
HAL Id: hal-01662040
https://hal.inria.fr/hal-01662040

Submitted on 12 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptanalysis of the Counter mode of operation
Ferdinand Sibleyras

To cite this version:
Ferdinand Sibleyras. Cryptanalysis of the Counter mode of operation. Cryptography and Security
[cs.CR]. 2017. �hal-01662040�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/145164266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01662040
https://hal.archives-ouvertes.fr

Internship Report – MPRI M2
Cryptanalysis of the counter mode of operation

Ferdinand Sibleyras, supervised by Gaëtan Leurent,
équipe SECRET, Inria

21 août 2017

General context

The counter mode of operation (CTR mode) is nowadays one of the most widely deployed
modes of operation due to its simplicity, elegant design and performance. Therefore unders-
tanding more about the security of the CTR mode helps us understand the security of many
applications used over the modern internet. On the security of the CTR mode, there is a well-
known proof of indistinguishability from random outputs up to the birthday bound that is
O(2n/2) encrypted n-bit blocks. This acts as a proof that no attack that can retrieve useful
information about the plaintext exists with a lower complexity. In other words, any attack
that breaks the confidentiality of the plaintext will require Ω(2n/2) blocks of ciphertext.

Research problem

While we have a lower bound on the complexity of a potential attack, it is not well
understood how such attack would work and what would be its complexity not only in terms
of data but also computationally (time and memory complexities). Most often the CTR mode
is combined with the AES block cipher which acts on 128-bits blocks. In that setting, the
birthday bound may appear sufficient to guarantee security in most if not all of today’s
internet applications as 2128/2 × 128 bits = 256 exbibytes, a comfortable margin. However if
used alongside a 64-bits block cipher, like 3DES, the birthday bound stands at 264/2× 64 bits
= 32 gibibytes, an amount of data quickly exchanged in today’s internet. Moreover, the proof
of indistinguishability says nothing at how quickly information on the plaintext is leaked when
nearing the birthday bound. The goal of this internship is to devise efficient message recovery
attacks under realistic assumptions and study their complexity to gain a better understanding
of the security of the CTR mode.

Contribution

We give a concrete definition of the algorithmic problem naturally posed by the counter
mode of operation, the missing difference problem, upon the resolution of which we can recover
part of the unknown plaintext. Then we propose two algorithms to recover a block or more of
secret plaintext in different settings motivated by real-life attacker models and compare the
results with the work done by McGrew [McG12] on that same topic. We improve McGrew’s
results in two cases : the case where we know half of the secret plaintext, then we achieve
time complexity of Õ(2n/2) compared to Õ(23n/4) for McGrew’s searching algorithm and the

case where we have no prior information on the secret where we achieve Õ(22n/3) in time and
query compared to the previous Õ(2n/2) queries and Õ(2n) time.

This improvement allows better attack on the mode for a realistic attacker model than
what had been described so far in the literature. In fact, we found out that the CTR mode
does not offer much more security guarantees than the CBC mode as real attacks are of
similar complexities. We described these attacks on the CTR mode and could even extend
those to some message authentication code (MAC) schemes GMAC and Poly1305 based on the
Wegman-Carter style construction.

Arguments supporting its validity

Not only do we provide some proofs for the asymptotic complexity but also implemen-
tations of these algorithms show that they are practical for blocks sizes n ' 64 bits and so
are the associated attacks. These attacks rely on the repeated encryption of a secret under
the same key so frequent rekeying will prevent those attacks from happening and thus we
encourage any implementation of the CTR mode to force rekeying well before the birthday
bound.

Summary and future work

We formalized an algorithmic problem that is naturally encountered in some cryptogra-
phic schemes, we called it the missing difference problem, and developed tools to solve it
efficiently. These tools then help the cryptanalysis of different modes of operation and thus
help understanding the security of popular real-world protocols.

Now we hope to publish these results and make users aware that using CTR is not much
more secure than CBC (though CTR still offers other advantages). Especially when coupled
with 64-bits block ciphers, it may not offer enough guarantee for most modern uses as 64-bits
CBC mode was shown to be insecure in a recent work by Bhargavan and Leurent [BL16].

1 Introduction to block cipher modes of operation

Block ciphers. An n-bits block cipher can be understood as a family of permutations
depending on a shared secret key k. It therefore describes a bijective function E with secret
parameter k :

Ek : {0, 1}n → {0, 1}n

Examples of popular block ciphers are DES (n = 64 bits) and AES (n = 128 bits).

Modes of operation. A mode of operation is an algorithm that specifies how to use a
block cipher to achieve some cryptographic goals. This work focuses first on confidentiality
modes of operation, such as CTR mode, that aim at hiding information about the plaintext
but we will also discuss authenticity modes, such as CBC-MAC, that aim at providing a secure
tag usually called message authentication code or MAC, and authenticated encryption modes,
such as CCM or GCM, that are widely used over internet as it provides both unforgeability
and confidentiality.

Confidentiality mode : {0, 1}∗ → {0, 1}∗
Authenticity mode (MAC) : {0, 1}∗ → {0, 1}n

m0

Ek

IV

c0

m1

Ek

c1

m2

Ek

c2

Figure 1 – Cipher Block Chaining mode CBC

Description. Historically CBC, CFB and OFB are three of the oldest standardized confi-
dentiality modes of operation still in use today, especially CBC mode. They are all based on
an initialization vector, IV , that is a public shared n-bits value that has some properties (un-
predictable, nonce, random) according to the specifications of each mode. Those modes are
algorithms and they are often described in the form of a diagram, see Figure 1 for the CBC
mode, which shows the chaining rules between the IV , the blocks of plaintext mi and blocks
of ciphertext ci. The blocks mi are obtained by first padding the plaintext so that it reaches
a size multiple of n and then slicing it in n-bits parts.

Collisions and birthday paradox. Amode of operation is usually described independently
of the block cipher Ek(·) and in particular of its length n. However this n is actually an
important security parameter that determines for how long one can use the same permutation
Ek(·). For example many schemes are known to be secure only up to the encryption of a
number of blocks less than the so-called birthday bound : 2n/2 blocks. For those schemes it
is strongly recommended to renew the key k, therefore changing the permutation, well before
the encryption of 2n/2 blocks of ciphertexts. It is typically the case for the aforementioned
confidentiality modes. For example the CBC mode will leak information on the plaintext as
soon as we observe a collision in the ciphertext blocks. Indeed if one observes that ci+1 = cj+1

for some i, j then, as Ek(·) is bijective, we have ci ⊕ mi = cj ⊕ mj that leaks the XOR of
two blocks of plaintexts : mi ⊕mj = ci ⊕ cj . And a collision is typically bound to occur with
probability Ω(1) after observing O(2n/2) blocks of ciphertexts, that is the birthday paradox.

This work. In this report we first introduce the confidentiality mode CTR and its security
proof using distinguishers. Then we study message recovery attacks for CTR mode formalizing
the missing difference problem that need to be solved and present the state of the art on the
topic. We propose efficient algorithms to solve this problem and then go back to devising real
attacks on CTR mode and extend the attacks on authenticated modes of operation GMAC and
Poly1305. At last we give implementations’ results and proofs to support our claims.

