·



b3

b2

b1

b0


(3.9)

The above computation can be broken up into two MVP where one matrix is in

Toeplitz form and the other compensates the matrix changes made. The subtraction

operation given here is simply a bit wise XOR computation. For the GCM matrix

the compensation would only occur for the first 6 rows of the polynomial matrix

since row 7 onward is in Toeplitz form. This is assuming that the first row is moved

to the bottom of the matrix.

C =


a3 ⊕ w a4 ⊕ x⊕ y a5 ⊕ z a6

a2 a3 ⊕ w a4 ⊕ x⊕ y a5 ⊕ z
a1 a2 a3 ⊕ w a4 ⊕ x⊕ y
a0 a1 a2 a3 ⊕ w

 ·

b3
b2
b1
b0

−

w x⊕ y z 0
0 0 y 0
0 0 0 0
0 0 0 0

 ·

b3
b2
b1
b0


(3.10)

3.4.3 FH Multiplier Design Comparisons

In terms of delay, Approach 2 and 3 both add an additional XOR gate delay because

of the compensation operations required on the end result. Approach 3 has the

lowest gate count out of the three, since the matrix compensation step for the first 6

rows is a sparse matrix requiring less brute force multiplications. The first approach

provides the lowest delay and is relatively simpler to implement. By computing the

first few rows using the Mastrovito multiplier has a timing benefit over using only

the compensation step as described in Approach 3. From Figure 3.2 it was seen

that the top 8 rows have the largest delay in computing the polynomial matrix

elements. In Approach 3, the largest polynomial matrix computation (dlog2(6 +
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1)eTX gate delay) in addition to the TMVP computation creates the critical path of

the multiplier. By using the Mastrovito multiplier on the higher delay polynomial

matrix computations found in the first 8 rows, it decreases the critical path of the

multiplier to some degree, since the Mastrovito delay is much smaller than the

TMVP computations. The critical path is limited to the dlog2(4 + 1)eTX delay for

the polynomial matrix computation on row 8 plus the TMVP computation in this

way. An abstract view of this implemented multiplier is provided here.

Figure 3.6: Implemented GCM FH multiplier design

3.5 ASIC and FPGA implementation

The implementation results provided here are full bit parallel multiplier designs for

the GCM and include polynomial/reduction matrix calculations. Java programs

were used in creating low level hardware descriptions of the three multipliers and

generic code for this is provided in Appendix A. The programs essentially output

VHDL assignment commands in conjunction with AND and XOR commands to

achieve optimized bit level operations. The FH multiplier design provided was

modified from the pseudocode given in [6] and the KA multiplier was created using

the same concept as well. Test benches to verify the multipliers were created from

a LFSR multiplier implementation.
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ASIC implementation results were generated using an 130nm Tower Standard

Cell Library. Each multiplier was synthesized using the Cadence RTL compiler

and incrementally optimized several times until no further improvements were

seen. Timing constraints were set according to the type of optimization desired. A

faster clock frequency was set for speed optimization, while area optimizations were

achieved by setting a lower clock frequency. Implementation results are provided

in Table 3.3 for each multiplier, including area and delay results. The expected

area complexities of AND and XOR gates for all the multipliers is also included in

that table. In order to get more focused results, the multipliers implemented here

did not include the feedback condition and register delays of the GCM multiplier

block, but only the logic elements of the multiplier.

The hardware platform used for FPGA implementation was the Xilinx Virtex4-

FX100 which contains 42176 slices. The multipliers were synthesized with a high

effort level using Xilinx ISE and optimized for speed. Each slice on the Virtex4

contains two, four input look up table blocks (4-LUT) and two flip flops. Besides

their use as logic components, slices are also used for routing signals within the

FPGA. Both the slice and 4-LUT counts are provided along with the expected

delay of the multipliers in Table 3.4.
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3.5.1 Results Analysis

FPGA results showed the Mastrovito multiplier taking up significant area resources

over the FH and the KA multipliers. Almost 20% of the Virtex4’s resources were

taken up with this multiplier, whereas the FH and KA used a maximum of 9%.

The delay for the FH showed a 8% improvement over the KA. The NAND gate

counts for the FH are much higher than the KA becuase of the additional brute

force computations required and this can be seen by the extra slice counts of the

FH.

The ASIC results for the Mastrovito multiplier, as expected, show its advantage

in terms of delay but it has 35% more area than the FH when optimized for speed

and slightly more then double the area requirements over the subquadratic multi-

pliers when optimized for area. Between the subquadratic multipliers, the FH had

a 7% advantage in area and a 5% speed improvement over KA when optimized for

speed. There are some possible reasons why the FH did not perform better in terms

of delay. It should be noted that the original published paper on the TMVP used

the Shifted Polynomial Basis (SPB) with a trinomial as the field polynomial which

is expected to have a lower delay. The GCM pentanomial adds additional delay

which is a possible reason for the descreapency in the results. The standard cell

library used had a wide range of cells so it is possible that lower level optimizations

caused the KA to have performance closer to the FH. For example, the KA mul-

tiplier for its ending steps has overlapping polynomial additions which take place

with a delay of 2TX . Standard cells with more input pads, such as a four input

XOR gate would help reduce this delay in the KA multiplier for some areas. This

type of optimization is not as pronounced for the FH multiplier since each step is

more divided. When using a 180nm library with a basic set of standard cells, the

delay of the FH was up to 14% faster than the KA, a result closer to theoretical
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expectations.

With a FH multiplier design, the maximum possible throughput is 79 Gbps

while for the Mastrovito multiplier we have close to 113 Gbps. In [10, 12], it was

shown that for AES, throughput rates closer to 80 Gbps is achievable only with

inner pipelining which consumes a significant amount of area resources and when

using outer round pipelining, a maximum throughput of 48.2 Gbps was achieved

with a LUT Sbox. Although these results were presented for a 180nm Standard cell

library, we can deduce it is difficult to achieve AES throughput rates which match

the multiplier throughput when a composite Sbox is used. With high speed FPGA

implementations of AES as given in [11], a similar argument can be made.

This means that using the FH or KA over the Mastrovito multiplier would

be the preferred choice for this implementation since it would not be the delay

critical portion of the datapath. With a 130nm ASIC implementation of AES

implemented in [29], the FH multiplier would be part of the critical path because

of the low latency BDD Sbox design was used. By using a LUT Sbox design,

which is 20% slower and less area consuming, more balanced pipelined stages may

be achieved with the FH even though it is apart of the critical path. Based on

this, the subquadratic multipliers were implemented into a pipelined AES-GCM

datapath and the results are detailed in the following chapter.
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Chapter 4

GCM ASIC and FPGA

Implementation

Previously proposed GCM designs have focused primarily on increasing the overall

throughput of pipelined datapaths. Attempts at reducing the hardware area have

been approached by using iterative AES designs or by implementing smaller Sbox

components since they encompass a significant portion of the AES block. From

the multiplier implementations shown in the previous chapter we can see that it

is possible to optimize the Galois field multiplier design of GCM without affecting

the throughput significantly. Modifications of existing AES and GCM designs were

done with the aim of increasing the average throughputs and to balance pipeline

stages so that area resources are used efficiently. The GCM datapath used in this

work is detailed first followed by ASIC and FPGA implementation results of the

GCM using the different multiplier designs.
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4.1 GCM Datapath

The GCM pipelined datapath employed for this work is provided in Figure 4.1.

