6 research outputs found

    Volatile STT-RAM Scratchpad Design and Data Allocation for Low Energy

    Get PDF
    [Abstract] On-chip power consumption is one of the fundamental challenges of current technology scaling. Cache memories consume a sizable part of this power, particularly due to leakage energy. STT-RAM is one of several new memory technologies that have been proposed in order to improve power while preserving performance. It features high density and low leakage, but at the expense of write energy and performance. This article explores the use of STT-RAM--based scratchpad memories that trade nonvolatility in exchange for faster and less energetically expensive accesses, making them feasible for on-chip implementation in embedded systems. A novel multiretention scratchpad partitioning is proposed, featuring multiple storage spaces with different retention, energy, and performance characteristics. A customized compiler-based allocation algorithm suitable for use with such a scratchpad organization is described. Our experiments indicate that a multiretention STT-RAM scratchpad can provide energy savings of 53% with respect to an iso-area, hardware-managed SRAM cache

    Error Characterization and Correction Techniques for Reliable STT-RAM Designs

    Get PDF
    The concerns on the continuous scaling of mainstream memory technologies have motivated tremendous investment to emerging memories. Being a promising candidate, spin-transfer torque random access memory (STT-RAM) offers nanosecond access time comparable to SRAM, high integration density close to DRAM, non-volatility as Flash memory, and good scalability. It is well positioned as the replacement of SRAM and DRAM for on-chip cache and main memory applications. However, reliability issue continues being one of the major challenges in STT-RAM memory designs due to the process variations and unique thermal fluctuations, i.e., the stochastic resistance switching property of magnetic devices. In this dissertation, I decoupled the reliability issues as following three-folds: First, the characterization of STT-RAM operation errors often require expensive Monte-Carlo runs with hybrid magnetic-CMOS simulation steps, making it impracticable for architects and system designs; Second, the state of the art does not have sufficiently understanding on the unique reliability issue of STT-RAM, and conventional error correction codes (ECCs) cannot efficiently handle such errors; Third, while the information density of STT-RAM can be boosted by multi-level cell (MLC) design, the more prominent reliability concerns and the complicated access mechanism greatly limit its applications in memory subsystems. Thus, I present a novel through solution set to both characterize and tackle the above reliability challenges in STT-RAM designs. In the first part of the dissertation, I introduce a new characterization method that can accurately and efficiently capture the multi-variable design metrics of STT-RAM cells; Second, a novel ECC scheme, namely, content-dependent ECC (CD-ECC), is developed to combat the characterized asymmetric errors of STT-RAM at 0->1 and 1->0 bit flipping's; Third, I present a circuit-architecture design, namely state-restricted multi-level cell (SR-MLC) STT-RAM design, which simultaneously achieves high information density, good storage reliability and fast write speed, making MLC STT-RAM accessible for system designers under current technology node. Finally, I conclude that efficient robust (or ECC) designs for STT-RAM require a deep holistic understanding on three different levels-device, circuit and architecture. Innovative ECC schemes and their architectural applications, still deserve serious research and investigation in the near future

    Modeling Power Consumption of NAND Flash Memories Using FlashPower

    Full text link

    A design methodology for robust, energy-efficient, application-aware memory systems

    Get PDF
    Memory design is a crucial component of VLSI system design from area, power and performance perspectives. To meet the increasingly challenging system specifications, architecture, circuit and device level innovations are required for existing memory technologies. Emerging memory solutions are widely explored to cater to strict budgets. This thesis presents design methodologies for custom memory design with the objective of power-performance benefits across specific applications. Taking example of STTRAM (spin transfer torque random access memory) as an emerging memory candidate, the design space is explored to find optimal energy design solution. A thorough thermal reliability study is performed to estimate detection reliability challenges and circuit solutions are proposed to ensure reliable operation. Adoption of the application-specific optimal energy solution is shown to yield considerable energy benefits in a read-heavy application called MBC (memory based computing). Circuit level customizations are studied for the volatile SRAM (static random access memory) memory, which will provide improved energy-delay product (EDP) for the same MBC application. Memory design has to be aware of upcoming challenges from not only the application nature but also from the packaging front. Taking 3D die-folding as an example, SRAM performance shift under die-folding is illustrated. Overall the thesis demonstrates how knowledge of the system and packaging can help in achieving power efficient and high performance memory design.Ph.D
    corecore