2 The counter mode

The security of block ciphers is studied with cryptanalysis, with classical techniques such
as differential [BS91] and linear [Mat94] cryptanalysis, dedicated techniques like the SQUARE

attack [DKR97], and ad-hoc improvements for a specific target. This allows to evaluate the
security margin of a block cipher, and today we have a high confidence that AES or Blowfish
are as secure as a family of pseudo-random permutations with the same parameters (key size
and block size).

On the other hand, modes of operation are mostly studied with security proofs, in order to
determine conditions where using a particular mode of operation is safe. However, exceeding
those conditions doesn’t imply that there is an attack, and even when there is one, it can range
from a weak distinguisher to a devastating key recovery. In order to get a better understanding
of the security of modes of operations, we must combine lower bound on the security from
security proofs, and upper bounds from attacks.

More precisely, the counter mode is defined as ci = E(i) ⊕ mi (see diagram Figure 2).
There are no collisions in the inputs/outputs of E, but this can actually be used by a distin-
guisher. Indeed, if an adversary has access to 2n/2 known plaintext/ciphertext pairs, she can
recover E(i) = ci ⊕mi and detect that the values are unique (because E is a permutation),
while collisions would be expected with a random ciphertext. Both attacks have the same
complexity, and show that the corresponding proofs are tight. However, the loss of security is
quite different : an attacker can recover some bits of information from the attack against CBC
(as shown in practice in [BL16]), but the attack against the counter mode hardly reveals any
useful information.

In general, there is a folklore belief that the leakage of the CTR mode is not as bad as the
leakage of the CBC mode. For instance, Ferguson, Schneier and Kohno wrote [FSK11, Section
4.8.2] :

CTR leaks very little data. [...] It would be reasonable to limit the cipher mode
to 260 blocks, which allows you to encrypt 264 bytes but restricts the leakage to a
small fraction of a bit.
When using CBCmode you should be a bit more restrictive. [...] We suggest limiting
CBC encryption to 232 blocks or so.

The main goal of this report is to study attacks against the counter mode beyond the
simple distinguisher given above. We consider generic attacks that work for any instance of
the block cipher E, and assume that E behaves as a pseudo-random permutation. We will
focus on the asymptotic complexity of attacks, using the Big-O notation O(), and the Soft-O
notation Õ() (ignoring logarithmic factors).

Related works. While there are few generic attacks known against encryption modes, many
interesting attacks have been found against authentication modes. In 1995, Preneel and van
Oorschot [Pv95] gave a generic collision attack against all iterated message authentication
codes (MACs), leading to existential forgeries with complexity O(2n/2). Later, a number of
more advanced generic attacks have been described, with stronger outcomes than existen-
tial forgeries, starting with a key-recovery attack against the envelop MAC by the same
authors [Pv96]. In particular, a series of attack against hash-based MAC [LPW13, PW14,
GPSW14, DL14] led to universal forgery attacks against long challenges, and key-recovery
attacks when the hash function has an internal checksum (like the GOST family). Against
PMAC, Lee et al. showed a universal forgery attack in 2006 [LKS+06]. Later, Fuhr, Leurent
and Suder gave a key-recovery attack against the PMAC variant used in AEZv3 [FLS15]. Issues
with GCM authentication with truncated tags were also pointed out by Ferguson [Fer05].

IV+0

Ek

m0

c0

m1

c1

Ek

IV+1

m2

c2

Ek

IV+2

m3

c3

Ek

IV+3

Figure 2 – CTR mode

3 Impossible Plaintext Attack on CTR mode

Even though it is not one of the four most classical modes of operation (CBC, CFB, ECB,
OFB), the Counter mode of operation, or CTR, proposed by Diffie and Hellman, is just as
old and since 2001 is also part of NIST’s recommendations. CTR’s parallelizability, speed and
simple design makes it a widely popular mode of operation nowadays used for example as a
basis for the Galois/Counter mode (GCM). This led Phillip Rogaway to write in an evaluation
of different privacy modes of operation talking about CTR : “Overall, usually the best and
most modern way to achieve privacy-only encryption” [Rog11]. Indeed CTR only offers privacy
protection and has no guarantee regarding authentication or non-malleability when used by
itself but is a most useful building block when designing schemes that, like GCM, achieve all
these properties. A well known fact about CTR is that it is indistinguishable from random
output up to the birthday bound in a chosen plaintext attack model i.e. coupled with a secret
permutation the CTR mode of operation is IND-CPA as long as we restrict the number of
queries an order below 2n/2 where n is the block size [BDJR97]. However, it is not always
clear how we can effectively recover any secret information as we come near the bound.

3.1 Setting and notations

In the following we assume that the counter mode is implemented such that the input to
the block cipher never repeats. For simplicity we consider a stateful variant of the counter
mode with a global counter that is maintained across messages (as shown in Figure 2) :

ci = Ek(IV + i)⊕mi,

where Ek is an n-bit block cipher, IV the initial value of the counter, mi an n-bit block of
plaintext and ci an n-bit block of ciphertext.

Our attacks do not depend on the details of how the input to the block cipher is construc-
ted 1, but only require that all inputs are different. Note that some variants of the counter mode
have repetitions in the block cipher input 2, but this gives easy attacks because repetitions
leak the xor of two plaintext blocks.

Throughout the attack the key k and the IV will be invariant so we will write Ek(IV + i)
as Ki to represent the ith block of CTR keystream. We can immediately notice that if we

1. For instance, some variants concatenate a per-message nonce and a counter within a message.
2. For instance, using a random n-bit initial count for each message and incrementing it for every block in

a message leads to collisions after roughly 2n/2 messages

have partial knowledge of the plaintext, for every block mi that we know we can recover the
associated Ki as ci⊕mi = Ki. Assume further that we have access to the repeated encryption
Ej of some secret S so that Ej = Kj ⊕ S. The first property of the CTR mode is that Ek(·)
being a permutation, the keystream Ki never repeats thus we have the following inequalities :

∀i 6= j : Ki 6= Kj ⇒ Ki ⊕Kj 6= 0
⇒ Ki ⊕Kj ⊕ S 6= S
⇒ Ki ⊕ Ej 6= S

From now on we will always assume that we can observe and collect lists of many Ki and
Ej and use them with the previous inequality to recover S. This setting is similar to the
practical attack Sweet32 on CBC mode mounted by Bhargavan and Leurent using repeated
encryption of an authentication token to obtain many different ciphertext blocks for the same
secret information [BL16].

Formally, let K ⊆ {0, 1}n be the set of observed keystream blocks, E ⊆ {0, 1}n the set
of observed encryptions and Φ ⊆ {0, 1}n the set of possible secret. We redefine the missing
difference algorithmic problem in terms of set as :
Given two sets K and E , find the value S ∈ Φ such that :

∀(k, e) ∈ K × E , S 6= k ⊕ e .