The datapath used here is similar to the one given in [38] and [15] but differs more

in its lower level components. Block inputs for the GCM are 128 bits in length and

are fed into the pipelined GCM which processes them sequentially. The data path

provided supports both GCM encryption and decryption. An online key schedule

is employed in such a way that a 1 to 4 clock cycle latency is experienced for key

changes. Some of the important design decisions made while developing the GCM

are provided here with reference to previous designs in the literature. Justification

of adjustments made to previous designs is also provided.

4.1.1 Design Considerations

The GCM has an overall latency of 13, 15, or 17 cycles based on the key type

used. After the AES operation, a 2 clock cycle latency is present for the Galois

multiplication operation, and a multiplexer. The timing diagram of the GCM design

is provided in Figure 4.2. The IV vector input was fixed to 96 bits in this design

which has been recommended by NIST for providing higher throughput designs [4].

For variable length IV inputs an additional clock cycle of latency is added to the

design since the IV needs to be fed into the Galois multiplication operation before

it can be used. A simple incremental counter is used upon getting the IV input

and a register holds the current Yi value. Although a register is present, the design

adds no additional latency to the design and its outputs are fed directly into the

pipelined AES block.
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The sequential nature of the datapath simplifies the control signals significantly.

The data type signal is pipelined through the entire datapath and all blocks read the

signals at the appropriate stages to direct outputs accordingly. GCM encryption

and decryption operations are easily controllable by a Mode signal. The only change

in functionality is in the multiplexer feeding input into the Galois multiplier. Under

encryption, AAD and AES encrypted ciphertext blocks are fed into the multiplier

sequentially. For decryption, the multiplexer selects the AAD and ciphertext blocks

from the FIFO.

Pipelined registers are included within the major blocks and also in some loca-

tions to help increase throughput. The multiplexer used for feeding in data into

the multiplier, for example, is held in a register for one clock cycle. This was done

to reduce some of the combinatorial delay going into the GF multiplier. The use

of the FIFO for feeding in datablocks is used in previous designs but more recently

proposed designs by [29] omit it.

AAD and ciphertext blocks can be processed simultaneously under some con-

ditions when no FIFO block is present but such a design has a more complicated

control unit. Another possible reason for omitting the FIFO is that while a key

update is taking place, AAD data blocks can be fed directly into the multiplier

without requiring the need for the FIFO. This, however, requires the multiplier key

to be generated using an Iterative AES block which was not used in [29]. By not

including the FIFO block, an external source is forced to drive the chip and provide

input blocks at the correct time to synchronize with the AES output blocks. In-

cluding the FIFO helps provide a better interface for the chip and a simpler control

unit design.
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4.2 Pipelined AES Design

An outer pipelined AES block was used for the GCM design that has a latency

of 10,12 or 14 clock cycles depending on a 128 bit, 192 bit or 256 bit key chosen

respectively. Inner pipelined rounds were not used since the parallel multipliers have

a larger critical delay which would not be able to keep up with a higher frequency

clock. There were two types of Sbox designs implemented, the composite Sbox

design presented in [30] as well as a lower delay LUT design. The Mix Columns

operation was performed by brute force multiplication to have minimal delay. The

key schedule design is a modified version of [29] to provide lower latency for overall

key updates in both the AES and multiplier blocks.

4.2.1 Key Schedule Considerations

Varying schemes for updating key values in the GCM datapath have been used in

the literature. The design given in [38] uses an iterative AES block for updating the

key for the GF multiplier while an offline key schedule is used for computing 128 bit

AES round keys. Satoh uses an iterative key schedule design supporting all AES

key types, but round keys are pre-calculated for their pipelined architectures and

are not used until the entire key schedule has finished updating them [29]. Satoh

does not specify additional details for key changes in his work but given that keys

are pre-calculated, there is a 10-14 cycle latency in his design. The overall average

throughput would decrease if more frequent key changes occur. Although online

key schedules have been proposed in [33, 16], they have either been limited to 128

bit keys, or for iterative AES designs. To the best of the authors knowledge, a low

latency online key schedule that supports all key types for a pipelined AES–GCM

has not been proposed.
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The key schedule implemented in this thesis is identical to iterative the key

schedule in [29] but is made to be better integrated into the GCM pipeline. The

latency for this proposed design is a maximum of 13 cycles depending on the type

of input blocks and key sizes used. If the number of datablocks processed per key is

larger then 14 blocks, then the maximum latency would be 1 on average. The blocks

of data being processed in the AES pipeline by a previous key are not affected by

the changes and only future input blocks are. Given these operating conditions,

this key schedule integration provides a better average throughput over previous

work which have latencies equivalent to the size of the AES pipeline.

4.2.2 Low Latency Iterative Key Schedule

An initial design attempt was made by unrolling an iterative key schedule and

pipelining it. Although such a design would be ideal and have the potential of

changing AES keys at every cycle of input with no latency cost, it is a very area

intensive design. This unrolled design requires an additional 14 x 4 Sbox compo-

nents which is equivalent to a little less then a third of the total area of the AES

block. An iterative key schedule, on the other hand, is much more area efficient and

consumes only 4 Sbox components along with some smaller logic components. Each

round of the pipelined AES block has its own round key register which is updated

by the key schedule. In Figure 4.3, we can see that as a new key is updated the old

round key register values still remain until the key schedule updates them at the

appropriate iteration. This property can be used in creating a lower latency key

schedule.
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Figure 4.3: Key Schedule round key register updates by iteration

Since old key values are not updated on the key change, they are still usable

for the current datablocks in the AES pipeline. If all the round keys registers are

filled, then the GCM design would incur a one clock cycle latency for doing a key

update. This one cycle latency is due to the multiplier key block which needs to

be computed by encrypting an all zero input in AES. The new AES round keys are

computed on the fly, and are available in time to do the multiplier key computation.

This latency is assuming that the AES pipeline is filled.

There are some issues with this setup that need to be addressed. The first

problem is that if a key change occurs before all the round key registers have been

filled, then either a stall needs to occur, or the input staggered until all round keys

have been updated. When a new key comes in, the iterative key schedule will shift

to updating the first round key and stop its current key computation. The blocks

in the AES pipeline that were dependent on the old AES key will no long have the

correct round keys added since the Key schedule did not finish updating them. The

worst case condition for this is present for a 256 bit key. If a key change occurs

after a single block has entered the pipeline, then a 13 cycle delay latency is present

to fill the remaining round keys and only after that can encryption begin on new

blocks.

There is another problem that can occur even if the round keys have been

updated. In Figure 4.4 we can see AES round blocks with the corresponding output
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based on the key type. When a key change occurs from a larger key size to a

smaller one, such as a 256 bit key to a 128 bit key, there is a conflict that will

occur. Supposing 256 bit datablocks are in rounds 10 - 14 in the AES pipeline, and

128 bit encrypted values fill rounds 1 to 9. In the next clock cycle, both the 128 bit

encrypted values and the 256 bit encrypted values will be ready for output to the

final block. The pipeline needs to stall for 4 clock cycles in this case to allow data

to finish processing from the old key values. Similarly going from a 256 bit key to

a 192 bit key or a 192 bit to a 128 bit key a 2 clock cycle stall needs to occur.

