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Abstract 

 

The tremendous proliferation of data traffic has been a key motivator for the upgrading of 

traditional IP networks One new conceptual model that has been developed for redesigning and 

managing communication networks is software-defined networking (SDN). The main premise 

behind SDN is the decoupling of the control and data planes, which enables the centralization of 

the control plane and the programmability of the data plane. Despite these advantages, the use of 

SDN remains challenging with respect to a number of aspects, such as finding optimal locations 

for SDN controllers in a wide area network (WAN) and determining the effective number of 

controllers. The work presented in this thesis addresses these challenges through two proposed 

strategies for dealing with the SDN controller placement problem. The Bell Canada WAN was 

considered as a case study: the network was examined, and the modeled procedures for 

determining the best location for SDN controllers were applied with the goal of enhancing the 

quality of service (QoS) and minimizing global latency. The simulations conducted as a means of 

validating and comparing the performance of the two models produced consistent results.  
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Chapter 1  
1 Introduction    

	
	
The software-defined network (SDN) has designed as a powerful platform to incorporate into the 

design of future networks.  The key technical and operational benefits of SDN technology are 

plane separation, centralized control, network automation, and virtualization.   The Internet of 

Things (IoT) is driving the proliferation of smart devices which maintain a nearly constant 

connection to the Internet.  This proliferation of connected devices is also driving the demand for 

network capacity and because of this organizations are forced to install new classical IP network 

devices.  Because the data and control planes coexist together, traditional networks today are 

complex and challenging to manage.  In the case of any communication link failures, a traditional 

network is difficult to configure according to predefined policies [1].   Another impact that a 

traditionally architected IP network faces is that those networks are not well suited for the 

proliferation of cloud computing services.  To conclude, networks that utilize SDN technology are 

leading the architectural transition from static to dynamic based network architectures. 

	
	

1.1.  Motivation 

	
The global IP data traffic will nearly triple from 2016 to 2021, the recent forecast project done by 

Cisco shows the overall internet traffic is predicted to increase to 278 Exabytes (EB) per month, 
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up from 96 EB per month [1]. The Internet traffic forecast in Table 1.1 and depicted in Fig 1.1. 

These projections show the tremendous growth in IP traffic in coming 5 years. 

 
 

Table 1.1:  Cisco Projection for Internet Traffic [1] 

Year Universal Internet Traffic 
1992 100 GB per day 
1997 100 GB per hour 
2002 100 GB per second 
2007 2000 GB per second 
2016 26,600 GB per second 
2021 105,800 GB per second 

 
 
The figure below shows the global internet projection based on devices and application categories. 
 

	
Figure 1.1: The global internet projection based on devices and application categories [1] 
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The primary motivation for the work presented in this thesis was a desire to improve the quality 

of internet networks. Due to the forecast high demand for increased IP traffic rates in the future, 

SDNs are receiving considerable attention with respect to transforming traditional IP networks so 

that they become more efficient, manageable, and automated. The research presented here was 

directed at finding an effective solution that would facilitate the transition to SDN by an internet 

service provider (ISP). 

1.2. Scope of the Research 

	
The main contributions of this thesis are: 

 

1. This research presents a new case study of SDN network topology, our experiment was 

based on a mathematical and complex network analysis solutions to find the optimum 

location for SDN controller. This model analyzes the SDN network in terms of propagation 

delay. 

2. An implementation of the proposed WAN network is conducted for the case of Bell Canada 

WAN network.  The outcomes from this study are a cornerstone for any ISP’s wants to 

move toward SDN network. 

3. A web-based interface for SDN controllers is implemented by using Floodlight SDN 

controller to manage all Openflow controller.   
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1.3.  Thesis Organization 

 
This thesis is organized into four more chapters.  Chapter 2 introduces the history of computer network and a 

summary of related work about SDN controller placement problem is presented at the of Chapter 2.       

Chapter 3 is dedicated for the proposed algorithms to tackle the SDN controller placement problem and the 

second part of this chapter presents the experimental work.  Chapter 4 describes the case study work and 

results obtained to assess Bell Canada case study to find an optimal SDN controllers locations and following 

the methodology described in Chapter 3.  And finally, Chapter 5 summarize the thesis results, conclusion, and 

future work are also provided. 
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Chapter 2 
 
	

2 SDN background and Literature Review 

	