3.2 Previous work

An attack can only be carried to the end if the secret S is the only value in Φ such that
∀(k, e) ∈ K×E , S 6= k⊕e or else it will be indistinguishable from the other values that satisfy
the same condition (those values could have produced the same output with same probability).
The coupon collector’s problem predicts that N out of N different coupons are found after
N ·HN ' N lnN draws (with HN the harmonic number) assuming uniform distribution of the
draws. In our case we will assume that every differences k⊕ e are independents and uniformly
distributed over {0, 1}n\S, which is very close to what we expect and observe in practice. To
carry the attack to the end we require to collect N = |Φ| − 1 differences thus we will need
O(|Φ| log |Φ|) “draws”. A draw is a couple (k, e) s.t. k ⊕ e ∈ |Φ|, else we discard it, which
happens with probability (|Φ| − 1)/(2n − 1). Therefore we need to observe enough data to
have |K| · |E| in the order of O(2n log |Φ|) ; may be achieved by having both sets in the order
of O(2n/2

√
log |Φ|). This size of the observed sets can be understood as the query complexity,

that is the number of network data requests the attacker will have to intercept in order to
carry out the attack. Notice that even for |Φ| = O(2n), |K| = |E| = O(

√
n · 2n/2) is quite close

to the theoretical lower bound of O(2n/2) given by the distinguishing attack and the security
proof for the CTR mode. So we already have a “good” data or query complexity but then the
issue is about solving the algorithmic problem and recovering the actual value of S.

A first approach consists in computing all the impossible values of S from the large set of
K × E and discard any new value we encounter as impossible until there’s only one possible
plaintext left. This is algorithm 1. This approach works but this requires to actually compute
O(2n log |Φ|) values and maintain in memory a sieve of size |Φ|. In the case where the key
size is equal to the block size n, like AES-128, then this attack is actually worse than a
simple exhaustive search of the key that would require only a few blocks of keystream, O(2n)
computations and near to no memory. In a 2012 work, McGrew first described this sieving
algorithm and noticed that the sieving is inefficient with a small set Φ. Therefore he proposed

Algorithm 1 Simple sieving algorithm
Input: K,E,Φ
Output: Φ s.t. ∀S ∈ Φ ∀i, j : K[i]⊕ E[j] 6= S

for k in K do
for e in E do
Remove (k ⊕ e) from Φ ;

end for
end for
return Φ

Algorithm 2 Searching algorithm
Input: K,E,Φ
Output: Φ s.t. ∀S ∈ Φ ∀i, j : K[i]⊕ E[j] 6= S
Store E so that operation ∈ is efficient.
for φ in Φ do

for k in K do
if (φ⊕ k) ∈ E then
Remove φ from Φ ;
break ;

end if
end for

end for
return Φ

a second algorithm, algorithm 2, to test and eliminate remaining values one by one. This
algorithm loops over Φ and K to efficiently test whether φ ⊕ k ∈ E ; if yes then we sieve the
value φ out of Φ, if not continue.

The algorithms act on a given sieving set Φ to reduce it so one can switch at any time
from one algorithm to the other in order to reduce the searching space as quickly as possible.
This results in a hybrid algorithm [McG12]. This hybrid algorithm surely improves the attack
but it is easy to see that each impossible values will require some computations and therefore
will require at least Ω(|Φ|) computations. Still, if |Φ| is small, then we directly run the second
part of the hybrid algorithm, algorithm 2, which loops over Φ and K that is a complexity of
O(|E|+|K|·|Φ|). Assuming we carry out the attack to the end (implies |K|·|E| = O(2n log |Φ|))
and that we optimize the sizes of the observed set, we force |E| = |K| · |Φ| to obtain an overall
optimized complexity of O(2n/2

√
|Φ| log |Φ|) in both time and queries. Therefore for small Φ

this algorithm is satisfying as the complexity gets close to the birthday bound Õ(2n/2).
However this is still interesting and starting from these observations we will show how

we can recover a block, or more, of secret information by devising two quicker attacks that
try to avoid big exhaustive searches : one that relies on some additional assumptions on the
plaintext to reduce the set Φ to a vector space of smaller size |Φ| = 2n−z and one in the case
where Φ = {0, 1}n that uses greater query complexity of Õ(22n/3) to lessen the computation
and memory usage.

4 Efficient Algorithms

In this section we will propose two solutions to solve the missing difference algorithmic
problem in an efficient way for two different settings inspired by real applications. On the
basis of these algorithms, we will be able to describe attacks on the CTR mode and more in
the next section.

4.1 Known prefix sieving

Algorithm 3 Known prefix sieving algorithm

Input: n, z < n, K, E, Φ ⊂ {0}z × {0, 1}n−z
Output: Φ s.t. ∀S ∈ Φ ∀i, j : K[i]⊕ E[j] 6= S
hK , hE ← Empty hash tables.
preK← {}
for k in K do
pref||suff← k0..(z−1)||kz..n
hK [pref]← hK [pref] ∪ {suff}
preK← preK ∪ {pref}

end for
for e in E do
pref||suff← e0..(z−1)||ez..n
hE [pref]← hE [pref] ∪ {suff}

end for

for p in preK do
if hE [p] 6= ∅ then

for vk in hK [p] do
for ve in hE [p] do
Remove 0||(vk ⊕ ve) from Φ ;

end for
end for

end if
end for
return Φ

In the case where Φ is an affine subspace of {0, 1}n of dimension n − z for some natural
z < n then we can modify K and E accordingly so that the solution S belongs to the linear
subspace Φ = {0}z × {0, 1}n−z. Concretely let Φ be a known affine space (or a subset of one)
then we can deduce a bijective affine function φ that maps Φ unto {0}z × {0, 1}n−z then the
reduction unfolds :

∀(k, e) ∈ K × E , S 6= k ⊕ e ⇔ φ(S) 6= φ(k ⊕ e), as φ is a bijection.
⇔ φ(S) 6= φ(k)⊕ φ(e)⊕ φ(0), as φ is affine
⇔ φ(S) 6= φ(k)⊕ (φ(e)⊕ φ(0))

Thus finding φ(S) is equivalent to finding S, as φ is easily invertible. We get to this form
simply by applying the transformations :

Φ′ ← {0}z × {0, 1}n−z
K′ ← {φ(k) | k ∈ K}
E ′ ← {φ(e)⊕ φ(0) | e ∈ E}

Equivalently, we can say we reduced the problem to the case where we know the prefix of S
i.e. we look for a solution that starts with z zeros ; we can then perform the known prefix
sieving algorithm 3.