Figure 4.4: Collision on change in input keys

Pipeline stalling can be avoided by staggering inputs and adding a four clock

cycle latency for all key changes. This would allow the current data blocks in the

pipeline to empty so that collisions are avoided. An alternative method to avoid

pipeline stalls would be to buffer the input of 128 bit and 192 bit key encrypted

rounds to avoid conflicts. The latency of the entire AES block would be fixed to 14

clock cycles but key changes would occur in a single clock cycle for full pipelines.

Figure 4.5 shows the additional registers required for achieving this. Note that in

this case, key type signals need to be pipelined as well which is a minimal cost. A

total of 6 additional 128 bit registers are added to the design with this setup but

the benefit of having a single clock cycle key change latency is gained.
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Figure 4.5: AES datapath for single cycle key change latency

Given the increased area requirements of the last scheme proposed, the key

schedule with a fixed four cycle latency was employed with the iterative key schedule

in the GCM datapath. Despite the added latency, the average throughput expected

would still be higher than designs which have a fixed 14 cycle latency for all key

changes.

4.3 GCM Implementation Results

4.3.1 ASIC Results

All combinations of the three parallel multipliers presented in Chapter 3 along with

two Sbox designs, the composite and LUT Sbox, were implemented on an ASIC

with a 130 nm Standard Cell Library under average case operating conditions.

Incremental optimizations were used with a high effort level and a sample synthesis

script is provided in Appendix A.3. The synthesis results are summarized on Table

4.1 and gate counts have been approximated using a two way NAND gate as the unit

size which is a standard method of comparison. Design # 1 was the GCM design

with the LUT Sbox while Design # 2 was implemented with the composite Sbox.
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The timing constraints were chosen to allow either area or speed optimizations to

take place. The performance measurement of Kbps/gate allows a better comparison

of speed and area tradeoffs, and these results can be seen in graphical form in Figure

4.7.

The Mastrovito multiplier has 12% more area requirements than the other mul-

tipliers with Design # 1 and a 18% increase in area resources when implemented

with the composite Sbox (Design #2). The critical path for the GCM design was

the GF multiplier in Design #1 since the LUT Sbox has a low delay. When syn-

thesizing this design, the area of the subquadratic multipliers increase in order to

achieve a smaller delay. This area increase is still lower then the Mastrovito mul-

tiplier design so a 12% benefit is seen in overall area requirements. Design #2,

however, had the composite Sbox as part of the critical path. The GF multipliers

as a result are synthesized with a lower area since there is more freedom in terms

of delay. The area benefit for the subquadratic multipliers is much more as a result

over the Mastrovito multiplier design. Figure 4.6 has overlapped pie charts show-

ing area of the AES and multiplier blocks. Notice that for GCM design #2 the

multiplier area is proportionally much higher with the Mastrovito multiplier.

Figure 4.6: GCM Area Distribution
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Figure 4.9: Area Histogram for FPGA GCM Designs (*[15])

Figure 4.10: Throughput per Slice Performance for FPGA GCM Designs (*[15])
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There was no notable difference in area between GCM designs implemented

with the FH and KA multipliers. The brute force computations required for six

rows of the Polynomial matrix make the FH design slightly more area consuming

than the KA implementation, which is a reason for the lack of difference in overall

area for those GCM designs. The delay advantage of the FH even though it has

comparable area requirements to the KA allows its throughput per gate efficiency

to be the highest out of all GCM designs when used with the LUT Sbox.

When compared with GCM designs in the literature, the sub-quadratic multi-

pliers showed good throughput per gate efficiency. For the outer pipelined AES-

GCM implementation given in [29] combined with a Mastrovito multiplier, a 42.67

Gbps throughput with 143.40 Kbps/gate efficiency was observed. The FH multi-

plier GCM design showed a higher 232.50 Kbps/gate efficiency, and when compared

with similar throughput rates can be calculated to have a 198 Kbps/gate efficiency.

Similar advantages with the composite Sbox designs can be seen where a 182 Kbp-

s/gate efficiency is observed using matching throughput rates of comparable designs

in [29] which showed a 176 Kbps/gate efficiency.

The focus of the results given above was to show the area efficiency of the de-

signs, but the throughputs achieved in relation to practical applications are also

competitive. The high throughput demands for network applications of GCM in

the industry range from 10 to 40 Gbps currently so the designs presented with

subquadratic multipliers are in line with those requirements [32]. Using the sub-

quadratic multipliers over the Mastrovito approach would in fact be perferred since

the brute force approach provides a higher than needed throughput. Although it is

possible that with increasing throughput demands the Mastrovito multiplier would

have to be used, but by combining the advantage of the subquadratic multipliers in

GCM with better CMOS processes such as a 90nm standard cell library could help
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meet this demand. Other applications of GCM such as tape storage are currently

limited by device read and write speeds so the ASIC designs presented here would

not be as relevant for those applications.

4.3.2 FPGA Results

FPGA implementations of GCM were synthesized, placed and routed using Xilinx

ISE and results are provided in Table 4.2. Three Sbox types were implemented

namely, Block RAM, LUT and composite Sbox. The Block RAM solution is like

a look up table approach, but it uses memory elements within the Virtex 4 FPGA

and is able to provide results after a clock cycle. Due to this property the Block

RAM components act as pipelined registers for AES. The iterative key schedule

used LUT Sbox components, however, to reduce the complexity in using Block

RAM resources.

The area advantage of the subquadratic multiplier over the brute force ap-

proaches used in [15] provide better slice utilization for comparable throughput

rates. The KA multiplier GCM design provided in [39] supports only 128 bit AES

keys, but the multiplier has been optimized to a greater degree. The halting con-

dition was chosen based the lower level LUT component rather than XOR and

AND gates, since they are the building blocks of FPGAs. The slice utilization as

a result is higher, but it is difficult to compare the designs since not all key types

were supported. The FH multiplier GCM implementations for all cases provided

the highest throughput with the exception of the KA implementation given in [39].

The 16.54 Gbps throughput achieved with the Block RAM solution is, to the best

of the authors knowledge, the fasted reported FPGA implementation to date of

GCM.
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4.3.3 Subquadratic Multipliers in Parallel GCM

Given the area flexibility in the subquadratic multiplier GCM designs, they could

potentially be used in current high throughput GCM designs as well. The parallel

GCM architecture could benefit from sub-quadratic multiplier to help reduce its

large area requirements. The 4-parallel design presented in [28] uses four AES en-

cryption blocks and 4 Mastrovito multiplier blocks. When implemented with the

composite Sbox reported results showed a throughput of 102Gbps and with a gate

count of 600 Kgates. Given the 20K gate savings achieved by moving to a sub-

quadratic multiplier design, by using the FH or KA multiplier in the Parallel GCM

architecture, an anticipated 80K gates could be saved without affecting the overall

throughput of the design. This is more then 13% of the current area consumed by

the design. The 4-Parallel GCM using BDD Sboxes has a 900K gate count and 160

Gbps throughput and could also benefit with roughly 8% decrease in area. The

throughput for the design would decrease to 140Gbps in that case, however, since

the subquadratic multiplier would be defining the critical path.