2.1. Introduction 

	
Advances in the computer industry over the last several decades have resulted in much greater 

changes in computing paradigms than in computer network architecture and design, which have 

remained relatively unaltered since the 1990s.  The vast majority of multivendor legacy systems 

that are still operational around the world lack reliable remote identification, fault resolution, and 

troubleshooting capabilities. The absence of these features, which is considered a major issue 

facing international providers  [2], makes computer networks difficult to manage, automate, 

customize, and optimize.  The development of software-defined networking (SDN) in the first 

decade of this century by a group of researchers at Stanford University was predicated on the 

tackling of problems associated with legacy network designs. The main concept underlying SDN 

technology is the decoupling of the control plane from the data plane, which provides the benefit 

of being able to centralize a programmable control plane. The advantage of using SDN technology 

is the associated reduction in operational expenditures (OPEX).  In [3] Kirsh Prabu, CTO and 

president of AT&T Labs, stated that, upon completion of the company’s move to an SDN 

architected network in 2020, he expects to save 40 % to 50 % in OPEX.  Prabu attributed these 

cost savings to the replacement of manual operations with automated scripts and procedures.          
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An SDN thus not only makes it easier and faster to create a new service but is also a key component 

in reducing service providers’ OPEX [3].  SDN technology also offers dynamic management, 

initialization, and control of network behavior. 

 

2.2. How Traditional Networks Work 

 

What follows is a brief explanation of how traditional networks operate today and the history of 

how SDN was developed to address the operational and technical deficiencies in those traditional 

networks.  A traditional network mainly is a mix of routers and switches that facilitate the transfer 

of packets from one part of the network to another.  The routers use routing protocols to move 

these packets across the network efficiently.  Packets contain sets of data transferred over a 

physical link (the network cables).  At the transceiver side, data is divided into chunks based on 

which data link technique has been used to transfer the packets.  On the destination side, the 

receiver reassembles the data, and the control plane in each router and switch determines the final 

destination of each packet based on the routing protocols deployed on the network.  As shown in 

Fig (4.1), The Open Systems Interconnection model (OSI model) is a standard for defining the 

communication functions in telecommunications or computing systems.   
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Figure 2.1: OSI Model [4] 

	

IP network devices today have to decide what to do with packets received from another device in 

the network whether those devices are servers, a computer, or any other type of IP device 

connected to the network.  In the extensive IP-based networks of today, that have thousands of 

devices connected to them, there is a need to move from local decisions made on the device itself, 

which may lead to some delays, to process the incoming packets utilizing a centralized 

programmable network.  The method described above is the how the Internet works today where 

every IP device on the network is self-sufficient. 

 

Traditional IP network devices like routers and switches have three logic planes as shown in the 

figure below.   
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Figure 2.2: Traditional IP network device [4] 

 

 

The management plane is the plane that stores the software services that are responsible for 

managing and configuring control plane functionality. 

 

The control plane maintains a set of routing protocols such as Open Shortest Path First (OSPF) 

or the Border Gateway Protocol (BGP).  These routing protocols are responsible for forwarding 

routing data to an appropriate destination router.  Forwarding tables located on IP connected 

devices serve as the basis for these routing calculations.  

 

The purpose of the data plane is to forward a packet from one network interface operational on 

a single device to one of the other operational interfaces on the same device.   
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In traditional networks, the introduction of network policies takes place in the management plane, 

the control plane executes these policies, and the data plane transfers data based on those policies 

[5]. Doherty describes the relationship between the control and forwarding planes.  He states, "You 

can think of the control plane as the brain and the forwarding plane as the muscle." [6]. 

 

	

Figure 2.3: SDN system overview [4] 
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2.3. Software Defined Networking (SDN) 

SDN is a new way to implement an Internet network that is manageable, dynamic, and cost-

effective. The power of this new technology is driving big technology companies like Facebook, 

Microsoft, and Google to fund the Open Networking Foundation (ONF).  The ONF is an 

organization that was established to accelerate and solve the issues that are faced by traditionally 

architected IP networks.  ONF has defined SDN as a networking technology which allows for 

centralized, programmable control planes that permit network operations organizations to directly 

monitor and manage their own virtualized networks [7].  The basic premise of an SDN architecture 

is the separation of the two most important elements in IP network devices, the control plane and 

the data plane. 

  

2.3.1. SDN components 

 

SDN has two main operational components: the controllers and forwarding elements. 

 

The SDN controller 

As we know from SDN architecture, the SDN controller has visibility of all the network elements 

in the network; more precisely, it is functioning as a brain to the SDN system. In traditional IP 

networks, with a link failure, the network devices on the network with the link failure need to 

update their routing tables and swap the new routing tables with all IP devices on the network.  

