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Abstract
We establish an Eilenberg-type correspondence for data languages, i.e. languages over an infinite
alphabet. More precisely, we prove that there is a bijective correspondence between varieties of
languages recognized by orbit-finite nominal monoids and pseudovarieties of such monoids. This is
the first result of this kind for data languages. Our approach makes use of nominal Stone duality and
a recent category theoretic generalization of Birkhoff-type theorems that we instantiate here for the
category of nominal sets. In addition, we prove an axiomatic characterization of weak pseudovarieties
as those classes of orbit-finite monoids that can be specified by sequences of nominal equations,
which provides a nominal version of a classical theorem of Eilenberg and Schützenberger.
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1 Introduction

In the algebraic theory of formal languages, one studies automata and the languages they
represent in terms of associated algebraic structures. This approach has been successfully
implemented for numerous types of languages and has proven extremely fruitful because it
allows to import powerful algebraic methods into the realm of automata theory. As a prime
example, regular languages can be described purely algebraically as the languages recognized
by finite monoids, and a celebrated result by McNaughton, Papert, and Schützenberger [12, 19]
asserts that a regular language is definable in first-order logic if and only if its syntactic monoid
is aperiodic (i.e. it satisfies the equation xn+1 = xn for sufficiently large n). As an immediate
application, this algebraic characterization yields an effective procedure for deciding first-order
definability. The first systematic approach to correspondence results of this kind was initiated
by Eilenberg [6] who proved that varieties of languages (i.e. classes of regular languages
closed under the set-theoretic boolean operations, derivatives, and homomorphic preimages)
correspond bijectively to pseudovarieties of monoids (i.e. classes of finite monoids closed under
quotients monoids, submonoids, and finite products). Eilenberg’s result thus establishes a
generic relation between properties of regular languages and properties of finite monoids.
In addition, Eilenberg and Schützenberger [7] contributed a model-theoretic description
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130:2 Varieties of Data Languages

of pseudovarieties: they are those classes of finite monoids that can be axiomatized by a
sequence (sn = tn)n∈N of equations, interpreted as “sn = tn holds for sufficiently large n”. For
instance, the pseudovariety of aperiodic finite monoids is axiomatized by (xn+1 = xn)n∈N.

The goal of our present paper is to study data languages, i.e. languages over an infinite
alphabet, from the perspective of algebraic language theory. Such languages have spurred
significant interest in recent years, driven by practical applications in various areas of
computer science, including efficient parsing of XML documents or software verification.
Mathematically, data languages are modeled using nominal sets. Over the years, several
machine models for handling data languages of different expressive power have been proposed;
see [21, 20] for a comprehensive survey. The focus of this paper is on languages recognized
by orbit-finite nominal monoids. They form an important subclass of the languages accepted
by Francez and Kaminski’s finite memory automata [10] (which are expressively equivalent
to orbit-finite automata in the category of nominal sets [5]) and have been characterized by a
fragment of monadic second-order logic over data words called rigidly guarded MSO [17]. In
addition, Bojańczyk [4] and Colcombet, Ley, and Puppis [17] established nominal versions of
the McNaughton-Papert-Schützenberger theorem and showed that the first-order definable
data languages are precisely the ones recognizable by aperiodic orbit-finite monoids.

In the light of these results, it is natural to ask whether a generic variety theory akin to
Eilenberg’s seminal work can be developed for data languages. As the main contribution
of our paper, we answer this positively by establishing nominal generalizations of two key
results known from the algebraic theory of regular languages. The first one is a counterpart
of Eilenberg’s variety theorem, which is the first result of this kind for data languages:

I Nominal Eilenberg Theorem. Varieties of data languages correspond bijectively to pseudo-
varieties of nominal monoids.

Here, the notion of a pseudovariety of nominal monoids is as expected: a class of orbit-finite
nominal monoids closed under quotient monoids, submonoids, and finite products. In contrast,
the notion of a variety of data languages requires two extra conditions unfamiliar from other
Eilenberg-type correspondences, most notably a technical condition called completeness
(Definition 4.13). Like the original Eilenberg theorem, its nominal version gives rise to a
generic relation between properties of data languages and properties of nominal monoids.
For instance, the aperiodic orbit-finite monoids form a pseudovariety, and the first-order
definable data languages form a variety, and thus the equivalence of these concepts can be
understood as an instance of the nominal Eilenberg correspondence.

On a conceptual level, our results crucially make use of duality, specifically an extension
of Petrişan’s [15] nominal version of Stone duality which gives a dual equivalence between
nominal sets and nominal complete atomic boolean algebras. To derive the nominal Eilenberg
correspondence, we make two key observations. First, we show that varieties of data languages
dualize (under nominal Stone duality) to the concept of an equational theory in the category
of nominal sets. Second, we apply a recent categorical generalization of Birkhoff-type variety
theorems [14] to show that equational theories correspond to pseudovarieties of nominal
monoids. Our approach is summarized by the diagram below:

Varieties of
data languages

Nominal Eilenberg Theorem
∼=

Nominal Stone duality
∼=

Equational
theories

Nom. Birkhoff Theorem
∼=

Pseudovarieties of
nominal monoids
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The idea that Stone-type dualities play a major role in algebraic language theory was firmly
established by Gehrke, Grigorieff, and Pin [9]. It is also at the heart of our recent line of
work [1, 2, 22, 3], which culminated in a uniform category theoretic proof of more than a
dozen Eilenberg correspondences for various types of languages. A related, yet more abstract,
approach was pursued by Salamánca [18]. The key insight of [22, 18] is that Eilenberg-
type correspondences arise by combining a Birkhoff-type correspondence with a Stone-type
duality. Our present approach to data languages is an implementation of this principle in
the nominal setting. Since the existing categorical frameworks for algebraic language theory
consider algebraic-like base categories (which excludes nominal sets) and the recognition
of languages by finite structures, our Nominal Eilenberg Theorem is not covered by any
previous categorical work and requires new techniques. However, our approach can be seen
as an indication of the robustness of the duality-based methodology for algebraic recognition.