4.4 Key Change Latency Comparisons

In order to calculate the effect of a key change on the overall throughput of GCM,

Eq.(4.1) is used. The function, f(α), represents the number of clock cycles for

computing α bytes of data under a full pipeline. When adding a latency of β

cycles, the efficiency in the throughput is equal to σ, a percentage of efficiency for

the given key change latency. When this σ value is multiplied by the maximum

throughput of the design the expected throughput for that particular packet size is

obtained.
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f(α) =
α∗8 (bits/byte)
128 (bits/block)

σ = f(α)
f(α)+β

(4.1)

Figure 4.3 shows the expected throughputs for GCM designs with different

packet sizes based on a incurred key change latency cost. Both the high throughput

designs shown here are from [29, 31]. A 54 Gbps inner and outer pipelined AES-

GCM design with a pipelined multiplier design and a 42.7 Gbps outer pipelined

design were compared with the proposed key schedule design in this thesis. The

latency for the 54Gbps GCM design is 40 clock cycles for a 128 bit key change, and

this lower bound was used in the computations rather than the upper bound of a 56

clock cycle delay expected for 256 bit key changes. The outer pipelined design had

a fixed 14 clock cycle latency while the proposed designs computed latency based

on the varying packet size inputs. The maximum throughput for the thesis design

was set to 36Gbps with the key change latencies of 1 and 4-14 clock cycles.

Figure 4.11: Average Throughputs of different key change latency designs (fixed
packet size)

The packet sizes, however, are not fixed for typical Internet traffic flows. In

order to calculate average throughput of designs the varied distribution needs to be

taken into consideration, which can be computed using the Internet Performance
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Index given in [19]. The average throughput expected for each of the designs based

on a distribution of 60%, 20%, 15% and 5% for 1500, 576, 552, and 44 byte packets

is provided in Table 4.3. The percentage difference from the maximum throughput

is also provided.

Table 4.3: Throughput of GCM designs with varied key change latencies

Max Throughput
Key Change Latency Average Percentage

(Cycles) Throughput Difference
54 Gbps [31] 40-56 31.75 59
42 Gbps [29] 14 33.32 78

36 Gbps [this work] 4-14 32.35 90
36 Gbps [this work] 1-14 33.99 94

These results show the advantage of the proposed GCM datapath design over

previous state of the art. The average throughputs achieved are competitive with

designs that use much more area resources as well. Average throughputs for the

design in [29] would increase by 4 to 5 Gbps if the improved latency design is used.

An argument against using an online key schedule such as the one proposed here

is that it is possible to load pre-computed round keys from memory thereby saving

the need to compute them on the fly. A key schedule unit that computes the round

keys would be needed in that case and a one time latency cost of key changes would

also exist. If a large number of keys are stored then this could significantly increase

the memory requirements. For certain small router designs, it may be more cost

effective to simply compute keys on the fly as described in this thesis
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Chapter 5

Concluding Remarks

5.1 Contribution Summary

High throughput GCM designs with subquadratic parallel multipliers have been

presented in this thesis. Both ASIC and FPGA results show higher area utilization

for GCM designs with subquadratic multipliers than implementations using the

brute force Mastrovito multiplier. For composite Sbox GCM implementations, it

has been shown that subquadratic multipliers are an ideal choice since they do not

effect the overall throughput and also reduce the area requirements of the GCM.

This is the first time ASIC implementation results have been presented for the FH

subquadratic multiplier and results show note worthy delay improvements over the

KA multiplier. Although when implemented for the GCM pentanomial, the FH

multiplier has increased area requirements, its efficiency in terms of throughput

per gate is the highest out of all GCM designs. The highest FPGA throughput to

date supporting all AES key types has also been achieved using the FH multiplier

and a Block RAM Sbox.
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5.2 Future Work

Although ASIC implementation throughputs of GCM are limited by the subquadratic

multiplier, there is scope to improve the multiplier delays. There are two methods

presented here that may provide faster throughputs. For the FH multiplier design

it is possible to improve the delay slightly by computing the Polynomial Matrix

step on the key input separately from the multiplier thereby saving a 3TX combi-

natorial delay which is 20% of the current delay. Figure 5.1 shows how this may be

achieved by moving the multiplier key register.

When implementing the multiplier it was noticed that the critical path comes

from the multiplier key inputs B(x), since those signals are sent through a polyno-

mial matrix calculation step. By moving the location of the multiplier key register

after the polynomial matrix calculations, the delay of that operation gets pushed

from the multiplier to the last AES round block. This design would require a

2m− 1 bit register and for the AES block a LUT Sbox would have to be used since

its critical path is smaller than the multipliers. If the delay of the LUT Sbox AES

is affected by the added delay, however, then it is also possible to adjust the register

within the polynomial matrix computations in order to better balance the delay.

The composite Sbox AES has a larger delay than the subquadratic multiplier so it

would not be appropriate for this implementation.

Figure 5.1: Improved delay FH design
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The halting conditions provided in Tables 3.1 and 3.2 for the KA and FH mul-

tipliers respectively, provide good tradeoff conditions that may also be used to

improve the area utilization results. Halting the recursion at 4 is found to be the

most area efficient for both the subquadratic multipliers, but the delay improves

linearly when halting earlier. Although the area increases exponentially, halting at

32, 16, or 8 provides a reasonable area tradeoff for the increase in speed. Figure

5.2 shows this trend comparing the area and delay tradeoffs for varying halting

conditions for both the subquadratic multipliers.

Figure 5.2: Tradeoff between Gate counts and delay for different halting conditions

The Mastrovito multiplier for GCM requires a total of 100420 NAND gates so

when halting the recursion at 32, the subquadratic multiplier area would be a little

less than 60% of the area requirements of the Mastrovito multiplier. For the FH

multiplier, this earlier halting would result in a delay complexity of TA+9TX which

is only a two XOR gate delays higher than the Mastrovito multiplier. The KA

multiplier sees similar benefits, and although approaches the FH multiplier area

complexities, it is still comparitively not as fast as the FH.
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Appendix A

Programs for Constructing

Parallel Multipliers

A.1 Java Program for Creating Generic FH Mul-

tiplier

import java . u t i l . ∗ ;
/∗∗
∗ This c l a s s g en e r a t e s VHDL code f o r a g en e r i c To e p l i t z Matr ix Vector Product
∗ Mu l t i p l i e r w i th deg ree 2ˆm
∗
∗ e n t i t y TMVPMultiplier i s
∗ Port (
∗ A : in S t d Log i c Vec t o r (0 to 127) ;
∗ B : in S t d Log i c Vec t o r (0 to 254) ;
∗ C : out S t d Log i c Vec t o r (0 to 127)
∗ ) ;
∗ end TMVPMultiplier ;
∗
∗ @author Pujan Pa t e l
∗/

public c lass Toepl itzMult {
Stack s i g n a l s ;
Stack a s s i g n s ;
private int varcount = 0 ;
int xorcount = 0 ;
int andcount = 0 ;
int [ ] xorde lay ;

public Toepl itzMult ( ) {
s i g n a l s = new Stack ( ) ;
a s s i g n s = new Stack ( ) ;
varcount = 0 ;
xorcount = 0 ;
andcount = 0 ;
xorde lay = new int [ 8 ] ;
for ( int i = 0 ; i < 8 ; i++) {

xorde lay [ i ] = 0 ;
}

}
public St r ing [ ] BruteForce ( St r ing [ ] [ ] T, S t r ing [ ] V) {

St r ing [ ] C = new St r ing [V. l ength ] ;
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for ( int i = 0 ; i < V. length ; i++) {
C[ i ] = ”” ;
for ( int j = 0 ; j < T. length ; j++) {

i f (C[ i ] . equa l s ( ”” ) )
C[ i ] = ” ( ” + T[ i ] [ j ] + ” and ” + V[ j ] + ” ) ” ;

else
C[ i ] = C[ i ] + ” xor ( ” + T[ i ] [ j ] + ” and ” + V[ j ] + ” ) ” ;