The algorithm is quite straightforward ; it looks for a prefix collision before sieving in the
same way as before to recover S. The complexity will be function of the dimension n− z ; the
sieving will require O(2n−z) memory and O((n− z) · 2n−z) XOR computations in expectation
while looking for collisions only requires to store the prefix keys and go through one of the
set. Looking for collisions allows us to skip the computations of many pairs (k, e) that would
be irrelevant as k ⊕ e /∈ Φ. The total optimized complexity (with balanced sets K and E) to
recover an n− z bits secret with this algorithm is :

O((n− z) · 2n/2) queries
O(2n−z + n(n− z) · 2n/2) bits of memory (sieving + queries)
O((n− z) · 2n−z + (n− z) · 2n/2) computations (sieving + collisions searching)

As we can see from the complexity, when z = 0 this is the naive algorithm with its original
complexity. When z nears n, this performs similarly to McGrew’s searching algorithm i.e. the
cost of looking for collisions (or storing E so that the search is efficient) will dominate the
overall cost of the algorithm therefore the time and query complexity will match. In fact, we
gain the most of this algorithm for intermediate values of z and as we will see in Section 5 the
parameter z = n/2 may be the most pertinent parameter to mount a practical attack on the
CTR mode which uses repetitions of this algorithm to recover n or more bits of secret.

4.2 Fast XOR-counter

Algorithm 4 Fast XOR-counters computation
Input: K,E, n′ ≤ n
Output: CX s.t. ∀c < 2n

′
: CX [c] = |{(i, j) : K[i]⊕ E[j] = c ‖ ∗}|

CK , CE , CX ← arrays of 2n
′ integers initialized to 0 ;

for k in K do
Increment CK [k0..(n′−1)]

end for
for e in E do
Increment CE [e0..(n′−1)]

end for
Perform fast Walsh-Hadamard transform in-place : FWHT(CK) ; FWHT(CE) ;
for c = 0 ; c < 2n

′ do
CX [c]← CK [c] · CE [c]

end for
FWHT(CX) ;
return CX

Algorithm 5 Sieving using fast XOR-counting
Input: K,E, n′ ≤ n
Output: S s.t. ∀i, j : K[i]⊕ E[j] 6= S
X ← Run the fast XOR-counters on (K, E , n′) using algorithm 4
Φ← {}
while Φ = {} do
s← argminiCX [i] (size n′ bits)
CX [s]← +∞
Φ← {0}n′ × {0, 1}n−n′

E ′ ← {e⊕ (s||0) | e ∈ E}
Run known prefix sieving algorithm 3 using (n, n′,K, E ′,Φ).

end while
s′ ← sole value left in Φ.
return (s||0)⊕ s′

Going back to the hard setting and assumptions where the secret is always encrypted as
a whole block with no prior information on it, |Φ| = 2n, there is a way to avoid exhaustive
complexity and retrieve the secret S with high probability when the query complexity is higher.
The idea is to look at 2n/3 bit’s positions, on those positions the XOR differences (k ⊕ e)
can take any values but there exists a statistical bias from the fact that k ⊕ e is uniformly
distributed over {0, 1}n\S. I.e on fixed 2n/3 bit’s position there’s is slightly less chance a
XOR difference corresponds to S than to any other values. So if we simply count how many
times each combination on those 2n/3 bits occur for every couple (k, e) then the combination
that appears the less is the most likely to correspond to S. To statistically discriminate the
“good” combination (corresponding to S) against every other “bad” combinations on 2n/3 bit’s
positions will cost an increased query complexity of O(

√
n · 22n/3) according to the analysis

in Section 8.1.
Now we show an algorithm to quickly count the number of occurrences for each combi-

nation. First we count over the 2n/3 chosen bits the number of occurrences in K and E in
two separated lists of counters of size 22n/3, one counter for each 2n/3 bits combination. Let
CK and CE be the counters of K and E respectively. Then we need to compute CX the same
counters’ list but for all the elements in K × E . We observe that :

CX [i] =
∑
j

CK [j] · CE [i⊕ j]

which is a form of convolution that can be quickly computed using the Fast-Walsh-Hadamard
transform in the same way we use the classical Fourier transform. This is algorithm 4. Because
k ⊕ e can be any value except S, we hope that the lowest counter corresponds to the value of
S over those 2n/3 bits :

S2n/3bits
?
= argmin

i
CX [i]

The probability that this is true depends on the number of pairs (k, e) we could gather.
We found that this probability gets to Ω(1) when we have lists of size O(

√
n · 22n/3), see

Section 8.1 for the detailed proof. When we have a good guess, we can perform the previous
known prefix sieving algorithm over the n/3 bits left (i.e. we look for S in an affine space of

dimension n−z = n/3) to either find the whole value for S or, if every values have been sieved
out, conclude the chosen combination does not match with the true value of S and continue.
This is algorithm 5.

The complexity to recover a whole n bits secret with fast XOR counting is as follow :

O(
√
n · 22n/3) queries

O(n · 22n/3) + O(n
√
n · 2n/2) bits of memory (counters + sieving)

O(n · 22n/3) + O(n
√
n · 2n/2) computations (fast Walsh-Hadamard + sieving)

For the memory complexity, notice that we don’t need to store all the blocks we requested
but simply to increment a counter. We only need to store enough blocks for the second part of
the algorithm so that the sieving yields a unique result. However how big are those counters ?
Initially for CK and CE they are quite small,

√
n in expectation, but CX will have ultimately

much bigger entries, n · 22n/3 in expectation, so this will require O(n) bits to store each entry
thus O(n · 22n/3) bits of memory complexity.

5 Attacks using known prefix sieving

Block splitting. We often assume that the secret is encrypted in its own block but a mode
of operation is abstractly used as a way to encrypt messages of any length, or even a stream
of messages and will typically cut the message into blocks independently of their contents as
they will be reconstructed later on the receiving side before reaching the application layer.
Therefore, if we have incomplete knowledge of the plaintext, we could very well have known in-
formation mixed with a secret inside the same block. For example we could have a fixed header
followed by critical information, a plaintext of the form : “SECRET_INFO :<secret_info>”
in a predictable position then a mode of operation could cut the message as ... {“SECRET_I”}
{“NFO :”||S1} {S2||S3} ... with S = S1||S2||S3 the secret information and encrypt those blocks
as shown in Table 1. Here we see a known and predictable header that is encrypted on the
same block as a part of the secret. We can use this to apply the known prefix sieving algorithm
multiple time and ultimately recover the secret S as a whole.

Plaintext SECR ET_I NFO : S1 S2 S3 S4 ...
⊕

Keystream K1 K2 K3 K4

⊕
Known part SECR ET_I NFO : 0 0 0 0 0

=
Exploitable data K1 K2 ⊕ (0||S1) K3 ⊕ (S2||S3) K4 ⊕ (S4||...)

Table 1 – Example of how a plaintext is cut into blocks, encrypted in a CTR mode and
transformed to be exploited in known prefix sieving algorithm. S = S1||S2||S3||S4 the secret
information. Known information in blue, unknown information in red.

In the same way we can recover keystream blocks from known plaintexts, we can recover
part of the keystream blocks used to encrypt the secret. In the example of Table 1, we recover

(1) First round SECR ET_I NFO : S1 S2 S3 S4 ...

(2) Inject “JAVA” JAVA SECR ET_I NFO : S1 S2 S3 S4

(3) Reuse data from (1) SECR ET_I NFO : S1 S2 S3 S4 ...

(4) Reuse data from (2) JAVA SECR ET_I NFO : S1 S2 S3 S4

Table 2 – Example of an attack on two blocks secret S = S1||S2||S3||S4. Each step performs
the known prefix sieving algorithm. Known information in blue, unknown information in red,
attacked information in yellow.