As our second main contribution, we complement the Nominal Eilenberg Theorem with
a model-theoretic description of pseudovarieties of nominal monoids in terms of sequences
of nominal equations, generalizing the classical result of Eilenberg and Schützenberger for
ordinary monoids. Our result applies more generally to the class of weak pseudovarieties of
nominal monoids, which are only required to be closed under support-reflecting (rather than
arbitrary) quotients. We then obtain the

I Nominal Eilenberg-Schützenberger Theorem. Weak pseudovarieties are exactly the
classes of nominal monoids axiomatizable by sequences of nominal equations.

While our main results apply to languages recognizable by orbit-finite monoids, the
underlying methods are of fairly general nature and can be extended to other recognizing
structures in the category of nominal sets. We illustrate this in section 5 by deriving a (local)
Eilenberg correspondence for languages accepted by deterministic nominal automata.

Full proofs of all results can be found in the extended arXiv version [23] of our paper.

2 Nominal Sets

We start by recalling basic definitions and facts from the theory of nominal sets [16]. Some
of the concepts considered in this paper are most clearly and conveniently formulated in the
language of category theory, but only very basic knowledge of category theory is required
from the reader. Fix a countably infinite set A of atoms, and denote by Perm(A) the group
of finite permutations of A (i.e. bijections π : A→ A that move only finitely many elements of
A). A Perm(A)-set is a set X with an operation Perm(A)×X → X, denoted as (π, x) 7→ π ·x,
such that (σπ) ·x = σ · (π ·x) and id ·x for all σ, π ∈ Perm(A) and x ∈ X. If the group action
is trivial, i.e. π · x = x for all π ∈ Perm(A) and x ∈ X, we call X discrete. For any set S ⊆ A
of atoms, denote by PermS(A) ⊆ Perm(A) the subgroup of all finite permutations π that fix
S, i.e. π(a) = a for all a ∈ S. The set S is called a support of an element x ∈ X if for every
π ∈ PermS(A) one has π · x = x. The intuition is that x is some kind of syntactic object
(e.g. a string, a tree, a term, or a program) whose free variables are contained in S. Thus, a
variable renaming π that leaves S fixed does not affect x. A nominal set is a Perm(A)-set X
such that every element of X has a finite support. This implies that every element x ∈ X has
a least support, denoted by suppX(x) ⊆ A. A nominal set X is strong if, for every x ∈ X and
π ∈ Perm(A), one has π · x = x if and only if π(a) = a for all a ∈ suppX(x). The orbit of an
element x of a nominal set X is the set {π · x : π ∈ Perm(A)}. The orbits form a partition
of X. If X has only finitely many orbits, then X is called orbit-finite. More generally, for any
finite set S ⊆ A of atoms, the S-orbit of an element x ∈ X is the set {π ·x : π ∈ PermS(A)},
and the S-orbits form a partition of X.

ICALP 2019



130:4 Varieties of Data Languages

I Lemma 2.1. Let S be a finite subset of A. Then every orbit-finite nominal set has only
finitely many S-orbits.

A map f : X → Y between nominal sets is equivariant if f(π ·x) = π ·f(x) for all π ∈ Perm(A)
and x ∈ X, and finitely supported if there exists a finite set S ⊆ A such that f(π ·x) = π ·f(x)
for all π ∈ PermS(A) and x ∈ X. Equivariant maps do not increase supports, i.e. one has
suppY (f(x)) ⊆ suppX(x) for all x ∈ X. We write Nomfs for the category of nominal sets
and finitely supported maps, and Nom for the (non-full) subcategory of nominal sets and
equivariant maps. We shall use the following standard results about Nom:
(1) Nom is complete and cocomplete. Finite limits and all colimits are formed on the level

of underlying sets. In particular, finite products of nominal sets are given by cartesian
products and coproducts by disjoint union.

(2) For every pair X,Y of nominal sets, the exponential [X,Y ] is the nominal set consisting
of all finitely supported maps f : X → Y , with the group action given by (π · f)(x) =
π · f(π−1 · x). Moreover, for every nominal set X, the nominal power set PX is carried
by the set of all subsets X0 ⊆ X with finite support; i.e. for which there exists a finite set
S ⊆ A of atoms such that π ·X0 = X0 for π ∈ PermS(A), where π ·X0 = {π ·x : x ∈ X0}.
In particular, every singleton {x} is finitely supported by suppX(x). The group action
on PX is given by X0 7→ π ·X0, and we have PX ∼= [X, 2], for the discrete nominal set
2 = {0, 1}.

(3) Quotients and subobjects in Nom are represented by epimorphisms (= surjective equivari-
ant maps) and monomorphisms (= injective equivariant maps), respectively. Nom has
image factorizations, i.e. every equivariant map f : X → Y has a unique decomposition
f = m · e into a quotient e : X � I followed by a subobject m : I � Y . We call e the
coimage of f .

(4) Orbit-finite nominal sets are closed under quotients, subobjects, and finite products.
(5) For each n ≥ 0, the nominal set A#n = { (a1, . . . , an) ∈ An : ai 6= aj for i 6= j } with

group action π · (a1, . . . , an) = (π(a1), . . . , π(an)) is strong and has a single orbit. More
generally, the (orbit-finite) strong nominal sets are up to isomorphism exactly the (finite)
coproducts of nominal sets of the form A#n.