}
}
return C;

}
/∗∗
∗
∗ @param T
∗ To e p l i t z Matr ix Re ference
∗ @param V
∗ i s one o f Mu l t i p l i e r parameters
∗ @param l e n g t h
∗ Length o f matr i x
∗/

public St r ing [ ] TMVP( St r ing [ ] [ ] T, S t r ing [ ] V) {
// Loop v a r i a b l e s
int i , j , k ;
S t r ing [ ] [ ] T1 , T3 , T4 , T0 , T2 ;
St r ing [ ] V1 , V0 , V2 , C, C0 , C1 , P0 , P1 , P2 ;
C = null ;
xorde lay [ ( int ) Math . round (Math . l og ( ( double ) (T. l ength ) ) / Math . l og (2) ) ]++;

// End Condi t ion
i f (T. l ength == 4) {

P2 = new St r ing [V. l ength ] ;
P2 [ 0 ] = ” ( ( ( ” + T [ 0 ] [ 0 ] + ” ) and ( ” + V[ 0 ] + ” ) ) xor ”+

” ( ( ” + T [ 0 ] [ 1 ] + ” ) and ( ” + V[ 1 ] + ” ) ) xor ” +
” ( ( ” + T [ 0 ] [ 2 ] + ” ) and ( ” + V[ 2 ] + ” ) ) xor ” +
” ( ( ” + T [ 0 ] [ 3 ] + ” ) and ( ” + V[ 3 ] + ” ) ) ) ” ;

P2 [ 1 ] = ” ( ( ( ” + T[ 1 ] [ 0 ]+ ” ) and ( ” + V[ 0 ] + ” ) ) xor ” +
” ( ( ” + T [ 0 ] [ 0 ] + ” ) and ( ” + V[ 1 ] + ” ) ) xor ” +
” ( ( ” + T [ 0 ] [ 1 ] + ” ) and ( ” + V[ 2 ] + ” ) ) xor ” +
” ( ( ” + T [ 0 ] [ 2 ] + ” ) and ( ” + V[ 3 ] + ” ) ) ) ” ;

P2 [ 2 ] = ” ( ( ( ” + T[ 2 ] [ 0 ]+ ” ) and ( ” + V[ 0 ] + ” ) ) xor ” +
” ( ( ” + T [ 1 ] [ 0 ] + ” ) and ( ” + V[ 1 ] + ” ) ) xor ” +
” ( ( ” + T [ 0 ] [ 0 ] + ” ) and ( ” + V[ 2 ] + ” ) ) xor ” +
” ( ( ” + T [ 0 ] [ 1 ] + ” ) and ( ” + V[ 3 ] + ” ) ) ) ” ;

P2 [ 3 ] = ” ( ( ( ” + T[ 3 ] [ 0 ]+ ” ) and ( ” + V[ 0 ] + ” ) ) xor ” +
” ( ( ” + T [ 2 ] [ 0 ] + ” ) and ( ” + V[ 1 ] + ” ) ) xor ” +
” ( ( ” + T [ 1 ] [ 0 ] + ” ) and ( ” + V[ 2 ] + ” ) ) xor ” +
” ( ( ” + T [ 0 ] [ 0 ] + ” ) and ( ” + V[ 3 ] + ” ) ) ) ” ;

// t h i s . xorcount+=5; //2 s p l i t coun t s
// t h i s . andcount+=3;
this . xorcount += 12 ; // 4 s p l i t coun t s
this . andcount += 16 ;
this . varcount++;
return P2 ;

} else {

// Tmp Var i a b l e s
T1 = new St r ing [T. l ength / 2 ] [T. l ength / 2 ] ;
T0 = new St r ing [T. l ength / 2 ] [T. l ength / 2 ] ;
T2 = new St r ing [T. l ength / 2 ] [T. l ength / 2 ] ;

T3 = new St r ing [T. l ength / 2 ] [T. l ength / 2 ] ;
T4 = new St r ing [T. l ength / 2 ] [T. l ength / 2 ] ;

V1 = new St r ing [T. l ength / 2 ] ;
V0 = new St r ing [T. l ength / 2 ] ;
V2 = new St r ing [T. l ength / 2 ] ;

P1 = new St r ing [T. l ength / 2 ] ;
P0 = new St r ing [T. l ength / 2 ] ;
P2 = new St r ing [T. l ength / 2 ] ;

C = new St r ing [V. l ength ] ;
C0 = new St r ing [T. l ength / 2 ] ;
C1 = new St r ing [T. l ength / 2 ] ;
// F i l l a r ray s
for ( i = 0 ; i < (T. l ength / 2) ; i++) {

for ( j = 0 ; j < (T. l ength / 2) ; j++) {
T1 [ i ] [ j ] = T[ i ] [ j ] ;
T2 [ i ] [ j ] = T[ i + (T. l ength / 2) ] [ j ] ;
T0 [ i ] [ j ] = T[ i ] [ j + (T. l ength / 2) ] ;

}
}
for ( i = 0 ; i < (V. l ength / 2) ; i++) {

V0 [ i ] = V[ i ] ;
V1 [ i ] = V[ i + (V. l ength / 2) ] ;

}

// Compute Add i t i on s
AddToeplitz (T1 , T0 , T2 , T3 , T4) ;
AddSingle (V1 , V0 , V2) ;
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// Comput Sub Mu l t i p l i c a t i o n s
P0 = TMVP(T3 , V1) ;
P1 = TMVP(T4 , V0) ;
P2 = TMVP(T1 , V2) ;

// Create s i g n a l f o r P2 in P2
s i g n a l s . push ( ” s i g n a l tmp 6 ” + ( this . varcount )

+ ” : s t d l o g i c v e c t o r (0 to ” + (P2 . l ength − 1) + ” ) ; ” ) ;
for ( i = 0 ; i < P2 . l ength ; i++) {

a s s i g n s . push ( ” tmp 6 ” + ( this . varcount ) + ” ( ” + i + ” ) <= (”
+ P2 [ i ] + ” ) ; ” ) ;

P2 [ i ] = ” tmp 6 ” + ( this . varcount ) + ” ( ” + i + ” ) ” ;
}
this . varcount++;

// Compute f i n a l C answer
AddSingle (P0 , P2 , C0) ;
AddSingle (P1 , P2 , C1) ;
for ( i = 0 ; i < (C0 . l ength ) ; i++) {

C[ i ] = C0 [ i ] ;
C[ i + (C0 . l ength ) ] = C1 [ i ] ;

}
s i g n a l s . push ( ” s i g n a l tmp 7 ” + ( this . varcount )

+ ” : s t d l o g i c v e c t o r (0 to ” + (C. l ength − 1) + ” ) ; ” ) ;
for ( i = 0 ; i < C. length ; i++) {

a s s i g n s . push ( ” tmp 7 ” + ( this . varcount ) + ” ( ” + i + ” ) <= (”
+ C[ i ] + ” ) ; ” ) ;

