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ON THE ROLE OF CENTRALITY IN INFORMATION 
DIFFUSION IN SOCIAL NETWORKS 

Mochalova, Anastasia, Katholische Universität Eichstätt-Ingolstadt, Auf der Schanz 49, 
85049 Ingolstadt, Germany, Anastasia.Mochalova@ku.de 

Nanopoulos, Alexandros, Katholische Universität Eichstätt-Ingolstadt, Auf der Schanz 49, 
85049 Ingolstadt, Germany, Alexandros.Nanopoulos@ku.de 

Abstract 
Towards understanding how people use social media to interact with each other, it becomes important 
to investigate the influence mechanism that emerges in online social networks. Due to it, information 
in social networks often diffuses “virally”. In this paper, we recognize the relation between the 
influence of the seed members that trigger information diffusion and the attitude of the rest members 
towards the information. To characterize the influence of seed members, we examine their centrality 
within the network structure, based on the premise that more central members can reach many other 
members. We examine a comprehensive set of centrality scores for identifying the influence of seed 
members and conduct a thorough experimental evaluation with data from a real social network. Our 
experimental results provide insights into the interplay of the various centrality scores with the 
members’ attitude and how this interplay affects the outcome of information diffusion. The first 
contribution of the proposed approach is, thus, a solution to the influence maximization problem that 
is based only on information about the structure of a social network and does not require any 
additional knowledge about the quantification of influence between its members. The second 
contribution is a thorough investigation of the performance of the various centrality-based seed-
selection methods with respect to factors such as the seed size and members’ attitude, indicating that 
different centrality scores are suitable in different cases. 

Keywords: Online Social Networks, Influence, Information Diffusion, Centrality. 
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1 Introduction 

Social networks were always part of the human society. Nonetheless, the development of 
social media automated and accelerated the social signals that pulse through our societyat a global 
scale and on a daily basis (Aral 2012). With social media, it also became easier to collect and analyse 
large-scale data from social networks.Interdisciplinary research in social-network analysisbenefits 
from the existence of such data,in a pursuitof determining the role of social media in our lives. 

A fundamental issue in social-network analysis is the investigation of the influence mechanism 
that emerges with increased interconnectedness. This mechanism determines several aspects of our 
behaviour; e.g., what we consume, which ideas we adopt, etc.Due to this influence mechanism, 
information that is often triggered by a small seed of members, diffuses “virally” in social networks, 
because it conveys an implied endorsement from social connections (Jurvetson 2000). The outcome 
can be a collective action expressing the wide acceptance of the propagated information by a large 
fraction of the members of the network. This fact has already started to be leveraged for several 
commercial applications in online social networks, which enable individuals to share (electronic) 
word-of-mouth and create the potential for exponential growth of spread of information (Bonchi et al. 
2011). Therefore, investigating the influence mechanism and how it affects information diffusionis an 
important step towards understanding how people interact with each otherin social media. 

Information diffusion in social networks is affected by three factors (Bampo et al. 2008): 
i) network structure, ii) behavioural characteristics of network members, and iii) characteristics of the 
information. Especially in online social networks, where information spreads more rapidly than in any 
other network topology, network structurehas been reported to be very significant (Borgatti et al. 
2009). The reason is the virtuous interaction between few members with many connections and the 
large number of members with few connections (Doer, Fouz & Friedrich 2012). Thus, influential 
members can be identified according to their connectivity, which determines the impact of such 
members on the spreadof information through the network. Influential members are exploited in 
applications such asviral marketing, which detect them based on their centrality in the network 
structure (Newman 2010) and use them as seeds for initiating marketing campaigns (Hinz et al. 2011). 
Nevertheless, existing approaches (described in Section 2) lack the thorough examination of a wide 
range of centrality scores for the identification of influential members. More importantly, they do not 
consider the role of the other two factors, i.e., behavioural characteristics of members and the 
characteristics of the diffused information. 

In this paper, we provide a thorough examination of a comprehensive set of centrality scores 
used for the purpose of identifying influential members in online social networks. Additionally, we 
investigate the factor of centrality in relation to the behavioural characteristics of network members, 
which express the attitude of the members towards the diffused information.We conducta thorough 
experimental evaluation with data from a real social network and examine both the impact of 
centrality and of attitude. Our results show that the effectiveness of centrality scores in identifying 
influential membersis related to themembers’ attitude. This helps better understanding the properties 
of centrality when applied in the context of information diffusion in social networks. Therefore, our 
results can become useful towards: 
• Understanding the way that information is diffused in social networks in relation to the influence 

of the seed members that initiated the diffusion; 
• Recognize the role of members’ attitude in the coverage that the diffused information is going to 

attain; 
• Identifying when it becomes possible that a given piece of information will be propagated to a 

large fraction of a social network, although it may be initiated by a very small seed of its 
members. 

The rest of this paper is organized as follows: in Section 2 we present the related work and 
explain in more detail the motivation of our study. In Section 3 we first formally describe the 
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examined problem and then we describe the proposed methodology. The organization of our 
experimental evaluation is presented in Section 4, whereas the experimental results and their 
discussion are presented in Section 5. Finally, Section 6 concludes the paper. 