3 Pseudovarieties of Nominal Monoids

In this section, we investigate classes of orbit-finite nominal monoids and establish two
characterizations of such classes: a categorical one, relating pseudovarieties of nominal
monoids to equational theories in the category of nominal sets, and an axiomatic one,
describing weak pseudovarieties in terms of sequences of nominal equations. The first of these
results is the algebraic foundation of our subsequent treatment of varieties of data languages.

A nominal monoid is a monoid (M, •, 1M ) in the category Nom; that is, M is equipped
with the structure of a nominal set such that the multiplication • : M ×M → M is an
equivariant map and the unit 1M ∈M has empty support, i.e. it corresponds to an equivariant
map 1→M , where 1 is the nominal set with one element. We write nMon for the category
of nominal monoids and equivariant monoid morphisms (usually just called morphisms),
and nMonof for the full subcategory of orbit-finite nominal monoids. The forgetful functor
from nMon to Nom has a left adjoint assigning to each nominal set Σ the free nominal
monoid Σ∗ of all words over Σ, with monoid multiplication given by concatentation of words,
unit ε (the empty word) and group action π · (a1 · · · an) = π(a1) · · ·π(an) for π ∈ Perm(A)
and a1 · · · an ∈ Σ∗. The category nMon has products (formed on the level of Nom), image
factorizations, and surjective and injective morphisms represent quotients and submonoids of
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nominal monoids. A quotient q : M � M ′ is called support-reflecting if for every x′ ∈ M ′
there exists an x ∈ M with q(x) = x′ and suppM (x) = suppM ′(x′). The following result
characterizes the quotient monoids of Σ∗ in terms of unary operations:

I Proposition 3.1 (Unary presentation for nominal monoids). For every nominal set Σ and
every surjective equivariant map e : Σ∗ �M , the following statements are equivalent:
(1) e carries a quotient monoid of Σ∗, i.e. there exists a nominal monoid structure (M, •, 1M )

on M such that e : Σ∗ � (M, •, 1M ) is a morphism of nominal monoids;
(2) the maps Σ∗ w·−−−→ Σ∗ and Σ∗ −·w−−→ Σ∗ (w ∈ Σ∗) lift along e, i.e. there exist (necessarily

unique) maps lw and rw making the following squares commute:

Σ∗

e
����

w·−
// Σ∗

e
����

M
lw

// M

Σ∗

e
����

−·w
// Σ∗

e
����

M
rw

// M

for every w ∈ Σ∗.

In general, the maps w ·− and −·w are not equivariant, but finitely supported (with support
contained in the one of w). This implies that also lw and rw in 2 are finitely supported.

3.1 Equational Theories
In previous work [14] we studied varieties of objects in a general category and their relation to
an abstract form of equations. In the following, we instantiate these concepts to the category
of nominal sets to derive a characterization of pseudovarieties of orbit-finite monoids.

I Definition 3.2. Let Σ be a nominal set. A Σ-generated nominal monoid is a nominal
quotient monoid e : Σ∗ �M of the free monoid Σ∗. We denote by Σ∗ �nMonof the poset of
Σ-generated orbit-finite nominal monoids, ordered by e ≤ e′ iff e′ factorizes through e.

I Definition 3.3. A local pseudovariety of Σ-generated nominal monoids is a filter TΣ ⊆
Σ∗ �nMonof in the poset of Σ-generated orbit-finite nominal monoids; that is, TΣ is
(1) upwards closed: e ∈ TΣ and e ≤ e′ implies e′ ∈ TΣ, and
(2) downwards directed: for each pair e0, e1 ∈ TΣ there exists e ∈ TΣ with e ≤ e0, e1.
If we replace (1) by the weaker condition
(1’) for each e : Σ∗ �M in TΣ and each support-reflecting q : M � N one has q · e ∈ TΣ,
then TΣ is called a weak local pseudovariety of Σ-generated nominal monoids.

I Remark 3.4. By Proposition 3.1, the definition of local pseudovariety can be equivalently
stated as follows:
(1) TΣ is a filter in the poset of orbit-finite quotients of Σ∗ in Nom;
(2) for every e ∈ TΣ and w ∈ Σ∗, the unary operations w · − and − · w on Σ∗ lift along e.
Let Nomof,s denote the full subcategory of Nom on orbit-finite strong nominal sets.

I Definition 3.5 (Equational Theory). A (weak) equational theory is a family

T = (TΣ ⊆ Σ∗ �nMonof )Σ∈Nomof,s

of (weak) local pseudovarieties with the following two properties (see the diagrams below):
(1) Substitution invariance. For each equivariant monoid morphism h : ∆∗ → Σ∗ with

∆,Σ ∈ Nomof,s and each eΣ : Σ∗ �MΣ in TΣ, the coimage e∆ of eΣ · h lies in T∆.
(2) Completeness. For each Σ ∈ Nomof,s and each quotient e : Σ∗ �MΣ in TΣ, there exists

∆ ∈ Nomof,s and a support-reflecting quotient e∆ : ∆∗ �M∆ in T∆ with M∆ = MΣ.

ICALP 2019
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∆∗ ∀h //

e∆
����

Σ∗

∀eΣ
����

M∆ // // MΣ

∆∗

∃e∆
����

Σ∗

∀eΣ
����

M∆ MΣ

I Remark 3.6.
(1) Local pseudovarieties were previously called equations [14]. In fact, in many instances of

the framework in op. cit., a filter of quotients can be represented as a single quotient of
a free algebra on an object Σ, which in turn corresponds to a set of pairs of terms given
by the kernel of the quotient, i.e. to the usual syntactic concept of an equation.

(2) The restriction to strong nominal sets Σ as generators reflects that the latter are the “free”
nominal sets [11], a property crucial for the proof of Theorem 3.8 below. More precisely,
letting PfA denote the set of finite subsets of A, the forgetful functor U : Nom→ SetPfA

mapping a nominal set X to the presheaf S 7→ {x ∈ X : suppX(x) ⊆ S } has a left
adjoint F , and strong nominal sets are exactly the nominal sets of the form FP for
P ∈ SetPfA.