C[ i ] = ” tmp 7 ” + ( this . varcount ) + ” ( ” + i + ” ) ” ;
}
return C;

}

}
/∗∗
∗ Pr in t s S i g n a l and Assignment S t a c k s
∗
∗/

public void pr intStack ( ) {
System . out . p r i n t l n ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;
System . out . p r i n t l n ( ”−− XOR COUNT : ” + this . xorcount ) ;
System . out . p r i n t l n ( ”−− AND COUNT : ” + this . andcount ) ;
System . out . p r i n t l n ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

for ( I t e r a t o r i t=this . s i g n a l s . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {
System . out . p r i n t l n ( i t . next ( ) ) ;

}
System . out . p r i n t l n ( ”Begin” ) ;
for ( I t e r a t o r i t=this . a s s i g n s . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {

System . out . p r i n t l n ( i t . next ( ) ) ;
}

}
/∗∗
∗ Adds a s i n g l e s t r i n g array w i th ano ther v i a xor
∗
∗ @param v1 F i r s t operand
∗ @param v0 Second operand
∗ @param v2 Added r e s u l t s t o r e d here
∗/

private void AddSingle ( S t r ing [ ] v1 , S t r ing [ ] v0 , S t r ing [ ] v2 ) {
// TODO Auto−g ene ra t ed method s t u b
i f ( v1 == null | | v0 == null | | v2 == null ) {

// throw (new )
return ;

}
s i g n a l s . push ( ” s i g n a l tmp 5 ” + ( this . varcount )

+ ” : s t d l o g i c v e c t o r (0 to ” + ( v2 . l ength − 1) + ” ) ; ” ) ;
for ( int i = 0 ; i < v2 . l ength ; i++) {

a s s i g n s . push ( ” tmp 5 ” + ( this . varcount ) + ” ( ” + i + ” ) <= (”
+ v1 [ i ] + ” ) xor ( ” + v0 [ i ] + ” ) ; ” ) ;

v2 [ i ] = ” tmp 5 ” + ( this . varcount ) + ” ( ” + i + ” ) ” ;
this . xorcount++;

}
this . varcount++;

}
/∗∗
∗ Adds a 2x2 t o e p l i t z matr ix s e t o f pas sed var and r e t u rn s t3 and t4 , as
∗ t h e a d d i t i o n s
∗
∗ @param t1
∗ @param t0
∗ @param t2
∗ @param t3
∗ @param t4
∗/

private void AddToeplitz ( S t r ing [ ] [ ] t1 , S t r ing [ ] [ ] t0 , S t r ing [ ] [ ] t2 ,
S t r ing [ ] [ ] t3 , S t r ing [ ] [ ] t4 ) {

int i , j ;
// Compute I n i t i a l Add i t i on s
// S i g na l I n i t
s i g n a l s . push ( ” s i g n a l tmp 3 ” + ( this . varcount )
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+ ” : s t d l o g i c v e c t o r (0 to ”
+ ( ( ( 2 ∗ t3 . l ength ) − 2) + t4 . l ength ) + ” ) ; ” ) ;

int count = 0 ;
// Le f tmos t Column ( bottom to top )
for ( i = t1 . l ength − 1 , count = 0 ; i >= 0; i−−, count++) {

a s s i g n s . push ( ” tmp 3 ” + ( this . varcount ) + ” ( ” + count + ” ) <= (”
+ t1 [ i ] [ 0 ] + ” ) xor ( ” + t0 [ i ] [ 0 ] + ” ) ; ” ) ;

t3 [ i ] [ 0 ] = ” tmp 3 ” + ( this . varcount ) + ” ( ” + count + ” ) ” ;
this . xorcount++;

}
// Topmost Row ( l e f t t o r i g h t )
for ( i = 1 ; i < t1 . l ength ; i++, count++) {

a s s i g n s . push ( ” tmp 3 ” + ( this . varcount ) + ” ( ” + count + ” ) <= (”
+ t1 [ 0 ] [ i ] + ” ) xor ( ” + t0 [ 0 ] [ i ] + ” ) ; ” ) ;

t3 [ 0 ] [ i ] = ” tmp 3 ” + ( this . varcount ) + ” ( ” + count + ” ) ” ;
this . xorcount++;

}

// Compute Extended Values
for ( i = 1 ; i < t1 . l ength ; i++) {

for ( j = 1 ; j < t1 . l ength ; j++) {
t3 [ i ] [ j ] = t3 [ i − 1 ] [ j − 1 ] ;

}
}
// /////////////////////////////////////////////////
// Le f tmos t Column ( bottom to top ) ( For bottom matr ix )
for ( i = t1 . l ength − 1 ; i >= 0; i−−, count++) {

a s s i g n s . push ( ” tmp 3 ” + ( this . varcount ) + ” ( ” + count + ” ) <= (”
+ t1 [ i ] [ 0 ] + ” ) xor ( ” + t2 [ i ] [ 0 ] + ” ) ; ” ) ;

t4 [ i ] [ 0 ] = ” tmp 3 ” + ( this . varcount ) + ” ( ” + count + ” ) ” ;
this . xorcount++;

}
// Topmost Row ( l e f t t o r i g h t )
for ( i = 1 ; i < t1 . l ength ; i++) {

t4 [ 0 ] [ i ] = ” tmp 3 ” + ( this . varcount ) + ” ( ” + ( i − 1) + ” ) ” ;
}
// Compute Extended Values f o r T4
for ( i = 1 ; i < t1 . l ength ; i++) {

for ( j = 1 ; j < t1 . l ength ; j++) {
t4 [ i ] [ j ] = t4 [ i − 1 ] [ j − 1 ] ;

}
}
this . varcount++;

}
public St r ing [ ] [ ] Tprint ( S t r ing t , int l en ) {

int count , i , j ;
S t r ing [ ] [ ] T = new St r ing [ l en ] [ l en ] ;
s i g n a l s . push ( ” s i g n a l ” + t + ” : s t d l o g i c v e c t o r (0 to ”

+ ((2 ∗ l en ) − 2) + ” ) ; ” ) ;
for ( i = len − 1 , count = 0 ; i >= 0; i−−, count++) {

T[ i ] [ 0 ] = t + ” ( ” + count + ” ) ” ;
a s s i g n s . push ( t + ” ( ” + count + ” ) <= B(” + i + ” ) ; ” ) ;

}
for ( i = 1 ; i < l en ; i++, count++) {

T [ 0 ] [ i ] = t + ” ( ” + count + ” ) ” ;
a s s i g n s . push ( t + ” ( ” + count + ” ) <= B(” + i + ” ) ; ” ) ;

}
for ( i = 1 ; i < l en ; i++) {

for ( j = 1 ; j < l en ; j++) {
T[ i ] [ j ] = T[ i − 1 ] [ j − 1 ] ;

}
}
return T;

}

public St r ing [ ] [ ] Tprint ( S t r ing t , int len , S t r ing [ ] up , S t r ing [ ] acc ) {
int count , i , j ;
S t r ing [ ] [ ] T = new St r ing [ l en ] [ l en ] ;
s i g n a l s . push ( ” s i g n a l ” + t + ” : s t d l o g i c v e c t o r (0 to ”

+ ((2 ∗ l en ) − 2) + ” ) ; ” ) ;
for ( i = len − 1 , count = 0 ; i >= 0; i−−, count++) {