Those devices then recalculate the best routes and share new routing information, which introduces 

network delay, or latency.  Using SDN technology, the SDN controller can connect, interpret 



	
	
	

	 11 

routes and share alternative routes for all links, in the event of any failures.  This approach for 

finding a new route, or path, is faster and more resilient than the standard Interior Routing 

Protocols like an Open Shortest Path First (OSPF) or Routing Information Protocol (RIP) found 

in traditional IP Networks.  As a result, the SDN controller maintains an alternative shortest path 

already in the flow table, so there is no need to recalculate a new path in case of link failures; 

hence, there is no time required to update the routing tables or compute any routing algorithms.  

The SDN controller can manage and program the forwarding devices via southbound interfaces as 

shown in the figure below. 

	

Figure 2.4: SDN controller functions 

In the SDN market today, there are several commercial and open source controllers. Large 

networking companies such as Cisco, Juniper, VMWare, and HP sell deployable SDN controllers, 

some of which are architecturally proprietary and closed. Open source SDN controllers exist as 

well and are available such as OpenDaylight, Floodlight, and OpenContrail.  
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The Forwarding Elements 

The forwarding elements are responsible for transporting user data among forwarding devices.  

The packets exchanged between forwarding elements do not have any IP source or destination 

addresses related to the forwarding elements (switches, routers).  The forwarding packets only 

contain the addresses for endpoints [8].  Forwarding elements only connect to a controller via the 

southbound interface and only has data plane. 

 

2.3.2. SDN Network Architecture 

The general SDN architecture includes three different planes: The Control plane, the data plane, 

and the application plane.  The figures below illustrate a typical SDN architecture. 

	

Figure 2.5: SDN Architecture 
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Control Plane 

The control plane is responsible for creating all the network routes based on OpenFlow protocols.  

OpenFlow protocols are used to exchange information between the SDN controller and forwarding 

elements. The control plane also has responsibility for transferring flow policies to the forwarding 

table, and the data plane maintains those forwarding tables.  OpenFlow protocols are responsible 

for flow measurement and analysis [9]. The tasks of the control plane are: 

- Connection setup to forwarding devices. 

- Proactive flow programming and the installation of forwarding rules to the data plane layer. 

- Building a network view.  

- Maintenance of route selection and data plane device availability on the network. 

 

Data Plane 

The forwarding plane includes physical and virtual devices.  The main function of the forwarding 

plane is to forward the packets between these elements based on the route contained in flow tables 

for each device.  The forwarding plane became simpler packet forwarding elements, there is no 

complex algorithm to be executed in this plane, the data plane is just a simple plane for forwarding 

data  [10].  

 

Application Plane 

The SDN controller interacts with the application plane via an Application Program Interface 

(API) through the SDN controller's northbound interface (NBI). SDN applications are programs 

that directly, programmatically, and explicitly communicate the network demand and requests to 
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the SDN controller via NBIs [7].  This layer is responsible for handling network services like 

traffic engineering, quality of service (QoS), and security services. 

 

2.4. OpenFlow Protocols 

 

OpenFlow is a protocol that enables the communication between the data and control planes; the 

process also collects the implementation details of the network elements. OpenFlow uses a defined 

TCP port to establish a communication channel to the SDN controller, and then the OpenFlow 

protocol authorizes an SDN controller to proactively share the network policy to flow tables 

contained in forwarding devices.  

	

Figure 2.6: OpenFlow Protocol Communication 
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There are three types of OpenFlow protocol messages: 

 

Table 2.1: OpenFlow protocol Messages 

Message Types Description Examples 

Controller-to-Switch Initiated by a controller. OpenFlow switches may 
not need to respond. 

Read State 
Modify State 
Packet Out 

Configuration 
Features 

Asynchronous Initiated by OpenFlow switch without solicitation 
from the controller 

Error 
Packet In 

Flow Removed 
Port Status 

Symmetric Initiated in either direction without solicitation 
Hello 
Echo 

Experimenter 
 

Each Forwarding device consists of a group of flow tables that are responsible for forwarding a 

packet to the right destination. The figure below illustrates a flow table entry in SDN technology: 

Table 2.2: OpenFlow entry in SDN [4] 

Priority Match Action 

2 tcp_dst:22 forward [1] 

1 eth_dst: 0xababababab forward [] 

1 eth_dst: 0xcdcdcdcdcdc forward [2,3] 

0 eth_dst: 0xefefefefefefe set(eth_src=0) ; forward [1] 
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The flow table has a set of precedence rules to execute first.  The matched field consists of an 

ingress port and a packet header. After successfully matching the packet in the flow table, the 

process then looks for an appropriate action to execute based on the action type, such as forward 

to a destination address or enforce a QoS rule.  In cases where the packet does not match in the 

flow table, the forwarding table process returns that result to a controller.  OpenFlow protocols 

have different versions that range from version 1.0 to version 1.5.  These various versions introduce 

new or enhanced capabilities for the platforms that use OpenFlow. 