(3) The somewhat technical completeness property cannot be avoided, i.e. a substitution-
invariant family of local pseudovarieties is generally incomplete. Indeed, consider the
family

T = (TΣ ⊆ Σ∗ �nMonof )Σ∈Nomof,s ,

where TΣ consists of all Σ-generated orbit-finite nominal monoids e : Σ∗ �M such that
e maps each element of Σ∗ with a support of size 1 to 1M .
To see that TΣ is a filter, suppose that e : Σ∗ �M and e′ : Σ∗ �M ′ are two quotients
in TΣ. Form their subdirect product q, viz. the coimage of the morphism 〈e, e′〉 : Σ∗ →
M ×M ′. Each w ∈ Σ∗ with a support of size 1 is mapped by q to (e(w), e′(w)) =
(1M , 1M ′) = 1M×M ′ . Thus q ∈ TΣ and q ≤ e, e′, i.e. TΣ is downwards directed. Clearly,
TΣ is also upwards closed.
For substitution invariance, let h : ∆∗ → Σ∗ be a morphism and eΣ : Σ∗ �MΣ a quotient
in TΣ. Then eΣ · h maps each element with a support of size 1 to 1MΣ since eΣ does and
the equivariant map h does not increase supports. Thus, the coimage of eΣ · h lies in T∆.
Finally, we show that T is not complete. Fix an arbitrary orbit-finite nominal monoid M
containing an element m with | suppM m| = 1. Note that m 6= 1M because 1M has empty
support. Moreover, choose an orbit-finite strong nominal set Σ such that all elements of
Σ have least support of size at least 2, and M can be expressed as a quotient e : Σ∗ �M .
(For instance, one may take Σ =

∐
i<k A#n where k is the number of orbits of M and

n = max{2, | suppM (x)| : x ∈M}.) Since all nonempty words in Σ∗ have a least support
of size at least 2, one has e ∈ TΣ. For every ∆ ∈ Nomof,s and every quotient q : ∆∗ �M

in T∆, the set q−1[{m}] ⊆ ∆∗ contains no element with least support of size 1, since
such elements are mapped by q to 1M 6= m. Consequently, q is not support-reflecting.
This shows that M is not the codomain of any support-reflecting quotient in T∆.

I Definition 3.7 (Pseudovariety and Weak Pseudovariety). A pseudovariety of nominal
monoids is a nonempty class V of orbit-finite nominal monoids closed under finite products,
submonoids, and quotient monoids. That is,
(1) for each M,N ∈ V one has M ×N ∈ V;
(2) for each M ∈ V and each nominal submonoid N �M one has N ∈ V;
(3) for each M ∈ V and each nominal quotient monoid M � N one has N ∈ V.
A weak pseudovariety of nominal monoids is a nonempty class of orbit-finite nominal monoids
closed under finite products, submonoids, and support-reflecting quotient monoids.
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The following result is a special case of the Generalized Variety Theorem [14, Theorem 3.15].
It asserts that equational theories and pseudovarieties are equivalent concepts. Note that
(weak) equational theories form a poset ordered by T ≤ T′ iff TΣ ≤ T′Σ for all Σ ∈ Nomof,s,
where TΣ ≤ T′Σ holds iff for every e′ ∈ T′Σ there exists an e ∈ TΣ with e ≤ e′. Similarly,
(weak) pseudovarieties of nominal monoids form a poset w.r.t. the inclusion ordering.

I Theorem 3.8. (Weak) equational theories and (weak) pseudovarieties of nominal monoids
form dually isomorphic complete lattices.

The isomorphism maps a (weak) equational theory T to the (weak) pseudovariety V(T) of all
orbit-finite monoids M such that each morphism h : Σ∗ →M with Σ ∈ Nomof,s factorizes
through some eΣ ∈ TΣ. The inverse maps a (weak) pseudovariety V to the (weak) equational
theory T(V) where T(V)Σ consists of all quotients e : Σ∗ �M with codomain M ∈ V.

3.2 The Nominal Eilenberg-Schützenberger Theorem
In addition to their abstract category theoretic characterization in Theorem 3.8, weak
pseudovarieties of nominal monoids admit an axiomatic description in terms of sequences
of equations, analogous to the classical result of Eilenberg and Schützenberger [7] for
pseudovarieties of ordinary monoids. The appropriate concept of equation is as follows:

I Definition 3.9.
(1) An equation is a pair (s, t) ∈ X∗ × X∗, denoted as s = t, where X is an orbit-finite

strong nominal set. A nominal monoid M satisfies s = t if for every equivariant map
h : X →M one has ĥ(s) = ĥ(t), where ĥ : X∗ →M denotes the unique extension of h
to an equivariant monoid morphism.

(2) Given a sequence E = (sn = tn)n∈N of equations (possibly taken over different orbit-finite
strong nominal sets X of generators), a nominal monoid M eventually satisfies E if there
exists an index n0 ∈ N such that M satisfies all the equations sn = tn with n ≥ n0. We
denote by V(E) the class of all orbit-finite nominal monoids that eventually satisfy E.

I Remark 3.10. Equations can be presented syntactically as expressions of the form

y1 : S1, . . . , yn : Sn ` u = v, (1)

where Y = {y1, . . . , yn} is a finite set of variables, S1, . . . , Sn ⊆ A are finite sets of atoms,
and u, v are words in (Perm(A)×Y )∗. A nominal monoid M is said to satisfy (1) if for every
variable interpretation, i.e. every map h : Y → M with suppM (h(yi)) ⊆ Si for i = 1, . . . , n,
one has h(u) = h(v). Here, h : (Perm(A)×Y )∗ →M is the unique monoid morphism mapping
(π, yi) to π ·h(yi). Every equation can be transformed into an expressively equivalent syntactic
equation, and vice versa [13, Lemma B.31].