T[ i ] [ 0 ] = t + ” ( ” + count + ” ) ” ;
a s s i g n s . push ( t + ” ( ” + count + ” ) <= ” + up [ count ] + ” ; ” ) ;

}
for ( i = 1 ; i < l en ; i++, count++) {

T [ 0 ] [ i ] = t + ” ( ” + count + ” ) ” ;
a s s i g n s . push ( t + ” ( ” + count + ” ) <= ” + acc [ i ] + ” ; ” ) ;

}
for ( i = 1 ; i < l en ; i++) {

for ( j = 1 ; j < l en ; j++) {
T[ i ] [ j ] = T[ i − 1 ] [ j − 1 ] ;

}
}
return T;

}
public void r e s e t ( ) {

s i g n a l s = new Stack ( ) ;
a s s i g n s = new Stack ( ) ;
this . varcount = 0 ;

}

public stat ic void main ( St r ing [ ] args ) {
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int [ ] c ;
int i , j , k ;
Toepl i tzMult tm = new Toepl itzMult ( ) ;
S t r ing [ ] [ ] T = null ;
S t r ing [ ] V = null ;
S t r ing [ ] up , acc ; // F i r s t column , F i r s t row o f T matr ix
int ROOT = 128;
// Create tmp V va l u e
V = new St r ing [ROOT] ;
up = new St r ing [ROOT] ;
acc = new St r ing [ROOT] ;
for ( i = 0 , j=ROOT−1; i < ROOT; i++,j−−) {

V[ i ] = ”A( ” + i + ” ) ” ;
up [ i ] = ”T( ” + j + ” ) ” ;
acc [ i ] = ”T( ” + i+ROOT + ” ) ” ;

}

T = tm . Tprint ( ”T” , ROOT, up , acc ) ;

S t r ing [ ] C = tm .TMVP(T, V) ; // TMVP Mu l t i p l i e r
// S t r i n g [ ] C = tm . BruteForce (T, V) ; // Mas t rov i t o Mu l t i p l i e r

// Pr in t l i n e s f o r c r e a t i n g m u l t i p l i e r code
tm . pr intStack ( ) ;
for ( i = 0 ; i < C. length − 7 ; i++) {

System . out . p r i n t l n ( ”C( ” + ( i + 7) + ” ) <= ” + C[ i ] + ” ; ” ) ;
}
System . out . p r i n t l n ( ”C(0) <= ” + C[ i ] + ” ; ” ) ;

}
}

A.2 Java Program for Creating Generic Karat-

suba Multiplier

package tmvppack ;

import java . u t i l . I t e r a t o r ;
import java . u t i l . Stack ;
/∗
∗ e n t i t y Ka r a t s u b aMu l t i p l i e r i s
∗ Port (
∗ A : in S t d Log i c Vec t o r (0 to 127) ;
∗ B : in S t d Log i c Vec t o r (0 to 127) ;
∗ CT : out S t d Log i c Vec t o r (0 to 254)
∗
∗ ) ;
∗ end Ka r a t s u b aMu l t i p l i e r ;
∗/
public c lass Karatsuba {

Stack s i g n a l s ;
Stack a s s i g n s ;
int varcount=0;
int xorcount=0;
int andcount=0;
int [ ] xorde lay ;
public Karatsuba ( ) {

s i g n a l s = new Stack ( ) ;
a s s i g n s = new Stack ( ) ;
varcount = 0 ;
xorcount = 0 ;
andcount = 0 ;
xorde lay = new int [ 1 6 ] ;
for ( int i =0; i <16; i++){

xorde lay [ i ]=0;
}

}
private St r ing [ ] karatsuba ( St r ing [ ] a , S t r ing [ ] b ) {

// TODO Auto−g ene ra t ed method s t u b
St r ing [ ] D0 ,D1 ,D2 ;
St r ing [ ] AH,AL,BH,BL;
St r ing [ ] D1A,D1B;
// Resu l t S t r i n g
St r ing [ ] C;
xorde lay [ ( int ) Math . round (Math . l og ( (double ) ( a . l ength ) ) /Math . l og (2) ) ] ++;
i f ( a . l ength ==4){

C = new St r ing [ 7 ] ;
/∗C[ 0 ] = ”(” + a [ 0 ] +” and ”+b [0 ]+ ”) ” ;
C [ 1 ] = ”(” + a [ 0 ] +” and ”+b [ 1 ] +”) xor (”+ a [ 1 ] +” and ”+b [0 ]+ ”) ” ;
C [ 2 ] = ”(” + a [ 1 ] +” and ”+b [1 ]+ ”) ” ; ∗/
C[ 0 ] = ” ( ” + a [ 0 ] + ” and ” + b [ 0 ] + ” ) ” ;
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C[ 1 ] = ” ( ” + a [ 0 ] + ” and ” + b [ 1 ] + ” ) xor ” +
” ( ” + a [ 1 ] + ” and ” + b [ 0 ] + ” ) ” ;

C[ 2 ] = ” ( ” + a [ 0 ] + ” and ” + b [ 2 ] + ” ) xor ” +
” ( ” + a [ 1 ] + ” and ” + b [ 1 ] + ” ) xor ” +
” ( ” + a [ 2 ] + ” and ” + b [ 0 ] + ” ) ” ;

C[ 3 ] = ” ( ” + a [ 0 ] + ” and ” + b [ 3 ] + ” ) xor ” +
” ( ” + a [ 1 ] + ” and ” + b [ 2 ] + ” ) xor ” +
” ( ” + a [ 2 ] + ” and ” + b [ 1 ] + ” ) xor ” +
” ( ” + a [ 3 ] + ” and ” + b [ 0 ] + ” ) ” ;

C[ 4 ] = ” ( ” + a [ 1 ] + ” and ” + b [ 3 ] + ” ) xor ” +
” ( ” + a [ 2 ] + ” and ” + b [ 2 ] + ” ) xor ” +
” ( ” + a [ 3 ] + ” and ” + b [ 1 ] + ” ) ” ;

C[ 5 ] = ” ( ” + a [ 2 ] + ” and ” + b [ 3 ] + ” ) xor ” +
” ( ” + a [ 3 ] + ” and ” + b [ 2 ] + ” ) ” ;

C[ 6 ] = ” ( ” + a [ 3 ] + ” and ” + b [ 3 ] + ” ) ” ;
// S to re r e s u l t in tmp v a r i a b l e
s i g n a l s . push ( ” s i g n a l tmp 4 ” + ( this . varcount )

+ ” : s t d l o g i c v e c t o r (0 to ” + (C. l ength − 1) + ” ) ; ” ) ;
for ( int i = 0 ; i < C. length ; i++) {

a s s i g n s . push ( ” tmp 4 ” + ( this . varcount ) + ” ( ” + i + ” ) <= (”
+ C[ i ] + ” ) ; ” ) ;

C[ i ] = ” tmp 4 ” + ( this . varcount ) + ” ( ” + i + ” ) ” ;
}
this . varcount++;
this . xorcount += 9 ;
this . andcount += 16 ;

} else {
// Popu la t e h a l f terms :
AH = new St r ing [ a . l ength / 2 ] ;
AL = new St r ing [ a . l ength / 2 ] ;
BH = new St r ing [ a . l ength / 2 ] ;
BL = new St r ing [ a . l ength / 2 ] ;
System . arraycopy (a , a . l ength / 2 , AH, 0 , a . l ength / 2) ;
System . arraycopy (a , 0 , AL, 0 , a . l ength / 2) ;
System . arraycopy (b , b . l ength / 2 , BH, 0 , b . l ength / 2) ;
System . arraycopy (b , 0 , BL, 0 , b . l ength / 2) ;

