207,409 research outputs found

    Weak ties: Subtle role of information diffusion in online social networks

    Full text link
    As a social media, online social networks play a vital role in the social information diffusion. However, due to its unique complexity, the mechanism of the diffusion in online social networks is different from the ones in other types of networks and remains unclear to us. Meanwhile, few works have been done to reveal the coupled dynamics of both the structure and the diffusion of online social networks. To this end, in this paper, we propose a model to investigate how the structure is coupled with the diffusion in online social networks from the view of weak ties. Through numerical experiments on large-scale online social networks, we find that in contrast to some previous research results, selecting weak ties preferentially to republish cannot make the information diffuse quickly, while random selection can achieve this goal. However, when we remove the weak ties gradually, the coverage of the information will drop sharply even in the case of random selection. We also give a reasonable explanation for this by extra analysis and experiments. Finally, we conclude that weak ties play a subtle role in the information diffusion in online social networks. On one hand, they act as bridges to connect isolated local communities together and break through the local trapping of the information. On the other hand, selecting them as preferential paths to republish cannot help the information spread further in the network. As a result, weak ties might be of use in the control of the virus spread and the private information diffusion in real-world applications.Comment: Final version published in PR

    The role of social networks in information diffusion

    Full text link

    Topology comparison of Twitter diffusion networks effectively reveals misleading information

    Full text link
    In recent years, malicious information had an explosive growth in social media, with serious social and political backlashes. Recent important studies, featuring large-scale analyses, have produced deeper knowledge about this phenomenon, showing that misleading information spreads faster, deeper and more broadly than factual information on social media, where echo chambers, algorithmic and human biases play an important role in diffusion networks. Following these directions, we explore the possibility of classifying news articles circulating on social media based exclusively on a topological analysis of their diffusion networks. To this aim we collected a large dataset of diffusion networks on Twitter pertaining to news articles published on two distinct classes of sources, namely outlets that convey mainstream, reliable and objective information and those that fabricate and disseminate various kinds of misleading articles, including false news intended to harm, satire intended to make people laugh, click-bait news that may be entirely factual or rumors that are unproven. We carried out an extensive comparison of these networks using several alignment-free approaches including basic network properties, centrality measures distributions, and network distances. We accordingly evaluated to what extent these techniques allow to discriminate between the networks associated to the aforementioned news domains. Our results highlight that the communities of users spreading mainstream news, compared to those sharing misleading news, tend to shape diffusion networks with subtle yet systematic differences which might be effectively employed to identify misleading and harmful information.Comment: A revised new version is available on Scientific Report

    Signed Link Analysis in Social Media Networks

    Full text link
    Numerous real-world relations can be represented by signed networks with positive links (e.g., trust) and negative links (e.g., distrust). Link analysis plays a crucial role in understanding the link formation and can advance various tasks in social network analysis such as link prediction. The majority of existing works on link analysis have focused on unsigned social networks. The existence of negative links determines that properties and principles of signed networks are substantially distinct from those of unsigned networks, thus we need dedicated efforts on link analysis in signed social networks. In this paper, following social theories in link analysis in unsigned networks, we adopt three social science theories, namely Emotional Information, Diffusion of Innovations and Individual Personality, to guide the task of link analysis in signed networks.Comment: In the 10th International AAAI Conference on Web and Social Media (ICWSM-16
    • …
    corecore