1,226 research outputs found

    A Novel Placement Algorithm for the Controllers Of the Virtual Networks (COVN) in SD-WAN with Multiple VNs

    Get PDF
    The escalation of communication demands and the emergence of new telecommunication concepts such as 5G cellular system and smart cities requires the consolidation of a flexible and manageable backbone network. These requirements motivated the researcher to come up with a new placement algorithm for the Controller of Virtual Network (COVN). This is because SDN and network virtualisation techniques (NFV and NV), are integrated to produce multiple virtual networks running on a single SD-WAN infrastructure, which serves the new backbone. One of the significant challenges of SD-WAN is determining the number and the locations of its controllers to optimise the network latency and reliability. This problem is fairly investigated and solved by several controller placement algorithms where the focus is only on physical controllers. The advent of the sliced SD-WAN produces a new challenge, which necessitates the SDWAN controllers (physical controller/hosted server) to run multiple instances of controllers (virtual controllers). Every virtual network is managed by its virtual controllers. This calls for an algorithm to determine the number and the positions of physical and virtual controllers of the multiple virtual SD-WANs. According to the literature review and to the best of the author knowledge, this problem is neither examined nor yet solved. To address this issue, the researcher designed a novel COVN placement algorithm to compute the controller placement of the physical controllers, then calculate the controller placement of every virtual SD-WAN independently, taking into consideration the controller placement of other virtual SD-WANs. COVN placement does not partition the SD-WAN when placing the physical controllers, unlike all previous placement algorithms. Instead, it identifies the nodes of the optimal reliability and latency to all switches of the network. Then, it partitions every VN separately to create its independent controller placement. COVN placement optimises the reliability and the latency according to the desired weights. It also maintains the load balancing and the optimal resources utilisation. Moreover, it supports the recovering of the controller failure. This novel algorithm is intensively evaluated using the produced COVN simulator and the developed Mininet emulator. The results indicate that COVN placement achieves the required optimisations mentioned above. Also, the implementations disclose that COVN placement can compute the controller placement for a large network ( 754 switches) in very small computation time (49.53 s). In addition, COVN placement is compared to POCO algorithm. The outcome reveals that COVN placement provides better reliability in about 30.76% and a bit higher latency in about 1.38%. Further, it surpasses POCO by constructing the balanced clusters according to the switch loads and offering the more efficient placement to recover controller-failure

    The Role of Inter-Controller Traffic for Placement of Distributed SDN Controllers

    Get PDF
    We consider a distributed Software Defined Networking (SDN) architecture adopting a cluster of multiple controllers to improve network performance and reliability. Besides the Openflow control traffic exchanged between controllers and switches, we focus on the control traffic exchanged among the controllers in the cluster, needed to run coordination and consensus algorithms to keep the controllers synchronized. We estimate the effect of the inter-controller communications on the reaction time perceived by the switches depending on the data-ownership model adopted in the cluster. The model is accurately validated in an operational Software Defined WAN (SDWAN). We advocate a careful placement of the controllers, that should take into account both the above kinds of control traffic. We evaluate, for some real ISP network topologies, the delay tradeoffs for the controllers placement problem and we propose a novel evolutionary algorithm to find the corresponding Pareto frontier. Our work provides novel quantitative tools to optimize the planning and the design of the network supporting the control plane of SDN networks, especially when the network is very large and in-band control plane is adopted. We also show that for operational distributed controllers (e.g. OpenDaylight and ONOS), the location of the controller which acts as a leader in the consensus algorithm has a strong impact on the reactivity perceived by switches.Comment: 14 page

    Optimization Placement for SDN Controller: Bell Canada as a Case Study

    Get PDF
    The tremendous proliferation of data traffic has been a key motivator for the upgrading of traditional IP networks One new conceptual model that has been developed for redesigning and managing communication networks is software-defined networking (SDN). The main premise behind SDN is the decoupling of the control and data planes, which enables the centralization of the control plane and the programmability of the data plane. Despite these advantages, the use of SDN remains challenging with respect to a number of aspects, such as finding optimal locations for SDN controllers in a wide area network (WAN) and determining the effective number of controllers. The work presented in this thesis addresses these challenges through two proposed strategies for dealing with the SDN controller placement problem. The Bell Canada WAN was considered as a case study: the network was examined, and the modeled procedures for determining the best location for SDN controllers were applied with the goal of enhancing the quality of service (QoS) and minimizing global latency. The simulations conducted as a means of validating and comparing the performance of the two models produced consistent results
    • …
    corecore