I Theorem 3.11 (Nominal Eilenberg-Schützenberger Theorem). A class V of orbit-finite
nominal monoids forms a weak pseudovariety iff V = V(E) for some sequence E of equations.

Proof sketch. The proof proceeds along the lines of the one for ordinary monoids [7], although
some subtle modifications are required. The “if” direction is a routine verification. For the
“only if” direction, let V be a weak pseudovariety. Using that there are only countably many
orbit-finite monoids up to isomorphism, one can construct a sequence M0,M1,M2, . . . of
nominal monoids in V such that each M ∈ V is a quotient of all but finitely many Mn’s. Let
X0, X1, X2, . . . be the sequence of all (countably many) strong orbit-finite nominal sets up
to isomorphism, and consider the equivariant congruence relation on X∗n given by

s ≡n t iff Mn satisfies the equation s = t.

One then shows that the congruence ≡n is generated by a finite subset Wn ⊆ ≡n, and that
V = V(E) for every sequence E that lists all equations in the countable set

⋃
nWn. J
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I Example 3.12. An orbit-finite nominal monoid M is called aperiodic [4, 17] if there exists
a natural number n ≥ 1 such that xn+1 = xn for all x ∈ M . The class of all orbit-finite
aperiodic nominal monoids forms a pseudovariety. Taking the set Y = {y} of variables, it is
not difficult to see that this pseudovariety is specified by the sequence of syntactic equations

y : Sn ` yn+1 = yn (n ∈ N),

where Sn = {a0, a1, . . . , an−1} is the set of the first n atoms in the countably infinite set
A = {a0, a1, a2 . . .} of all atoms, and we write y for (id, y) ∈ Perm(A)× Y .

4 Duality and the Nominal Eilenberg Correspondence

In this section, we establish our nominal version of Eilenberg’s variety theorem. It is based
on a dual interpretation of the concepts of a (local) pseudovariety of nominal monoids and of
an equational theory, introduced in the previous section, under nominal Stone duality.

4.1 Nominal Stone Duality
A classical result from duality theory, known as discrete Stone duality, states that the category
of sets is dually equivalent to the category of complete atomic boolean algebras, i.e. complete
boolean algebras in which every non-zero element is above some atom. An analogous duality
holds for the category Nomfs of nominal sets and finitely supported maps.

I Definition 4.1. A nominal complete atomic boolean algebra (ncaba) is a boolean algebra
(B,∨,∧,¬,⊥,>) in Nom such that every finitely supported subset of B has a supremum,
and for every element b ∈ B \ {⊥} there exists an atom (i.e. a minimal element) a ∈ B with
a ≤ b. Here, the partial order ≤ is defined as usual by a ≤ b iff a ∧ b = a. We denote by
nCABAfs the category of ncabas and finitely supported morphisms (i.e. finitely supported
maps preserving all the boolean operations and suprema of finitely supported subsets), and
by nCABA the (non-full) subcategory of ncabas and equivariant morphisms.

I Theorem 4.2 (Nominal Stone Duality). The categories nCABAfs and Nomfs are dually
equivalent. The duality restricts to one between the subcategories nCABA and Nom.

The restricted duality is due to Petrişan [15, Prop. 5.3.11].

I Remark 4.3.
(1) The equivalence functor Nomfs

'−→ nCABAop
fs maps a nominal set X to the ncaba PX

of finitely supported subsets of X (equipped with the set-theoretic boolean operations),
and a finitely supported map f : X → Y to the morphism f−1 : PY → PX taking
preimages. The inverse equivalence functor nCABAop

fs
'−→ Nomfs maps an ncaba B to

the equivariant subset At(B) of its atoms, with group action restricting the one of B.
(2) The dual equivalence restricts to one between the full subcategories of orbit-finite nominal

sets and atom-finite ncabas, i.e. ncabas whose set of atoms is orbit-finite. For atom-finite
ncabas the property that every finitely supported subset has a supremum is equivalent
to the weaker requirement that for every finite set S ⊆ A, every S-orbit has a supremum.
Indeed, given a finitely supported subset X ⊆ B (say with finite support S ⊆ A),
put X ′ := { a ∈ At(B) : a ≤ x for some x ∈ X }. Since ≤ is an equivariant relation,
X ′ ⊆ At(B) is a subset with finite support S. Since At(B) is orbit-finite and thus
has only finitely many S-orbits by Lemma 2.1, we can express X ′ as a finite union
X ′ = X ′1 ∪ . . . ∪X ′n of S-orbits. Using that every element of B is the join of the finitely
supported set of all atoms below it, it follows that

∨
X =

∨
X ′ =

∨
X ′1 ∨ . . . ∨

∨
X ′n, so∨

X is a finite join of joins of S-orbits.
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4.2 Varieties of Data Languages
For the notion of a language over an alphabet Σ ∈ Nom and the corresponding concept of
algebraic recognition by nominal monoids, there are two natural choices: consider equivariant
subsets L ⊆ Σ∗ and their recognition by equivariant monoid morphisms [5, 17], or consider
finitely supported subsets L ⊆ Σ∗ and their recognition by finitely supported monoid
morphisms [4]. For our duality-based approach to data languages, it turns out that we
need to work with an intermediate concept: finitely supported languages recognizable by
equivariant monoid morphisms (see the discussion in Remark 4.12 below). That is, we work
with the following

I Definition 4.4. A data language over the alphabet Σ ∈ Nom is a finitely supported map
L : Σ∗ → 2. It is recognized by an equivariant monoid morphism e : Σ∗ →M if there exists a
finitely supported map p : M → 2 with L = p · e. In this case, we also say that M recognizes
L. A data language is recognizable if it recognized by some orbit-finite nominal monoid.