 

2.5. Related Work 

This section contains a brief discussion of the relevant studies related to the SDN controller 

placement problem. The primary emphasis of the work presented in this research was on the 

optimization of average latency in large-scale SDN networks. 

SDN network deployments usually require several SDN controllers, whose placement in the 

infrastructure affects SDN operational characteristics. When the architecture of an SDN-based 

WAN is designed, the optimal placement of the SDN controllers is derived based on a non-

deterministic polynomial (NP)-hard problem. Given this constraint, the selection of an effective 

controller placement algorithm is critical [11]. Most approaches for addressing this issue involve 

heuristic solutions for finding the optimal solution. 

Since the first introduction of the SDN controller issue by Heller et al. in 2012 [12], many 

researchers have proposed different algorithms for dealing with one of the most difficult problems 

facing an engineer with respect to deploying an SDN network: the placement of controllers in the 
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network. A formidable challenge associated with solving SDN controller placement problems is 

that all of the algorithms proposed involve a tradeoff among scalability, resilience, and model 

expansion. With respect to investigations of the SDN controller problem, the technical paper 

published by Heller et al.  [12] is one of the most cited. The authors proposed a heuristic approach 

for finding the optimum controller positions in large-scale SDN deployments. The main metric 

formulated in this study was average-case latency, which is deemed essential for determining 

latency values in large-scale SDN implementations. The approach is dependent primarily on 

propagation delay, with the location of a controller being based on the shortest path between 

switches and controllers that have been assigned in the network topology. This study offered the 

most accurate solution for addressing the problem. An interesting conclusion was that increasing 

the number of controllers does not necessarily decrease the average latency between switches and 

assigned controllers. 

Aoki et al.  [13] examined the fundamental issues related to SDN controller placement and 

presented a new way of addressing controller problems by first dividing the SDN network into 

different domains and then locating each controller in an appropriate domain. The authors 

proposed a greedy algorithm for linking each domain to a controller and then demonstrated the 

most commonly used metric for optimizing a controller in multiple domains based on a 

determination of the shortest path between a switch and a controller in each domain. 

In [14], Bari et al. proposed a new framework for deploying multiple controllers, which they called 

the Dynamic Controller Provisioning Problem (DCPP). DCPP entails dynamically adapting the 

number of controllers and links that are active while maintaining consideration of the state of the 

network. The researchers formulated DCPP as an integer linear program (ILP). Because a greedy 
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knapsack algorithm can generate overhead for the existing configuration between switches and 

controllers, they defined two heuristic algorithms (DCP-GK and DCP-SA) to deal with the 

framework they developed in order to obtain the best possible performance and accuracy. 

Hu et al. [11] studied the SDN controller placement problem by focusing on maximizing the 

reliability of the SDN control network. They introduced an integer programming formulation for 

Reliable Controller Placement (RCP). Their parameters specified a determination of both the 

shortest path between the controller and the forwarding elements, and the lowest probability of 

control path failure. 

In conclusion, all of the controller placement approaches proposed in the literature reviewed were 

based predominantly on the use of just one or two input metrics for finding the optimal controller 

placement. Most of these solutions relied on mathematically based models. It is clear that a greedy 

approach that improves reliability also minimizes the probability of failure while maintaining the 

shortest distance between installed controllers and switches. 

In the next chapter, we discuss the optimal placement for an SDN controller on a new network 

utilizing the research conducted previously on the SDN Controller placement problem.  To better 

illustrate these complex concepts a network case study from Bell Canada is presented. 
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Chapter 3 
 

3 System Model 

	

3.1. Introduction 

This chapter presents the methodologies that were used for finding the optimal placement of an 

SDN controller and for ascertaining the number of controllers needed in the Bell Canada WAN in 

order to achieve the best quality of service (QoS). The determination of the best controller locations 

for a large-scale SDN is still a significant target in SDN research. Our proposed solution for 

minimizing global latency and ensuring the best QoS is to use a clustering approach based on a k-

median algorithm, a method widely used for addressing a facility location problem through 

consideration of the minimum distances between a variety of network locations [14]. 

