85 research outputs found

    Stone Duality and the Substitution Principle

    Get PDF

    Varieties of Data Languages

    Get PDF
    We establish an Eilenberg-type correspondence for data languages, i.e. languages over an infinite alphabet. More precisely, we prove that there is a bijective correspondence between varieties of languages recognized by orbit-finite nominal monoids and pseudovarieties of such monoids. This is the first result of this kind for data languages. Our approach makes use of nominal Stone duality and a recent category theoretic generalization of Birkhoff-type HSP theorems that we instantiate here for the category of nominal sets. In addition, we prove an axiomatic characterization of weak pseudovarieties as those classes of orbit-finite monoids that can be specified by sequences of nominal equations, which provides a nominal version of a classical theorem of Eilenberg and Sch\"utzenberger

    Colored operads, series on colored operads, and combinatorial generating systems

    Full text link
    We introduce bud generating systems, which are used for combinatorial generation. They specify sets of various kinds of combinatorial objects, called languages. They can emulate context-free grammars, regular tree grammars, and synchronous grammars, allowing us to work with all these generating systems in a unified way. The theory of bud generating systems uses colored operads. Indeed, an object is generated by a bud generating system if it satisfies a certain equation in a colored operad. To compute the generating series of the languages of bud generating systems, we introduce formal power series on colored operads and several operations on these. Series on colored operads are crucial to express the languages specified by bud generating systems and allow us to enumerate combinatorial objects with respect to some statistics. Some examples of bud generating systems are constructed; in particular to specify some sorts of balanced trees and to obtain recursive formulas enumerating these.Comment: 48 page

    Nominal Topology for Data Languages

    Get PDF

    Varieties of Data Languages

    Get PDF
    We establish an Eilenberg-type correspondence for data languages, i.e. languages over an infinite alphabet. More precisely, we prove that there is a bijective correspondence between varieties of languages recognized by orbit-finite nominal monoids and pseudovarieties of such monoids. This is the first result of this kind for data languages. Our approach makes use of nominal Stone duality and a recent category theoretic generalization of Birkhoff-type HSP theorems that we instantiate here for the category of nominal sets. In addition, we prove an axiomatic characterization of weak pseudovarieties as those classes of orbit-finite monoids that can be specified by sequences of nominal equations, which provides a nominal version of a classical theorem of Eilenberg and Sch\"utzenberger
    • …
    corecore