I Remark 4.5.
(1) Identifying finitely supported maps into 2 with finitely supported subsets, Definition 4.4

can be restated: an equivariant monoid morphism e : Σ∗ → M recognizes a language
L ⊆ Σ∗ if there exists a finitely supported subset P ⊆M∗ with L = e−1[P ].

(2) If L is an equivariant recognizable language, then p in Definition 4.4 is also equivariant.
Therefore, for equivariant languages we recover the notion of recognition of [5, 17].

(3) If Σ is a finite set (viewed as an orbit-finite discrete nominal set), a data language is just
an ordinary formal language over the alphabet Σ. Indeed, the free nominal monoid Σ∗ is
discrete, and thus every subset of Σ∗ is finitely supported. Moreover, every orbit-finite
nominal quotient monoid of Σ∗ is discrete and finite. Hence, the above notion of language
recognition coincides with the classical recognition by finite monoids. In particular, for
finite Σ, a recognizable data language is the same as a regular language.

I Example 4.6. Examples of recognizable data languages over the alphabet Σ = A include
(1) every finite or cofinite subset L ⊆ A∗ (see Remark 4.8 below), (2) aA∗ for a fixed
atom a ∈ A, and (3)

⋃
a∈A A∗aaA∗. The languages (4) {a1 . . . an : ai 6= aj for i 6= j},

(5)
⋃
a∈A aA∗aA∗, and (6) A∗aA∗ for a fixed atom a ∈ A are not recognizable. The equivariant

examples (3)–(5) are taken from [4, 5].

In previous work [1] we have given a categorical account of local varieties of regular languages
[9], i.e. sets of regular languages over a fixed finite alphabet Σ closed under the set-theoretic
boolean operations (finite union, finite intersection, complement) and derivatives. This
concept can be generalized to data languages. The derivatives of a data language L ⊆ Σ∗
with respect to a word w ∈ Σ∗ are given by

w−1L = { v ∈ Σ∗ : wv ∈ L } and Lw−1 = { v ∈ Σ∗ : vw ∈ L }.

Since supp(w−1L), supp(Lw−1) ⊆ supp(w)∪supp(L), the derivatives are again data languages.

I Definition 4.7 (Local Variety of Data Languages). Let Σ ∈ Nom. A local variety of data
languages over Σ is an equivariant set VΣ ⊆ PΣ∗ of recognizable data languages closed under
the set-theoretic boolean operations, unions of S-orbits for every finite set S ⊆ A of atoms
(that is, for every L ∈ VΣ the language

⋃
π∈PermS(A) π · L lies in VΣ), and derivatives.

I Remark 4.8.
(1) If Σ is a finite set (viewed as a discrete nominal set), then by Remark 4.5 a local variety
VΣ consists of regular languages, and the closure under unions of S-orbits is trivial: since
PΣ∗ is discrete, every S-orbit has a single element. Thus, in this case, a local variety of
data languages is precisely a local variety of regular languages.
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(2) However, in general the closedness under unions of S-orbits cannot be dropped, as it is
neither trivial nor implied by the other conditions. To see this, consider the alphabet
Σ = A and the equivariant set VA ⊆ PA∗ of all finite or cofinite subsets of A∗. Note
that every finite language L ⊆ A∗ is recognizable: let n ≥ 1 be an upper bound on the
length of words in L, and take the orbit-finite monoid M = A≤n ∪ {0} consisting of all
words over A of length at most n, and a zero element 0. The multiplication • is defined
as follows: given v, w ∈ A≤n, if the word vw has length at most n, put v • w = vw.
Otherwise, put v •w = 0. Then the equivariant monoid morphism e : A∗ →M extending
a 7→ a recognizes L since L = e−1[L]. It follows that also A∗ \ L = e−1[M \ L]. This
shows that every language in VA is recognizable. Moreover, clearly VA is closed under
the set-theoretic boolean operations and derivatives. However, the languages {a}, a ∈ A,
form an orbit in VA, but their union A =

⋃
a∈A{a} is not in VA. Thus VA is not a local

variety of data languages in the sense of Definition 4.7.
A local variety VΣ is generally not a subobject of PΣ∗ in nCABA, because it is not required
to be closed under unions of arbitrary finitely supported subsets and also not necessarily
atomic as a boolean algebra. However, if the atomic languages in VΣ form an orbit-finite
subset and every language in VΣ contains some atomic language, then VΣ is an atom-finite
subobject of PΣ∗, see Remark 4.32. In this case, we call VΣ an atom-finite local variety.

I Theorem 4.9 (Finite Local Variety Theorem). The lattice of atom-finite local varieties of
data languages over Σ is dually isomorphic to the lattice of Σ-generated orbit-finite monoids.

The isomorphism maps a Σ-generated orbit-finite monoid e : Σ∗ � M to the atom-finite
local variety of all data languages recognized by e.

Proof. By the duality of Nom and nCABA, orbit-finite equivariant quotients e : Σ∗ �M

of Σ∗ in Nom correspond bijectively to atom-finite subobjects VΣ � PΣ∗ in nCABA,
i.e. atom-finite equivariant sets of languages closed under the set-theoretic boolean operations
and unions of S-orbits for every finite S ⊆ A. By Proposition 3.1 and the dual equivalence
of Nomfs and nCABAfs, the map e represents a nominal quotient monoid of Σ∗ if and only
if VΣ is closed under derivatives, i.e. a local variety. The closure under left derivatives is
illustrated by the two dual commutative squares below, where the left-hand one lives in
Nomfs and the right-hand one in nCABAfs.

