19 research outputs found

    Rampant exchange of the structure and function of extramembrane domains between membrane and water soluble proteins.

    Get PDF
    Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp

    Solution structure of the carboxy-terminal Tudor domain from human Coilin

    Get PDF
    AbstractThe Cajal body is a dynamic eukaryotic nuclear organelle that is known primarily as an organizational center for the assembly of snRNAs involved in transcript splicing. One of the most critical components of the Cajal body is the scaffolding protein, Coilin. Here, we demonstrate by NMR methods that the carboxy-terminal region contains a Tudor domain. The Tudor domain is atypical due to the presence of several unstructured loops, one greater than thirty amino acids in length. Tudor domains have been noted previously to bind DNA, RNA and modified amino acids. The absence of these sequence and structural signatures in the Coilin Tudor domain supporting these established functions suggests an alternative role

    TIM-Finder: A new method for identifying TIM-barrel proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The triosephosphate isomerase (TIM)-barrel fold occurs frequently in the proteomes of different organisms, and the known TIM-barrel proteins have been found to play diverse functional roles. To accelerate the exploration of the sequence-structure protein landscape in the TIM-barrel fold, a computational tool that allows sensitive detection of TIM-barrel proteins is required.</p> <p>Results</p> <p>To develop a new TIM-barrel protein identification method in this work, we consider three descriptors: a sequence-alignment-based descriptor using PSI-BLAST e-values and bit scores, a descriptor based on secondary structure element alignment (SSEA), and a descriptor based on the occurrence of PROSITE functional motifs. With the assistance of Support Vector Machine (SVM), the three descriptors were combined to obtain a new method with improved performance, which we call TIM-Finder. When tested on the whole proteome of <it>Bacillus subtilis</it>, TIM-Finder is able to detect 194 TIM-barrel proteins at a 99% confidence level, outperforming the PSI-BLAST search as well as one existing fold recognition method.</p> <p>Conclusions</p> <p>TIM-Finder can serve as a competitive tool for proteome-wide TIM-barrel protein identification. The TIM-Finder web server is freely accessible at <url>http://202.112.170.199/TIM-Finder/</url>.</p

    Outer membrane proteins can be simply identified using secondary structure element alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Outer membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery.</p> <p>Results</p> <p>Based on the observation that almost all OMPs consist of antiparallel β-strands in a barrel shape and that their secondary structure arrangements differ from those of other types of proteins, we propose a simple method called SSEA-OMP to identify OMPs using secondary structure element alignment. Through intensive benchmark experiments, the proposed SSEA-OMP method is better than some well-established OMP detection methods.</p> <p>Conclusions</p> <p>The major advantage of SSEA-OMP is its good prediction performance considering its simplicity. The web server implements the method is freely accessible at <url>http://protein.cau.edu.cn/SSEA-OMP/index.html</url>.</p

    Fold classification based on secondary structure – how much is gained by including loop topology?

    Get PDF
    BACKGROUND: It has been proposed that secondary structure information can be used to classify (to some extend) protein folds. Since this method utilizes very limited information about the protein structure, it is not surprising that it has a higher error rate than the approaches that use full 3D fold description. On the other hand, the comparing of 3D protein structures is computing intensive. This raises the question to what extend the error rate can be decreased with each new source of information, especially if the new information can still be used with simple alignment algorithms. We consider the question whether the information about closed loops can improve the accuracy of this approach. While the answer appears to be obvious, we had to overcome two challenges. First, how to code and to compare topological information in such a way that local alignment of strings will properly identify similar structures. Second, how to properly measure the effect of new information in a large data sample. We investigate alternative ways of computing and presenting this information. RESULTS: We used the set of beta proteins with at most 30% pairwise identity to test the approach; local alignment scores were used to build a tree of clusters which was evaluated using a new log-odd cluster scoring function. In particular, we derive a closed formula for the probability of obtaining a given score by chance.Parameters of local alignment function were optimized using a genetic algorithm. Of 81 folds that had more than one representative in our data set, log-odds scores registered significantly better clustering in 27 cases and significantly worse in 6 cases, and small differences in the remaining cases. Various notions of the significant change or average change were considered and tried, and the results were all pointing in the same direction. CONCLUSION: We found that, on average, properly presented information about the loop topology improves noticeably the accuracy of the method but the benefits vary between fold families as measured by log-odds cluster score

    Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing

    Get PDF
    Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds.In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy.The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy

    Protein subcellular localization prediction based on compartment-specific features and structure conservation

    Get PDF
    BACKGROUND: Protein subcellular localization is crucial for genome annotation, protein function prediction, and drug discovery. Determination of subcellular localization using experimental approaches is time-consuming; thus, computational approaches become highly desirable. Extensive studies of localization prediction have led to the development of several methods including composition-based and homology-based methods. However, their performance might be significantly degraded if homologous sequences are not detected. Moreover, methods that integrate various features could suffer from the problem of low coverage in high-throughput proteomic analyses due to the lack of information to characterize unknown proteins. RESULTS: We propose a hybrid prediction method for Gram-negative bacteria that combines a one-versus-one support vector machines (SVM) model and a structural homology approach. The SVM model comprises a number of binary classifiers, in which biological features derived from Gram-negative bacteria translocation pathways are incorporated. In the structural homology approach, we employ secondary structure alignment for structural similarity comparison and assign the known localization of the top-ranked protein as the predicted localization of a query protein. The hybrid method achieves overall accuracy of 93.7% and 93.2% using ten-fold cross-validation on the benchmark data sets. In the assessment of the evaluation data sets, our method also attains accurate prediction accuracy of 84.0%, especially when testing on sequences with a low level of homology to the training data. A three-way data split procedure is also incorporated to prevent overestimation of the predictive performance. In addition, we show that the prediction accuracy should be approximately 85% for non-redundant data sets of sequence identity less than 30%. CONCLUSION: Our results demonstrate that biological features derived from Gram-negative bacteria translocation pathways yield a significant improvement. The biological features are interpretable and can be applied in advanced analyses and experimental designs. Moreover, the overall accuracy of combining the structural homology approach is further improved, which suggests that structural conservation could be a useful indicator for inferring localization in addition to sequence homology. The proposed method can be used in large-scale analyses of proteomes

    DescFold: A web server for protein fold recognition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Machine learning-based methods have been proven to be powerful in developing new fold recognition tools. In our previous work [Zhang, Kochhar and Grigorov (2005) <it>Protein Science</it>, <b>14</b>: 431-444], a machine learning-based method called DescFold was established by using Support Vector Machines (SVMs) to combine the following four descriptors: a profile-sequence-alignment-based descriptor using Psi-blast <it>e</it>-values and bit scores, a sequence-profile-alignment-based descriptor using Rps-blast <it>e</it>-values and bit scores, a descriptor based on secondary structure element alignment (SSEA), and a descriptor based on the occurrence of PROSITE functional motifs. In this work, we focus on the improvement of DescFold by incorporating more powerful descriptors and setting up a user-friendly web server.</p> <p>Results</p> <p>In seeking more powerful descriptors, the profile-profile alignment score generated from the COMPASS algorithm was first considered as a new descriptor (i.e., PPA). When considering a profile-profile alignment between two proteins in the context of fold recognition, one protein is regarded as a template (i.e., its 3D structure is known). Instead of a sequence profile derived from a Psi-blast search, a structure-seeded profile for the template protein was generated by searching its structural neighbors with the assistance of the TM-align structural alignment algorithm. Moreover, the COMPASS algorithm was used again to derive a profile-structural-profile-alignment-based descriptor (i.e., PSPA). We trained and tested the new DescFold in a total of 1,835 highly diverse proteins extracted from the SCOP 1.73 version. When the PPA and PSPA descriptors were introduced, the new DescFold boosts the performance of fold recognition substantially. Using the SCOP_1.73_40% dataset as the fold library, the DescFold web server based on the trained SVM models was further constructed. To provide a large-scale test for the new DescFold, a stringent test set of 1,866 proteins were selected from the SCOP 1.75 version. At a less than 5% false positive rate control, the new DescFold is able to correctly recognize structural homologs at the fold level for nearly 46% test proteins. Additionally, we also benchmarked the DescFold method against several well-established fold recognition algorithms through the LiveBench targets and Lindahl dataset.</p> <p>Conclusions</p> <p>The new DescFold method was intensively benchmarked to have very competitive performance compared with some well-established fold recognition methods, suggesting that it can serve as a useful tool to assist in template-based protein structure prediction. The DescFold server is freely accessible at <url>http://202.112.170.199/DescFold/index.html</url>.</p

    Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems

    Get PDF
    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases
    corecore