D1A = new St r ing [ a . l ength / 2 ] ;
D1B = new St r ing [ a . l ength / 2 ] ;
AddPoly (AL, AH, D1A) ;
AddPoly (BL, BH, D1B) ;

D0 = karatsuba (AL, BL) ;
D1 = karatsuba (D1A, D1B) ;
D2 = karatsuba (AH, BH) ;

// Need to add D1 ,D0 and D2 i n t o D1
AddPoly (D1 , D0 , D2 , D1) ;
C = new St r ing [ (D0 . l ength ∗ 2) + 1 ] ;
for ( int i = 0 ; i < C. length ; i++) {

C[ i ] = ”” ;
}
// D0 and D2 are t h e same l e n g t h
for ( int i = 0 ; i < D0 . l ength ; i++) {

C[ i ] = D0 [ i ] ;
}
int index = 0 ;
for ( int i = 0 ; i < D2 . l ength ; i++) {

index = i + (C. l ength − D2 . l ength ) ;
i f (C[ index ] . equa l s ( ”” ) )

C[ index ] = D2 [ i ] ;
else {

C[ index ] += ” xor ” + D2 [ i ] ;
this . xorcount++;

}
}
for ( int i = 0 ; i < D1 . l ength ; i++) {

index = i + ( (C. l ength − 1) / 2 − ( (D1 . l ength − 1) / 2) ) ;
i f (C[ index ] . equa l s ( ”” ) )

C[ index ] = D1 [ i ] ;
else {

C[ index ] += ” xor ” + D1 [ i ] ;
this . xorcount++;

}
}
s i g n a l s . push ( ” s i g n a l tmp 5 ” + ( this . varcount )

+ ” : s t d l o g i c v e c t o r (0 to ” + (C. l ength − 1) + ” ) ; ” ) ;
for ( int i = 0 ; i < C. length ; i++) {

a s s i g n s . push ( ” tmp 5 ” + ( this . varcount ) + ” ( ” + i + ” ) <= (”
+ C[ i ] + ” ) ; ” ) ;

C[ i ] = ” tmp 5 ” + ( this . varcount ) + ” ( ” + i + ” ) ” ;
}

}
return C;

}

private void AddPoly ( St r ing [ ] A, St r ing [ ] B, S t r ing [ ] C, St r ing [ ] D) {
// TODO Auto−g ene ra t ed method s t u b
s i g n a l s . push ( ” s i g n a l tmp 3 ” + ( this . varcount )

+ ” : s t d l o g i c v e c t o r (0 to ” + (D. l ength − 1) + ” ) ; ” ) ;
for ( int i = 0 ; i < A. length ; i++) {
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a s s i g n s . push ( ” tmp 3 ” + ( this . varcount ) + ” ( ” + i + ” ) <= (”
+ A[ i ] + ” xor ” + B[ i ] + ” xor ” + C[ i ] + ” ) ; ” ) ;

D[ i ] = ” tmp 3 ” + ( this . varcount ) + ” ( ” + i + ” ) ” ;
this . xorcount += 2 ;

}
this . varcount++;

}

private void AddPoly ( St r ing [ ] A, St r ing [ ] B, S t r ing [ ] C) {
// TODO Auto−g ene ra t ed method s t u b
s i g n a l s . push ( ” s i g n a l tmp 2 ” + ( this . varcount )

+ ” : s t d l o g i c v e c t o r (0 to ” + (C. l ength − 1) + ” ) ; ” ) ;
for ( int i = 0 ; i < A. length ; i++) {

a s s i g n s . push ( ” tmp 2 ” + ( this . varcount ) + ” ( ” + i + ” ) <= (”
+ A[ i ] + ” xor ” + B[ i ] + ” ) ; ” ) ;

C[ i ] = ” tmp 2 ” + ( this . varcount ) + ” ( ” + i + ” ) ” ;
this . xorcount++;

}
this . varcount++;

}

public void pr intStack ( ) {
System . out . p r i n t l n ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;
System . out . p r i n t l n ( ”−− XOR COUNT : ” + this . xorcount ) ;
System . out . p r i n t l n ( ”−− AND COUNT : ” + this . andcount ) ;
System . out . p r i n t l n ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;
for ( I t e r a t o r i t=this . s i g n a l s . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {

System . out . p r i n t l n ( i t . next ( ) ) ;
}
System . out . p r i n t l n ( ”Begin” ) ;
for ( I t e r a t o r i t=this . a s s i g n s . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {

System . out . p r i n t l n ( i t . next ( ) ) ;
}

}

/∗∗
∗ Karatsuba Mu l t i p l i e r Design
∗/

public stat ic void main ( St r ing [ ] a rgs ) {
// TODO Auto−g ene ra t ed method s t u b
int i , j , k ;
int ROOT = 128;
St r ing [ ] A = new St r ing [ROOT] ;
S t r ing [ ] B = new St r ing [ROOT] ;
for ( i = 0 ; i < A. length ; i++) {

A[ i ] = ”A( ” + i + ” ) ” ;
B[ i ] = ”B( ” + i + ” ) ” ;

}
Karatsuba ks = new Karatsuba ( ) ;
S t r ing [ ] C = ks . karatsuba (A, B) ;

// Pr in t l i n e s f o r c r e a t i n g m u l t i p l i e r code
ks . pr in tStack ( ) ;
for ( i = 0 ; i < C. length ; i++) {

System . out . p r i n t l n ( ”CT(” + ( i ) + ” ) <= ” + C[ i ] + ” ; ” ) ;
}

}
}
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A.3 ASIC Synthesis Script Sample

set_attribute hdl_vhdl_environment common

set_attribute library /secure2/p7patel/vcs/tw13uyfsdsc_tt.lib

set_attr hdl_search_path /secure2/p7patel/GCMcode/

read_hdl -vhdl {GFPackage_lut.vhd}

read_hdl -vhdl {ABubble.vhd AESmain.vhd ToeplitzMultiplier.vhd lutsbox.vhd reglutsbox.vhd BlockCounter.vhd

BufferBlock.vhd Chain192.vhd compositesbox.vhd CtrlBubble.vhd CtrlRegister.vhd GCMmain.vhd

GF2_4mult.vhd GFMultBlock.vhd IVcounter.vhd KeySchedule.vhd KeyScheduleBlock.vhd

MastrovitoMultiplier.vhd mixcolumns.vhd Mux3to1.vhd regcompositesbox.vhd round_unit.vhd

shiftrows.vhd SingleReg.vhd StateTransform.vhd subbytesshiftrows.vhd XorBlock.vhd XorChain.vhd }

elaborate GCMmain

define_clock -name clk -period 3500 [find -port clk]

external_delay -input 0 -c clk /designs/*/ports_in/*

external_delay -output 0 -c clk /designs/*/ports_out/*

synthesize -to_mapped

synthesize -incremental

report timing

report area

synthesize -incremental -effort high

report timing

report area

synthesize -incremental -effort high

report timing

report area

report gates

write_hdl > GCM_lut_tsplit_ac_tower_area.v

write_sdc > GCM_lut_tsplit.sdc
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