Σ∗

e
����

w·−
// Σ∗

e
����

M
∃

// M

PΣ∗ PΣ∗
w−1(−)
oo

VΣ

OO
⊆

OO

VΣ∃
oo

OO
⊆

OO

The elements of VΣ are precisely the languages recognized by e. Indeed, the former correspond
to the morphisms 1→ VΣ in nCABAfs, where 1 is the free boolean algebra on one generator,
the latter to the finitely supported maps M → 2 in Nomfs, and 1 and 2 are dual objects. J

Recall that an ideal in a poset is a downwards closed and upwards directed subset. For the
lattice of local varieties of data languages over Σ (ordered by inclusion), we obtain

I Lemma 4.10. The lattice of local varieties of data languages over Σ is isomorphic to the
lattice of ideals in the poset of atom-finite local varieties over Σ.
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The isomorphism maps a local variety VΣ to the ideal of all atom-finite local subvarieties of
VΣ. Its inverse maps an ideal { VΣ,i : i ∈ I } in the poset of atom-finite local varieties to the
local variety

⋃
i∈I VΣ,i. In order-theoretic terms, the above lemma states that local varieties

of data languages form the ideal completion of the poset of atom-finite local varieties. Using
Theorem 4.9, Lemma 4.10, and the fact that ideals are dual to filters, we obtain

I Theorem 4.11 (Local Variety Theorem). For each Σ ∈ Nom, the lattice of local varieties
of data languages over Σ is dually isomorphic to the lattice of local pseudovarieties of
Σ-generated nominal monoids.

I Remark 4.12.
(1) Since data languages are morphisms L : Σ∗ → 2 in Nomfs, the reader may wonder

why we do not entirely work in this category and use monoids with finitely supported
multiplication and finitely supported monoid morphisms (rather than the equivariant
ones) for the recognition of languages. The reason lies on the dual side: in the proof
of Theorem 4.9, we used that equivariant injective maps VΣ � PΣ∗ can be uniquely
identified with equivariant subsets of PΣ∗. In contrast, finitely supported injective maps
VΣ � PΣ∗ do not correspond to the finitely supported (or any other kind of) subsets of
PΣ∗.

(2) Similarly, we cannot restrict ourselves to the category Nom and only consider equivariant
languages L ⊆ Σ∗ rather than finitely supported ones. Indeed, the Finite Local Variety
Theorem then fails: the map sending a Σ-generated orbit-finite monoid e : Σ∗ �M to
the set of equivariant languages it recognizes is no longer bijective. To see this, consider
the nominal monoids M = A ∪ {1} with a • b = a for a, b ∈ A, and N = {0, 1} with
0 • 0 = 0 • 1 = 1 • 0 = 0. Then the two surjective morphisms e : A∗ � M , extending
a 7→ a, and f : A∗ � N , extending a 7→ 0, recognize the same equivariant languages,
namely A∗, A∗ \ {ε}, {ε} and ∅.

In the following, we consider data languages whose alphabet Σ is an orbit-finite strong
nominal set (see Remark 3.62). By dualizing the concept of an equational theory, we obtain

I Definition 4.13 (Variety of data languages). A variety of data languages is a family

V = (VΣ ⊆ PΣ∗ )Σ∈Nomof,s

of local varieties of data languages with the following two properties:
(1) Closedness under preimages. For each equivariant monoid morphism h : ∆∗ → Σ∗ with

Σ,∆ ∈ Nomof,s and each L ∈ VΣ, one has h−1[L] ∈ V∆.
(2) Completeness. For each atom-finite local subvariety V ′Σ � VΣ, there exists an equivariant

monoid morphism h : Σ∗ → ∆∗ and an atom-finite local subvariety V ′∆ � V∆ such that
a. the map L 7→ h−1[L] defines a bijection between V ′∆ and V ′Σ, and
b. every atomic language L ∈ V ′∆ contains a word w ∈ ∆∗ with suppP∆∗(L) = supp∆∗(w).

I Remark 4.14. Except for the completeness condition, the above concept is analogous to
Eilenberg’s original notion of a variety of regular languages (i.e. a family of local varieties
of regular languages closed under preimages of monoid morphisms). In fact, if Σ is a finite
alphabet, and thus VΣ is just a local variety of regular languages, completeness is trivial:
given any finite local subvariety V ′Σ of VΣ, choose ∆ = Σ, V ′∆ = V ′Σ, and h = id : Σ∗ → ∆∗.
Then 2a is clear, and 2b holds because each L ∈ PΣ∗ and each w ∈ Σ∗ has empty support.

In general, however, the completeness property cannot be dropped. This follows from Re-
mark 3.63 and the observation that the completeness of a variety dualizes to the completeness
of the corresponding equational theory (see the proof of Theorem 4.15).
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We are ready to state the main result of our paper:

I Theorem 4.15 (Nominal Eilenberg Theorem). Varieties of data languages and pseudovari-
eties of nominal monoids form isomorphic complete lattices.

The isomorphism maps a variety V of data languages to the pseudovariety V of all orbit-finite
nominal monoids that recognize only languages from V. Its inverse maps a pseudovariety V

to the variety V of all data languages recognized by some monoid in V.

Proof sketch. We observe that the concept of a variety is dual to that of an equational theory.
Indeed, by the Local Variety Theorem 4.11, a family V = (VΣ ⊆ PΣ∗ )Σ∈Nomof,s of local varie-
ties of data languages bijectively corresponds to a family T = (TΣ ⊆ Σ∗ �nMonof )Σ∈Nomof,s

of local pseudovarieties of nominal monoids. One then shows that (1) T is substitution-
invariant if and only if V is closed under preimages, and (2) T is complete if and only if V is
complete. In particular, T is a theory if and only if V is a variety of data languages. Since
theories correspond to pseudovarieties by Theorem 3.8, this proves the theorem. J

5 Adding Expressivity: Regular Data Languages

As recognizing structures for data languages, nominal monoids are of limited expressivity; in
particular, they are strictly weaker than deterministic automata in the category of nominal
sets [5, 4]. Therefore, we now show how to extend our results for monoid-recognizable data
languages and establish a local variety theorem for languages accepted by nominal automata.