K1 ∈ K and K2 ⊕ {0||S1} ∈ E thus our missing difference algorithmic problem is well defined
with those sets K, E and Φ = {0}z × {0, 1}n−z with n− z the size of S1. This is therefore the
setting where Φ is an affine subspace of dimension n− z and we use the known prefix sieving
algorithm 3 described in Section 4.1.

With this we recover a part of the secret, now to recover a whole block S we repeat the
same process by observing, either naturally via the protocol or by actively manipulating part
of the plaintext, the next secret bits encrypted in the same manner with known information,
which is always possible since we now know part of S. In our example Table 2, after recovering
S1, we inject in the plaintext the string “JAVA” to push around how the message is cut into
blocks. We repeat the algorithm with K1 ∈ K, K2 ∈ K, K3⊕{0||S2} ∈ E . Notice that E must
be reset between two rounds while K keeps on growing. This scenario where we shift around
the secret is inspired by the practical attacker model BEAST for HTTPS [DR11].

The complexity to recover an n bits secret block by slices of size n− z is as follow :

O(
√
n · 2n/2) queries

O(n
√
n · 2n/2) +O(2n−z) bits of memory (queries + sieving)

O(n
√
n · 2n/2) +O(n · 2n−z) computations (sorting + sieving)

Interestingly, it appears there is no price to pay in term of query complexity to perform
this attack. Indeed even in the extreme, but unpractical, case where we can slice the secret
bit by bit we found that the number of queries needed is of the same order though the proof
is different (proof Section 8.2). Then any z is simply a combination of the two extreme cases
z = 0 and z = n− 1 which have same asymptotic query complexity.

Multiple blocks secret. To extend this attack on multiple blocks, we need just realize that
after finding the first block then we probably have enough information to deduce the second
block just by sieving. In fact, we already have more information to attack the second block
than we had for the first one as knowledge of raw keystream blocks K keeps increasing and
we can reuse the data of previous rounds to attack the next block (see Table 2) so that the
size of E is as big as it was for the previous round while K is bigger then without observing
any new queries we already have a good probability of performing the attack to the end.

Practical parameters. Following on the complexity analysis, z = n/2 is a most natural
choice to have the sieving part lighter than the sorts and data retrieval without making the

practical implementation too complex. For n = 64 bits this complexity is definitely tractable
and we could simulate the attack on locally encrypted CTR mode (see Section 7.1). Therefore
we have an algorithm with query complexity of O(

√
n2n/2) to recover repeated encryption of

a secret over multiple blocks in the BEAST attacker model.

Other attacks. There are surprisingly many settings where unknown plaintext will natu-
rally lie in some known affine subspace and makes the application of the known prefix sieving
algorithm straightforward. For instance a credit card number (or any number) could be enco-
ded in 16 bytes of ASCII then encrypted ; because in ASCII the encoding of any digit starts by
0x3 (0x30 to 0x39) we know the values and positions for half of the bits of the plaintext. This
is a case where z = n/2. That the credit card number has 64 bits unknown to the attacker is
not relevant for this attack, we only care about the proportion of known bits in the plaintext
to reduce the searching space. Other examples are information encoded by uuencode that uses
ASCII values 0x20 to 0x5F or HTML authentication cookies used by wikipedia.org encoding
lower case letters and digits in Base64 ; in those cases the first two bits of each bytes are known
to be 0 therefore z = 3n/4.

Counter-measures. As for many modes of operation, the common wisdom to counter this
kind of attacks asks for rekeying before the birthday bound, i.e. before 2n/2 blocks. However
rekeying too close to the birthday bound may not be enough. For example let’s consider an
implementation of a CTR based mode of operation that rekeys every 2n/2 blocks, then in the
worst case scenario every session leaks 2n/2−1 values for K and E that means 2n−2 couples
that each have roughly probability 2−n/2 of colliding on z = n/2 bits. So on average 2n/2−2

impossible values are leaked for the first half of S1 each session and sieved out of Φ. Thus after
2n sessions there’s a good probability of recovering S1, same for S2 that is a total of 4n · 2n/2
data complexity compared with

√
n · 2n/2 in the total absence of rekeying. However rekeying

every 2n/2−16 blocks makes the data complexity goes up to 233n sessions that is 217n · 2n/2
blocks to recover S1, twice more for the whole S and the following blocks. Notice that the
security gain is comparable with the CBC mode where rekeying every 2n/2−16 blocks forces
the attacker to intercept 232 sessions, compared with 234n for the CTR mode it is a factor
4n in the query complexity. That is why frequent rekeying is an effective counter-measure
against this threat as long as one keeps a sufficient margin away from the birthday bound in
accordance with the guidelines of Luykx and Paterson [LP16].

6 Indivisible secret

6.1 Counter mode

Use of the fast XOR-counter algorithm to recover one block of CTR mode plaintext is quite
straightforward and requires fewer assumptions than the previous attack at a cost of a greater
complexity. Indeed here the attacker is completely passive and observes one type of encryption
of S without the need of injecting anything or playing with the blocks. First gather many k ∈ K
from ciphertexts of known plaintexts and many e ∈ E from the secret’s encryptions to run the
algorithm 5. As mentioned before, when gathering values for K and E , instead of keeping the
whole block one can simply increment the respective counter as he sees the blocks pass by and
only keep enough values for a successful sieving in the second part of the algorithm.

When attacking multiple blocks secret, the counter for K will be common for all the blocks
and each block will have its own set E and associated counters ; because we attack a whole
block, this is easily parallelizable over many blocks in contrast with the previous attack that
has to go step by step.

As we can see on the tests we ran for this algorithm in Section 7.2, it has a very good
probability of success for the chosen complexity parameters showing there are no big “hidden
constant” in the complexity analysis. Moreover they are multiple improvements we could think
of to improve the success probability of the algorithm, for example it is independent of the
position of the 2n/3 bits we choose for counting, so having multiple instances of the algorithm
that count on different positions may be interesting to avoid the few bad cases we could
observe in the simulations where the counter on the secret value grows abnormally high and
gets hidden in all of the other counters.

The value of 2n/3 has been chosen to balance the query and post-processing complexities
though the algorithms are stated with this value as a parameter. In general if we choose to
count over n′ bits we will need O((n − n′) · 22n−n′) values so a query complexity of at least
O(
√
n− n′ · 2n−n′/2) and memory/computation complexities of O(n′ · 2n′) for the fast XOR-

counter algorithm. There is therefore a trade-off between the exponents n− n′/2 and n′ best
balanced at n′ = 2n/3.

6.2 Wegman-Carter MAC construction

Because this algorithm requires less assumptions, we can adapt the attack for use on other
modes of operation based on CTR and particularly on Wegman-Carter type of constructions
for MAC. Wegman-Carter MACs use a keyed permutation E and a keyed universal hash
function h, it takes as input a message M and a nonce N and is defined as follow, with k1
and k2 two private keys :

MAC(N,M) = hk1(M) + Ek2(N)

Again, the construction requires that all block ciphers input are different. Then the attack
consists in observing for two known messages M and M ′ many values of MAC(N,M) ∈ K
and MAC(N ′,M ′) ∈ E all using unique nonces then solve the missing difference problem to
recover hk1(M) − hk1(M ′) as we know that ∀N 6= N ′ : Ek2(N) − Ek2(N

′) 6= 0. It is often
sufficient to know this difference and the two messages M and M ′ to recover the key k1. We
give two concrete examples.