 

3.2. Proposed algorithms 

The research presented in this thesis involved the development of two algorithms for finding all 

pairs of the shortest paths in the Bell Canada WAN and for determining the optimal controller 

placement in their network. A brief introduction to these algorithms follows. 
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3.2.1. k-Median Algorithm  

	
As mentioned previously, our approach for addressing the SDN controller placement problem 

was to employ a k-median algorithm, which utilizes a clustering approach for determining the 

optimum location of SDN controllers so that the global average delay between a controller and 

a switch is minimized [15] [16]. The average latency can be found using the following equation: 

 

𝐿𝑎𝑣𝑔	(𝑆() = 	 +
,
	 min 𝑑 𝑣, 𝑆( 		2	∈4 	[12]																																															(3.1) 

 where 

- 𝐿𝑎𝑣𝑔	(𝑆():  Average latency between switch and controller 

- N: Number of SDN forwarding elements  

- 𝑑 𝑣, 𝑆( :	 Shortest path from node 𝑣 to node 𝑆 

 

 

The first step in computing the average latency, 𝐺	 𝑉, 𝐸 , is to derive a mathematical formula to 

represent the Bell Canada network graph: 𝑉 signifies the number nodes, and 𝐸 denotes the number 

of edges (the fiber links). The shortest paths connecting each pair of all of the forwarding elements 

must also be determined. Johnson’s algorithm provides a means of finding the shortest paths 

between network pairs and is a well-known method of addressing network optimization [17] in an 

SDN environment [17] . A k-median algorithm is a cluster analysis process that finds the center of 

a cluster in order to minimize the distances between all nodes  [18]. in a network. Table I shows 

the flowchart for the k-median algorithm used in this study.  
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3.2.2. Johnson’s Algorithm  

 

Donald Johnson, from Pennsylvania State University, introduced his algorithm in 1977. Johnson's 

algorithm, as it is known, is used to find the shortest path to all nodes in the network [17].  We 

used this algorithm in our work to find all the shortest paths in Bell Canada's networks.  The two 

most important steps in Johnson's algorithms are: 

1- Adding an artificial source vertex 𝑆 and a new edge 𝑠, 𝑣  with length of zero to the input 

graph 𝐺 = 𝑉, 𝐸 , we will get a new graph called 𝐺′ 

2- Run Bellman-Ford algorithm on graph 𝐺′ with source vertex 𝑆 to find all shortest paths in the 

network. 
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3.3. Experimental Work  

3.3.1.  Introduction  

 

This section explains our approach to finding an optimization solution for a controller problem. 

Our solution is based on the results of two experiments conducted in order to verify the optimal 

SDN controller placement. The goal was to establish how many controllers were needed for the 

achievement of the minimum delay and to determine the optimal locations for these controllers in 

the Bell Canada network. A mathematical formulation was used in the first experiment, which was 

conducted using MATLAB 2015b and MATLAB coding for the minimization of the global 

average latency in the Bell Canada WAN. We focused only on the real Bell Canada network 

topology. The purpose of the second experiment was to verify the mathematical formula, for which 

we used complex network analysis to evaluate the optimal SDN controller placement. The Bell 

Canada network was implemented using an OpenFlow network emulator called Mininet, along 

with the Python 2.7 programming language. 
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3.3.2.  Simulation Tools and Technologies 

	

	
Figure 3.1: Simulation tools 

 

5.3.2.1 Mathematical model description   

	
To maintain realism, our proposed work was applied to a real-world WAN network operated 

by Bell Canada.  The development of the mathematical model was based on the assumption 

that the following information is known at the beginning of the problem formulation: 

 

-  The bandwidth for all fiber links is constant. 

- Documentation exists for all WAN network switch locations. 

 

As mentioned above, we use the Bell Canada network topology to integrate our experiment to 

optimize the global average latency. Shown in the diagram below, we have 48 nodes across Canada 

and the US. In addition, we have 65 fiber links that connect each node together. The key factor in 

our mathematical model is the distance while the bandwidth is constant across all sites. 
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Figure 3.2: Bell Canada WAN networks 

In our model, the network topology is defined as an undirected graph G = N, M: N refers to network 

switches, and M represents edges (fiber links). Candidate SDN controllers are placed at switch 

locations. These controller locations guarantee a minimum delay for all communications between 

the switches and the SDN controllers. For this study, the minimum average delay and the worst 

average delay were identified for use in the k-median clustering approach. The determination of 

these metrics ensures the best QoS based on the number of SDN controllers that manage all 

network nodes.  The flowchart shown in Figure 3.3 summarize the steps in the models. The 

Geography Markup Language (GML) was used for generating the network topology. The 

identification of the best controller locations first required a determination of weights for all edges 

(M). These values were calculated by implementing the adjacency matrix (A) between all 

connected nodes. Once the weight matrix for all edges was identified, Johnson's algorithm was 

applied in order to find the shortest path for all nodes N (Sdist). At this point, the average 
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propagation delay (𝐿𝑎𝑣𝑔) was computed. The objective is to establish placement 𝑆( from the group 

of candidate controller placements 𝑆, with a minimum value for 𝐿𝑎𝑣𝑔	 𝑆( . 