I Definition 5.1. Fix an input alphabet Σ ∈ Nom. A nominal Σ-automaton A = (Q, δ, q0)
consists of a nominal set Q of states, an equivariant transition map δ : Q × Σ → Q, and
an initial state q0 ∈ Q with empty support. It is called orbit-finite if Q is orbit-finite. A
morphism between nominal automata A = (Q, δ, q0) and A′ = (Q′, δ′, q′0) is an equivariant
map h : Q→ Q′ such that δ(h(q), a) = h(δ(q, a)) for all q ∈ Q and a ∈ Σ, and h(q0) = q′0.

The initial nominal Σ-automaton is given by I = (Σ∗, δ, ε) with transition map δ(w, a) = wa

for w ∈ Σ∗ and a ∈ Σ. It is characterized by the universal property that for every nominal
Σ-automaton A = (Q, δ, q0), there exists a unique morphism eA : I → A, sending a word
w ∈ Σ∗ to the state reached from q0 after reading w. The automaton A is called reachable if
eA is surjective. A data language L ⊆ Σ∗ is accepted by A if there exists a finitely supported
subset F ⊆ Q with L = e−1

A [F ]. This corresponds to the usual notion of acceptance of an
automaton with final states F : the language L consists of all words w ∈ Σ∗ such that A
reaches a state in F after reading w. A data language L ⊆ Σ∗ is called regular if there exists
an orbit-finite nominal automaton accepting it. In analogy to Proposition 3.1, we get

I Proposition 5.2 (Unary presentation for nominal automata). For every surjective equivariant
map e : Σ∗ � Q, the following statements are equivalent:
(1) there exists a nominal automaton A = (Q, δ, q0) with states Q such that e = eA;
(2) the maps Σ∗ −·w−−→ Σ∗ (w ∈ Σ∗) lift along e, i.e. there exist (necessarly unique) maps

rw : Q→ Q such that e · (− · w) = rw · e for all w ∈ Σ∗.
Define a local pseudovariety of nominal Σ-automata to be a class VΣ of orbit-finite reachable
nominal Σ-automata such that (1) VΣ is closed under quotients (represented by surjective
automata morphisms), and (2) for every pair A,B ∈ VΣ, the reachable part of the product
A×B lies in VΣ. Here, the product of two nominal automata A = (Q, δ, q0) andB = (Q′, δ′, q′0)
is given by A×B = (Q×Q′, δ, (q0, q

′
0)) with δ((q, q′), a) = (δ(q, a), δ′(q′, a)) for (q, q′) ∈ Q×Q′

and a ∈ Σ, and the reachable part R of A × B is the coimage e : Σ∗ � R of the unique
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morphism eA×B : Σ∗ → A × B. Note that a local pseudovariety corresponds precisely to
a filter in the poset Σ∗ �Σ-nAutof of orbit-finite reachable nominal Σ-automata. The dual
version of this concept is the one of a local variety of regular data languages over Σ: an
equivariant set VΣ ⊆ PΣ∗ of such languages closed under the set-theoretic boolean operations,
unions of S-orbits for every finite set S ⊆ A of atoms, and right derivatives. The following
theorem, and its proof, are completely analogous to Theorem 4.11:

I Theorem 5.3 (Local Variety Theorem for Regular Data Languages). For each Σ ∈ Nom, the
lattice of local varieties of regular data languages over Σ is dually isomorphic to the lattice of
local pseudovarieties of nominal Σ-automata.

6 Conclusions and Future Work

We have demonstrated that two cornerstones of the algebraic theory of regular languages,
Eilenberg’s variety theorem and Eilenberg and Schützenberger’s axiomatic characterization
of pseudovarieties, can be generalized to data languages recognizable by orbit-finite monoids.
Our results are the first of this type for data languages, and thus the present work makes
a contribution towards developing a fully fledged algebraic theory of such languages. In
a broader sense, the approach taken in this paper can be seen as a further illustration
of the power of duality in formal language theory: we believe that without the guidance
given by nominal Stone duality, it would have been significantly harder to even come up
with the suitable notion of a variety of data languages that makes the nominal Eilenberg
correspondence work. The duality-based approach thus adds much conceptual clarity and
simplicity. There remain several research questions and interesting directions for future work.

As indicated in section 5, the techniques used in our paper can be adapted without much
effort to languages recognized by nominal algebraic structures other than monoids, including
deterministic nominal automata. As a first step, we aim to extend the local variety theorem
for regular data languages (Theorem 5.3) to a full Eilenberg correspondence. It remains an
important goal to further extend our results to more powerful classes of data languages.

Our proof of the (local) Eilenberg correspondence rests on the observation that a local
variety of data languages can be expressed as the directed union of its atom-finite subvarieties.
From a category theoretic perspective, this suggests that local varieties are formed within the
Ind-completion (i.e. the free completion under directed colimits) of the category of atom-finite
nominal complete atomic boolean algebras. We conjecture that this completion can be
described as a category of nominal boolean algebras with joins of S-orbits for each finite set
S of atoms. On the dual side, we expect that the Pro-completion (i.e. the free completion
under codirected limits) of the category of orbit-finite nominal sets consists of some form
of nominal Stone spaces. The approach of working with free completions should lead to
a topological version of nominal Stone duality similar to the one established by Gabbay,
Litak, and Petrişan [8]. More importantly, it might pave the way to the introduction of
pro-(orbit-)finite methods for the theory of data languages.
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