Galois/Counter Mode. In the GCM mode, we are allowed to send authenticated data
that will be signed but not encrypted. In the case we send one block of authenticated data A
alone, then the GCM mode will sign it as :

MAC(N,A) = A ·H2 ⊕H ⊕ Ek(N)

withH the hash key and (·) the multiplication in a Galois Field defined by a public polynomial.
So for two different blocks of authenticated data A and A′ we collect O(

√
n · 22n/3) signatures

and perform the Fast-XOR algorithm to recover A ·H2⊕H⊕A′ ·H2⊕H = (A⊕A′) ·H2. We
known A ⊕ A′ and the field is known so we invert that value and recover H2 then compute
the square root and recover the hash key H.

Poly1305. This scheme has been described for 128-bits blocks [Ber05]. It uses a keyed
permutation (usually AES), and a hash function whose key, r, has 106 free bits (22 bits of the
key are set to 0, including in particular the 4 most significant ones). It also defines ci as some
129-bits padding of each block of the messageM so it is easily predictable. Thus for the nonce
N and message M of length q the Poly1305’s MAC is defined as :

T (M,N) = (((c1r
q + c2r

q−1 + ...+ cqr) mod 2130 − 5) + Ek(N)) mod 2128

applying the same strategy for two different messages M and M ′ we recover the missing
difference

(((c1 − c′1)rq + (c2 − c′2)rq−1 + ...+ (cq − c′q)r) mod 2130 − 5) mod 2128

and in the case where we chose M and M ′ such that ci − c′i = 0 and cq − c′q = 1, as we know
that, by design, r < 2124, then the value recovered is simply the hash key r.

Notice that Poly1305 doesn’t use the XOR operation but the modular addition. So the
algorithms to recover the missing difference must be adapted to this case before being applied.
However one can easily adapt the fast-XOR algorithm to this case. First count over the 2n/3
least significant bits to avoid issues the carry, something the XOR operation doesn’t have.
Then when the lists of counters are up, we need to compute their cyclic convolution which is
done with a fast convolution algorithm based on fast Fourier transform (instead of fast Walsh-
Hadamard). Then we test for the lowest counter by running the known prefix algorithm looking
for collisions on the least significant bits and sieving the modular subtraction of the most
significant bits. This adaptation has similar complexities and proofs than the one described
earlier and, in the case of Poly1305, one can further adapt the algorithms to take into account
the fact that 22 bits of the key r are fixed at 0 effectively reducing the dimension of Φ.

7 Simulations’ results

We have performed several simulated attacks to validate our algorithms.

7.1 Half-a-block secret recovery

We choose the blocks size n = 64 bits, secret S of size n/2 = 32 bits. We’ll focus on recovering
these 32 bits of secret encrypted using Tiny Encryption Algorithm (TEA) implemented in C
in CTR mode to create two lists, the keystream output list Ki ∈ K, and the encryptions
Ej = Kj ⊕ (0||S) ∈ E . Lists were of size 235 and 234 respectively so that we have 235 · 234 =
269 = n/2 · 2n which is sufficiently high so that everytime we could recover the secret. The
two lists required around 400GB of disk space for storage.

The whole simulation takes less than 7 hours with a simple implementation on 4 cores.
On the few trials that we ran we found that the generation and sorting of the lists took from
4 to 6 times the time needed to find enough prefix collisions and successfully recover S. This
confirms that sieving over half a block has complexity comparable to birthday bound and is
probably the most practical case for an attack scenario.

On the sieving itself, we tracked how many prefix collisions where uncovered before re-
covering totally S. We found that on average ' 22.64 × 232 collisions were required ranging
from 21× 232 to 26× 232 collisions. This result is consistent with the theoretical expectation
predicted by the coupon collector problem : 2n/2 · H2n/2 ' 22.76 × 232 where Hn is the nth

harmonic number.

7.2 Indivisible one block secret

These simulations were made for block sizes n = 12, 24, 32 and 48 bits so we could do
some statistical estimations of the success probability for this attack. We first create two lists
of same size, one of raw keystream output and one XORed with an n-bit secret S. Then we
pass the two lists in algorithm 4 counting over n′ = 2n/3 (otherwise specified) to get a list
of counters for each possible XOR outputs on those n′ bits. Then the expected behavior of
the attack would be to look for a solution whose n′ first bits correspond to the position of the
lowest counter and test this hypothesis with algorithm 3. If it returns a unique value then this
is S and we are done, if it returns an empty set then test with the position of the second lowest
counter, etc. We can therefore know the number of key candidates that would be required to
recover S and, over many trials, have an estimation of the probability of success after a given
number of candidates in these parameters.

For block sizes of 12 and 24, we simulated a permutation simply by shuffling a range
into a list. For bigger sizes of 32 and 48, we used the Simon’s lightweight cipher from the
NSA [BSS+15] as that is one of the rare block cipher who can act on 48-bit blocks.

Figure 3

(a) Results for lists size of 3 · 22n/3

20 22 24 26 28 210
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

n = 12 bits
n = 24 bits

(b) Results for n = 24 bits

20 22 24 26 28 210
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

' 4.90 · 22n/3 data
3 · 22n/3 data

In general we observe in Figure 4b that the algorithm has a good chance of success with the
first few candidates when using the generic parameters. Moreover the sensibility with respect
to the data complexity (Figure 3b) and to the number of bits counted over (Figure 4a) is
fairly high. These results back up our complexity analysis and are a good indication that no
big constant is ignored by the big-O notation.

On the speed at which the probability increases we realized that, despite the log scale
on the x axis, the curves take a straight (Figure 3a) or concave shape (Figure 4a 4b). That
means that the probability of success with the next key candidate decreases very quickly with
the number of key candidates already tested and proved wrong. For example for n = 48 bits
(Figure 4b) over 756 trials the right key candidate was in the 2048 lowest counters in 98.1%
of the time but the worst case found was 1 313 576 and these “very bad” cases push the mean
rank of the right key candidate to 2287 and its sample variance to 2 336 937 008.