𝐿𝑎𝑣𝑔	(𝑆() = 	
1
𝑁
	 min

(BCDE)
𝑑 𝑣, 𝑆( 																																																	(3.2)

2	∈4

 

where 

- 𝐿𝑎𝑣𝑔	(𝑆():  Average latency between switch and controller 

- N: Number of SDN forwarding elements  

- 𝑑 𝑣, 𝑆( :	 Shortest path from node 𝑣 to node 𝑆 

The second placement metric in the model is the establishment of the worst-case delay, the 

calculation of which reveals the maximum delay in the network.   

𝐿𝑤𝑐	 𝑆( = max
(2∈4)

min
(BCDE)

𝑑 𝑣, 𝑠 																																												(3.3) 

where 

- 𝐿𝑤𝑐	(𝑆():  Worst-case latency between switch and controller 

- N: Number of SDN forwarding elements  

- 𝑑 𝑣, 𝑠 :	 Shortest path from node 𝑣 to node 𝑠 

For the validation of our optimization solution based on the Bell Canada WAN, the average-case 

latency and worst-case latency metrics are more important than any other constraint. 
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Figure 3.3: Flowchart: Model description 
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5.3.2.2 Complex network analysis method   

 

This section describes a method for finding optimal and worst-case SDN controller locations based 

on a well-known application for computer networks: an Internet Control Message Protocol 

(ICMP). ICMP packets are used for measuring the latency between network layer nodes. An ICMP 

generates multiple packets from a source to the destination[20]  [21], with the outcome being the 

average latency from one node to another. 

In the test topology shown in Figure 3.4. OpenFlow switches were implemented using Mininet, 

the SDN network emulator employed because it facilitated the development of OpenFlow 

switches, which were connected with external SDN controllers [22]. In our test environment, a 

Floodlight controller was used for managing all of the SDN switches in the Bell Canada WAN. 

Floodlight controllers are Java-based open source software and are among the controllers most 

widely used in an SDN environment [23].   
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Figure 3.4: Simulation the Bell Canada with Miniet and Floodlight SDN controller 

 

For implementation purposes, three main components were included in the network topology 

shown in Figure 3.4. 

Link description: With respect to the links between the OpenFlow switches, we used a latency 

formula to compute the solutions because the physical links are known to be fiber optics, for which 

the propagation delay is almost the speed of light 2 ∗ 10L 	 M
DNO

.  Since all network distances are 
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known, to maintain authenticity, the propagation delay was calculated and added to our SDN 

topology: 

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	 = 	 YZB[\]ON	 M
^_`^\a\[Z`]	B^NNb( cdef)

			(𝑠𝑒𝑐)	                      (3.4) 

 

	

Figure 3.5: Shows the link description 

	
In our simulation, all OpenFlow switches are managed by a Floodlight SDN controller. Figure. 

3.6. illustrates the Floodlight SDN controller platform, showing all OpenFlow switches, with each 

switch having a unique datapath ID (DPID).  
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Figure 3.6: Floodlight SDN controller platform 

The Bell Canada network, which has 48 nodes and 68 links, was used as a case study for the 

experiments. The main simulation and development environment for replicating the Bell Canada 

network involved the use of Python, Mininet, and Floodlight controller simulation tools. 

Hypothetically, we considered that, for representing the SDN network using these tools and taking 

into account only the propagation delay, 48 OpenFlow nodes should be the optimal size. To prove 

our hypothesis, extensive data were collected from the simulation. As mentioned with respect to 

ICMP pinging, the first step is to install the SDN controller in the first OpenFlow switch node, 

followed by the computation of the ICMP pinging procedure from this node to all nodes in the 

Bell network. These steps are then repeated for all of the nodes in the Bell network.  
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Chapter 4 

4 Case study results and analysis  

	
This section presents and discusses the case study conducted for validation purposes. 

  

4.1. Case study results and analysis for a mathematical model 

	
	
The models implemented were developed with the goal of assisting Internet service providers 

(ISPs) who wish to move to SDN so that they can compute the optimum locations for SDN 

controllers according to the overall network delay. Our assessment of network performance was 

based on the amount of delay. This section details the model results and the overall outcomes of 

this study. Fig. 5 shows that the optimal SDN placement when the number of controllers is one (k 

= 1) is the City of Thunder Bay, which is the best location for the controller that has the minimum 

average latency (𝐿𝑎𝑣𝑔 = 0.4459). This result indicates that Thunder Bay represents a balance 

point between the western and eastern nodes. The selection of this location ensures the best 

network performance in our network topology with respect to the communication between the 

controller and the forwarding devices. In contrast, the worst-case latency with one controller would 

result from placement in San Francisco, with the worst-case delay being (𝐿𝑤𝑐 = 1.0412). 
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Figure 4.1: The optimal & worst placement for SDN network when number of controller is one (k=1) 

 

The number of controllers (k) input to the model is important because the latency outcomes are 

dependent on these values. The results demonstrate that the average latency is reliant on the 

number of controllers. 
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The figure below shows the optimal placement when we used three SDN controllers.    