Figure 4

(a) Results for n = 32 bits ;
√
n22n/3 ' 5.66 · 22n/3 data

20 22 24 26 28 210
0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

counting over 22 bits
counting over 21 bits

(b) Results for
√
n22n/3 data ; counting over 2n/3 bits

20 22 24 26 28 210
0.4

0.6

0.8

1

Number of key candidates
P
r(
su
cc
es
s)

n = 12
n = 24
n = 48

8 Analysis

8.1 Impossible plaintext attack on indivisible n-bit block secret with large
memory

Consider, without loss of generality and for blocks of size n, that we possess a(n) · 22n/3
blocks of cipher keys and the same number of blocks of encrypted secret for a(n) an unknown
function of n that we will refer to as simply a. So in this setting we have a2 · 24n/3 different
XORed-values possible between the two list that we will consider as indepedent and uniformly
distributed over 2n − 1 values. We will then focus on 2n/3 bits and ignore the rest. We count
the number of occurrences for each possible combination on those 2n/3 bit positions and store
them in two lists of size 22n/3. Using the fast Walsh-Hadamard transform 3 times, algorithm 4,
we can therefore compute the same counters but for all the XORed-values. We hope that the
counter for values that collides with the secret on those positions, the good counter, will be
lower than all of the other counters, the bad counters, with probability Ω(1). In which case
we say the algorithm succeeds.

Let Xi represents the fact that the ith value belongs to a counter so that Xi follows a
Bernoulli distribution and any counterX =

∑a224n/3

i=1 Xi. Now we have to discriminate between
the distributions of the good and bad counters :

Good case : Pr(Xi = 1) = (2n/3 − 1)/2n = 2−2n/3 − 2−n E[Xgood] = 22n/3a2 − 2n/3a2

Bad case : Pr(Xi = 1) = (2n/3)/2n = 2−2n/3 E[Xbad] = 22n/3a2

Now we are interested by the probability that a bad counter gets a value below E[Xgood]
as a measure of how distinct the distributions are. Using Chernov Bound we get :

Pr(Xbad < E[Xgood]) = Pr(Xbad < (1− 2−n/3)22n/3a2) = Pr(Xbad < (1− 2−n/3)E[Xbad])

≤ e−((2−n/3)2·22n/3a2)/2) = e−a
2/2

And to compute the probability that no bad counter gets below E[Xgood] we will have
to assume their independence, which is wrong, but we will come back later to discuss this
assumption.

Pr(Xbad ≥ E[Xgood]|∀Xbad) =
∏
Xbad

(1− Pr(Xbad < E[Xgood]))

≥
(

1− e−a2/2
)22n/3

To conclude, we need to find an a = a(n) such that this probability remains greater than
some positive value as n grows. This is clearly achieved with a = O(

√
n) as for example taking

a = 2
√
n√

3·log2(e)
' 0.96

√
n we get :

Pr(Xbad ≥ E[Xgood]|∀Xbad) ≥ (1− e−a2/2)22n/3

≥ (1− 2−2n/3)2
2n/3

≥ 0.25,∀n ≥ 3/2

Therefore we can bound the probability of success by the events ’Xgood < E[Xgood]’,
probability 1/2, and ’Xbad ≥ E[Xgood]|∀Xbad’, probability at least 1/4. Then we indeed have
a probability of at least 1/8 of having a successful algorithm. We can conclude that with
O(n · 24n/3) XORed-values the algorithm has probability Ω(1) of succeeding.

Notice that this requires lists of size O(
√
n ·22n/3) but for the proof we only need the total

number of pairs between the two lists. So we can break the requirement that the two lists
are of comparable sizes as long as the product of their sizes sum up to the order of required
values.

On the independence of the counters, this is obviously wrong as they are bound by the
relation Xgood +

∑
Xbad = a224n/3. However this relation becomes looser and looser as n

grows so the approximation obtained should still be correct asymptotically. Moreover, the
covariances implied is negative i.e. knowing one draw is big makes the other draws smaller
in expectation to compensate. Small negative covariances will make the distribution look
more evenly distributed in the sense that we can’t observe too many extreme events in a
particular direction which is good for the success rate of the algorithm. So the assumption of
independence may be a conservative one for this complexity analysis.

8.2 Bit by bit n-bit block secret recovery

We place ourselves in a simple setting where one query returns a block of keystream and
the encryption of 0||si with unknown bit si. We are interested in the query complexity for
recovering n bits of secret one by one ; that is we need to know the first bit to ask for the
second one, etc. The intuition is that we will need less and less queries to uncover the next
bit as we go forward. Let :

Ui ← The expected number of encryption of 0||si to recover si
Ki ← The expected number of raw keystream outputs to recover si

From the definition of a query, the above description and because each time we find a bit of
secret we can deduce a range of raw keystream outputs for the next step we have the relations :

(1) K1 = U1

(2) Ki+1 = Ki + Ui + Ui+1 for i ≥ 1
(3) Ki · Ui = 2n (in expectation)

Let the following proposition Pi : Ui = 2n/2(
√
i−
√
i− 1)

Which implies from (2) : Ki = 2
i−1∑
k=1

Uk + Ui = 2n/2(
√
i+
√
i− 1)

(1) and (3) implies K1 = U1 = 2n/2 so P1 is true. Now suppose Pk true for all k ≤ i, let’s
prove it holds for Pi+1 :

(3) ⇒ Ki+1 · Ui+1 = 2n

(2) ⇒ U2
i+1 + (Ki + Ui) · Ui+1 − 2n = 0

Pi ⇒ U2
i+1 + 2n/2 · 2

√
i · Ui+1 − 2n = 0

Positive root ⇒ Ui+1 = 2n/2(
√
i+ 1−

√
i)

⇒ Pi+1 is true.

Now that we have a closed form for each Ui we can recover the total query complexity to
recover n bits of secret by summing over the Ui :
Average Query Complexity =

∑n
i=1 Ui = 2n/2

√
n

9 Use of CTR mode in Communication Protocols

The CTR mode is widely used in internet protocols, in particular as part of the GCM
authenticated encryption mode [MV04], with the AES block cipher. For instance, Mozilla
telemetry data show that 85% of HTTPS connections from Firefox 53 use AES-GCM 3. While
attacks against modes with a 128-bit block cipher are not practical yet, it is important to limit
the amount of data processed with a given key, in order to keep the probability of a successfull
attack negligible, following the guidelines of Luykx and Paterson [LP16].

Surprisingly, there are also real protocols that use 64-bit block ciphers with the CTR mode
(or variants of the CTR mode), as shown below. Attacks against those protocols would be
(close to) practical, assuming a scenario where an attacker can generate the encryption of a
large number of messages with some fixed secret.

SSH. Ciphersuites based on the CTR mode were added to SSHv2 in 2006 [BKN06]. In
particular, 3DES-CTR is one of the recommended ciphers, but actual usage of 3DES-CTR seem
to be rather low [ADHP16]. In practice, 3DES-CTR is optionally supported by the dropbear
server, but it is not implemented in OpenSSH. According to a scan of the full IPv4 space by
Censys.io 4, around 5% of SSH servers support 3DES-CTR, but actual usage is hard to estimate
because it depends on client configuration. The SSH specification requires to rekey after 1GB
of data, but an attack is still possible, although the complexity increases.