	

Figure 4.2: The optimal & worst placement for SDN network when number of controller is one (k=3) 

 

The finding presented in Figure 4.2 show a reduction in the total average latency to (𝐿𝑎𝑣𝑔 =

0.1360). In this case, network performance was improved, with a 75 % reduction in the delay: 

from 0.4459 to 0.1360. The worst-case latency also decreased to 𝐿𝑤𝑐 = 0.4173 . Table II 

summarizes the results for (k = 1) to (k = 5). Using more than five controllers led to no significant 

change in the overall latency; five controllers can therefore be considered the optimal number for 

this network topology. 
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Table 4.1:  Average latency for SDN controllers 

 K=1 K=2 K=3 K=4 K=5    

Locations names for 𝐿𝑎𝑣𝑔 Thunder bay Sherbrook 

Lethbridge 

Grande-Prairie 

Sherbrook    

Courtenay  

Grande-Prairie 

Ottawa        

St-John's     

Courtenay     

Grande-Prairie 

Kamloops   

Ottawa        

St-John's     

Courtenay  

Locations names for 𝐿𝑤𝑐 San Francisco Prince-George 

Penticton 

Cold-Lake 

Kamloops 

New-York 

Fort-McMurray 

Kamloops   

Sherbrook  

Vancouver   

Fort-McMurray 

Kamloops     

Baie-Comeau  

Atlanta      

Sudbury  

𝐿𝑎𝑣𝑔 0.4459 0.1665 0.1360 0.1166 0.0985 

𝐿𝑤𝑐 1.0412 0.8043 0.4173 0.3300 0.2683 

 

Based on the results listed in Table 4.1, it can be observed that a threshold exists with respect to 

the number of controllers in each SDN topology. When the threshold is reached, there is no marked 

improvement in the total average delay metric. 

As can be seen in Figure 4.3, no significant change in network latency is evident above a specific 

number of SDN controllers.  Figure 4.3. shows that changing the number of SDN controllers from 

one to two results in a reduction of up to 75 % overall; further increases have a much less 

significant effect on latency than this first change in the number of SDN controllers. The advantage 

of our approach is that the optimum number of SDN controllers that should be deployed on a 

network to achieve the best QoS can now be established for any WAN topology. The new approach 

is based on a comparison of the average latency (𝐿𝑎𝑣𝑔) and the worst-case latency (𝐿𝑤𝑐) in order 

to determine the maximum overall delay. However, the ultimate decision about how many 
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controllers to deploy is dependent on the unique needs and constraints of each service provider. 

For this study, we concluded that using five SDN controllers is the most efficient way to achieve 

the best QoS outcomes. 

 

	

Figure 4.3: The optimal & worst average latency for SDN network with number of controllers (k) 

	
From figure 4.4.  We compute cumulative distribution function (CDF) for the mean latency compared 

with the number of controllers.  Indeed, we observed drastic differences when we used one controller 

versus when we used five controllers. 
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Figure 4.4: The optimal latency for SDN network with number of controllers (k) 

Another important metric for determining the optimal SDN controller location is the cost of 

installing new SDN controllers.  In previous work, we examined the optimal location by computing 

the propagation delay between OpenFlow switches. In this section, new decision based on the cost 

of adding a new controller by dollars (𝐶𝑘).    

The cost benefit = The average delay (𝐿𝑎𝑣𝑔) + Number of controllers (k) * 𝐶𝑘                    (4.1) 
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Figure 4.5: The optimal latency for SDN network with number of controllers (k) 

	
The figure above shows the cost benefit related to the number of controllers.  By visual 

observation, we achieved the optimal placement for SDN controller at (k=2).  Past that point, the 

cost of an SDN controller implementation increases.  As a result, the number of controllers at the 

end based on an Internet Service Provider's (ISP) budget to upgrade their network. 
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4.2. Case study results and analysis for a Network analysis procedure  

	
A Python 2.7 programming languages was used for implementing an SDN network with a 

Floodlight SDN controller.  The goal form this experiment to match the outcome with the results 

from a mathematical model in previous section. The results, which are presented in Tables below, 

reveal that the optimum controller location is node 22 (Thunder Bay) and that the worst location 

is node 44 (San Francisco). To quantify the impact of the propagation delay, we generated 30 

ICMP packets between the nodes, then calculated the total average delay. The ICMP ping message 

rate (packets per second) is the main parameter for measuring the round-trip time (RTT) from one 

node to another. The final step was to compute the overall delay for each Bell Canada node. Table 

III shows the experimental results when the controller was placed at the Thunder Bay location 

(OpenFlow switch S22). The ICMP packets from this node were generated to randomly selected 

nodes. 