3. https://mzl.la/2uGj0XV
4. https://censys.io/data/22-ssh-banner-full_ipv4

https://mzl.la/2uGj0XV
https://censys.io/data/22-ssh-banner-full_ipv4

i

Ek′

0

Ek

mi,0

ci,0

1

Ek

mi,1

ci,1

2

Ek

mi,2

ci,2

Figure 5 – f8 mode (i is a message counter)

3G telephony. The main encryption algorithm in UMTS telephony is based on the 64-bit
blockcipher Kasumi. The mode of operation, denoted as f8, is represented in Figure 5. While
this mode in not the CTR mode and was designed to avoid its weaknesses, our attack can
be applied to the first block of ciphertext. Indeed the first block of message i is encrypted as
ci,0 = mi,0 ⊕ Ek(Ek′(i)), where the value Ek(Ek′(i)) is unique for all the messages encrypted
with a given key.

There is a maximum of 232 messages encrypted with a given key in 3G, but this only has
a small effect on the complexity of attacks.

Because of the low usage of 3DES-CTR in SSH, and the difficulty of mounting an attack
against 3G telephony in practice, we did not attempt to demonstrate the attack in practice,
but the setting and complexity of our attacks are comparable to recent results on the CBC
mode with 64-bit ciphers [BL16].

Conclusion

In this work, we have studied the missing difference problem and its relation to the security
of the CTR mode. We have given efficient algorithms for the missing difference problem in
two practically relevant cases : with an arbitrary missing difference, and when the missing
difference is known to be in some low-dimension vector space. These algorithms leads to a
message-recovery attack against the CTR mode with complexity Õ(2n/2), and a universal
forgery attack against some Carter-Wegman MACs with complexity Õ(22n/3).

In particular, we show that birthday attacks against the CTR mode can be mounted
with roughly the same requirements and the same complexity as attack against the CBC
mode. While both modes have similar security proofs, there was a folklore assumption that
the security loss of the CTR mode with large amounts of data is slower than in the CBC
mode because the absence of collision in the CTR keystream is harder to exploit than CBC
collisions [FSK11, Section 4.8.2]. Our results show that this is baseless, and use of the CTR
mode with 64-bit block ciphers should be considered unsafe (unless strict data limits are in
place).

Références

[ABP+13] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poet-
tering, and Jacob C. N. Schuldt. On the Security of RC4 in TLS. In Samuel T.
King, editor, USENIX Security 2013, pages 305–320. USENIX Association, 2013.

[ADHP16] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen, and Kenneth G.
Paterson. A surfeit of SSH cipher suites. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16,
pages 1480–1491. ACM Press, October 2016.

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer
Society Press, October 1997.

[Ber05] Daniel J. Bernstein. The poly1305-AES message-authentication code. In Henri
Gilbert and Helena Handschuh, editors, FSE 2005, volume 3557 of LNCS, pages
32–49. Springer, Heidelberg, February 2005.

[BKN06] M. Bellare, T. Kohno, and C. Namprempre. The Secure Shell (SSH) Transport
Layer Encryption Modes. IETF RFC 4344, 2006.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-)security of
64-bit block ciphers : Collision attacks on HTTP over TLS and OpenVPN. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 16, pages 456–467. ACM Press, October 2016.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, 4(1) :3–72, 1991.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. SIMON and SPECK : Block ciphers for the internet of things.
Cryptology ePrint Archive, Report 2015/585, 2015. http://eprint.iacr.org/
2015/585.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square.
In Eli Biham, editor, FSE’97, volume 1267 of LNCS, pages 149–165. Springer,
Heidelberg, January 1997.

[DL14] Itai Dinur and Gaëtan Leurent. Improved generic attacks against hash-
based MACs and HAIFA. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 149–168. Springer, Heidel-
berg, August 2014.

[DR11] Thai Duong and Juliano Rizzo. Here come the ⊕ ninjas. 2011.
[Fer05] Niels Ferguson. Authentication weaknesses in gcm. Comment to NIST,

2005. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/
CWC-GCM/Ferguson2.pdf.

[FLS15] Thomas Fuhr, Gaëtan Leurent, and Valentin Suder. Collision attacks against
CAESAR candidates - forgery and key-recovery against AEZ and Marble. In
Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume
9453 of LNCS, pages 510–532. Springer, Heidelberg, November / December 2015.

[FSK11] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography engineering :
design principles and practical applications. John Wiley & Sons, 2011.

http://eprint.iacr.org/2015/585
http://eprint.iacr.org/2015/585
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf

[GPSW14] Jian Guo, Thomas Peyrin, Yu Sasaki, and Lei Wang. Updates on generic attacks
against HMAC and NMAC. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 131–148. Springer, Heidel-
berg, August 2014.

[LKS+06] Changhoon Lee, Jongsung Kim, Jaechul Sung, Seokhie Hong, and Sangjin Lee.
Forgery and key recovery attacks on PMAC and mitchell’s TMAC variant. In
Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, ACISP 06, volume
4058 of LNCS, pages 421–431. Springer, Heidelberg, July 2006.

[LP16] Atul Luykx and Kenneth G. Paterson. Limits on authenticated encryption use in
TLS, march 2016. http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf.

[LPW13] Gaëtan Leurent, Thomas Peyrin, and Lei Wang. New generic attacks against
hash-based MACs. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 1–20. Springer, Heidelberg, December 2013.

[Mat94] Mitsuru Matsui. Linear cryptoanalysis method for DES cipher. In Tor Helleseth,
editor, EUROCRYPT’93, volume 765 of LNCS, pages 386–397. Springer, Heidel-
berg, May 1994.

[McG12] David McGrew. Impossible plaintext cryptanalysis and probable-plaintext collision
attacks of 64-bit block cipher modes. Cryptology ePrint Archive, Report 2012/623,
2012. http://eprint.iacr.org/2012/623.

[MV04] David A. McGrew and John Viega. The security and performance of the Ga-
lois/counter mode (GCM) of operation. In Anne Canteaut and Kapalee Viswana-
than, editors, INDOCRYPT 2004, volume 3348 of LNCS, pages 343–355. Springer,
Heidelberg, December 2004.

[Pv95] Bart Preneel and Paul C. van Oorschot. MDx-MAC and building fast MACs from
hash functions. In Don Coppersmith, editor, CRYPTO’95, volume 963 of LNCS,
pages 1–14. Springer, Heidelberg, August 1995.

[Pv96] Bart Preneel and Paul C. van Oorschot. On the security of two MAC algorithms.
In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 19–32.
Springer, Heidelberg, May 1996.

[PW14] Thomas Peyrin and Lei Wang. Generic universal forgery attack on iterative
hash-based MACs. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 147–164. Springer, Heidelberg, May
2014.

[Rog11] Phillip Rogaway. Evaluation of some blockcipher modes of operation, 2011.

http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://eprint.iacr.org/2012/623

	Introduction to block cipher modes of operation
	The counter mode
	Impossible Plaintext Attack on CTR mode
	Setting and notations
	Previous work

	Efficient Algorithms
	Known prefix sieving
	Fast XOR-counter

	Attacks using known prefix sieving
	Indivisible secret
	Counter mode
	Wegman-Carter MAC construction

	Simulations' results
	Half-a-block secret recovery
	Indivisible one block secret

	Analysis
	Impossible plaintext attack on indivisible n-bit block secret with large memory
	Bit by bit n-bit block secret recovery

	Use of CTR mode in Communication Protocols