Table 4.2: The average time delay at Thunder Bay location (S22) 

Source location Destination Location Average time per (ms) 

S22 S1 0.033 

S22 S48 0.041 

S22 S26 0.067 

S22 S44 0.039 

S22 S30 0.049 

The total average for this location is (0.048 ms) 
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Table 4.3 shows the result for the St John SDN controller location (S1): 

Table 4.3: The average time delay at St John location (S1) 

Source location Destination Location Average time per (ms) 

S1 S12 0.155 

S1 S48 0.198 

S1 S26 0.072 

S1 S44 0.073 

S1 S30 0.082 

The total average for this location is (0.116 ms) 

 

The table below shows the result of San Francisco SDN controller location (S44): 

Table 4.4: The average time delay at San Francisco location (S44) 

Source location Destination Location Average time per (ms) 

S44 S1 0.078 

S44 S5 0.202 

S44 S26 0.149 

S44 S30 0.086 

S44 S48 0.090 

The total average for this location is (0.121 ms) 
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The table below shows the result of San Francisco SDN controller location (S30): 

Table 4.5: The average time delay at San Francisco location (S30) 

Source location Destination Location Average time per (ms) 

S30 S1 0.103 

S30 S48 0.098 

S30 S26 0.090 

S30 S44 0.110 

S30 S35 0.074 

The total average for this location is (0.0956 ms) 

	
As can be seen in the bar chart shown in Figure 4.6. and figure 4.7, the best location for the SDN 

controller is at Thunder Bay (Node 22), since this node has the lowest propagation delay. The 

worst location would be San Francisco (Node 44). In our Bell Canada case study, the best possible 

SDN controller locations are thus close to the center of the network. 
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Figure 4.6: The Total average delay for SDN controllers 

	
	

	
Figure 4.7: The best and worst locations for SDN controllers 
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4.3. Simulation Source Codes 

	

4.3.1. Simulation codes on GitHub 

	
The experimental codes for the proposed study have been publicly posted on GitHub, it’s the world 

leading development software. 

https://github.com/ibraabani/optimization-sdn-controllers-bellcanada-casestudy.git 

4.3.2. Examples of Simulation codes  

The figure below is an sample from the Matlab code, we used this code to implemented a 

mathematical model: 

	

	
Figure 4.8: Matlab code for best and worst locations for SDN controllers 
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The python programming language was used to implement the Bell Canada WAN network, sample 

from python code in figure below. 

	

Figure 4.9: Python code for best and worst locations for SDN controllers 
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Chapter 5 

5 Conclusions and Future Work 

 

This chapter summarizes the thesis work.  A conclusion, along with a discussion of future work, 

is provided.	

5.1. Conclusions 

	

This thesis has presented a mathematical model for finding the optimal location for an SDN 

controller in the Bell Canada WAN. Measurement of the overall latency of this network was based 

on the delay in propagation among the control and data planes. The proposed model was assessed 

with respect to answering an essential question associated with the planned implementation of an 

SDN network: how many SDN controllers are needed in the network topology. The simulation 

results were obtained using MATLAB_R2015b and Python programming languages. A k-median 

algorithm was employed to solve for an important factor in SDN network scalability, and an ICMP 

was used for verifying the mathematical results. This work has proposed a method that enables 

SDN operators to identify the number of SDN controllers, and to optimize the locations for their 

placement in a way that will achieve the best network performance. 
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5.2. Future Work 

	

Due to time constraints, some metrics have been omitted from this paper Future research can 

encompass the application of additional constraints in our mathematical model. The assumptions 

underlying our examination of the optimization of the Bell Canada WAN included only 

propagation delay. We have not included queueing at the controllers, i.e., arrival and departure 

waiting times for packets before they are processed. Incorporating queuing delay into the model 

might improve the results by enhancing accuracy with respect to overall network latency. A further 

consideration is that because flow setup processing time increases the accuracy of a model so that 

it more closely reflects real-life scenarios, it should also be taken into account.  
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