 

2 Related Work 

Models of Information Diffusion in Social Networks: Users of social media are nowadays 
rapidly producing and disseminating vast amounts of real-time information. Developing models about 
the diffusion of information in social networks has been characterized as a challenging task (Leskovec, 
Adamic & Huberman 2007). The most widely applied models are the Independent Cascade (IC) model 
(Goldenberg, Libai& Muller 2001) and the Linear Threshold (LT) model (Granovetter 1978). IC 
considers each interaction between two connected members in a social network as being independent. 
LT focuses on the threshold behaviour, having information being diffused to a member of a social 
network when enough of other members connected to it have already adopted the information. 

Influence maximization: The task of influence maximization is about selecting the set of 
members in a social network who will initiate the diffusion of a piece of information and will 
influence the largest possible number of other members by activating them to adopt this information 
(Kempe, Kleinberg & Tardos 2003). The selected set of members is called seeds and has a predefined 
size, which represents the cost to initiate the spread of information using the seeds (i.e., the largest the 
seed set size, the higher the cost). Influence maximization has been shown to be an NP (non-
deterministic polynomial time) problem (Kempe, Kleinberg & Tardos 2003). This means that an exact 
solution has an exponential worst-case time complexity with respect to the number of members, which 
makes it prohibitive for large social networks. For this reason, Kempe, Kleinberg and Tardos proposed 
an approximate, greedy hill-climbing algorithm that finds the seed set which activates at least about 
63% as much nodes as the optimal seed set. Their approach is based on non-negative, monotone 
submodular functions (Nemhauser, Wolsey & Fisher 1978), whose main property is that the difference 
in the value of such a function that a single member makes when added in the seed set, decreases as 
the size of the seed set increases. This property can be informally described as a kind of diminishing 
returns, which makes them suitable for an approximate solution to the influence maximization 
problem. Although the guaranteed performance of the greedy algorithm is advantageous, it requires 
for each connected pair of members u and v in the network, the knowledge of the strength of their 
connection. This strength is denoted as influence factor and expresses how much u can influence v and 
vice versa. Apriori knowledge of influence factors is not possible in most real-world cases, thus the 
direct applicability of the greedy algorithm is limited. To overcome the aforementioned problem, 
recent research proposed to estimate influence factors based on actions previously performed by 
members of the network (Goyal, Bonchi & Lakshmanan 2012). However, this approach can be used to 
select suitable seeds for spreading a new piece of information only in the case that the recorded actions 
are relevant to this information. Otherwise, the estimated influence factors will not be accurate. 

Centrality-based Influence maximization: As mentioned above, acquiring knowledge about 
influence factors presents several problems. For this reason, recent research has proposed an 
alternative approach to select the seed members with a central position in the network structure, 
motivated by the observation that through such members, the diffused information may have better 
chances to reach a larger part of the network (Hinz et al. 2011). To select members according to how 
central their position is, research in social-network analysis has proposed a large set of centrality 
scores (Newman 2010). The study of Hinz et al. focuses on two: i) Degree centrality, which identifies 
members, called hubs, with large number of connections; and ii) Betweenness centrality, which 
identifies members, called bridges, that are part of a large number of paths connecting the rest of the 
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members.1 Although hubs are intuitively good candidates for seed selection, their large number of 
connections can expose them to information overload, which might render them less likely to 
propagate information (Porter & Donthu 2008). On the other hand, bridges enable the diffusion of 
information into parts of a social network that would otherwise be unconnected (Granovetter 1973; 
Easley & Kleinberg 2010). The experimental study of Hinz et al. compared hubs and bridges based on 
two applications of information diffusion in two real social networks. In both cases, the two centrality 
scores presented comparable performance that was better than random seed selection. The advantage 
of the approach proposed by Hinz et al. is that centrality scores only require knowledge of the network 
structure, which is not difficult to obtain in online social networks, and do not need the estimation of 
influence factors. 

Motivation for our approach: In this paper, we use models of information diffusion, in 
particular IC and LT, for implementing diffusion processes over social networks and experimentally 
studying the performance of various seed-selection methods (see Section 4 for more details). Our 
focus is, thus, not on developing new models about information diffusion. Instead, our work focuses 
on the problem of influence maximization. To avoid the difficulties related to acquiring knowledge 
about influence factors, similar to the work by Hinz et al., our approach is based on centrality-based 
seed selection. However, Hinz et al. examined only two centrality scores, whereas the literature of 
social-network analysis provides a much richer set (Newman 2010). Moreover, the experimental 
results of their study are not indicative about which score should perform better, as they found them to 
perform equally well. In our work, our motivation is to examine several centrality scores and obtain a 
more representative comparison. Additionally, in the case of LT model, we consider the impact of 
members’ attitude on the performance of centrality-based seed selection. In summary, our findings 
help drawing clearer conclusions about the performance of various centrality scores in the context of 
seed selection problem, which can better guide their practical applications. 

 

3 Centrality Scores for Seed Selection 

3.1 Problem Formulation 

We consider online social networks that allow their members to add other members of the 
same network to their list of connections and share with them various types of information, e.g., status 
updates, tweets, likes, shares, etc. (Kaplan & Haenlein 2010). What distinguishes online social 
networking platforms (e.g., Facebook, Twitter, LinkedIn) from other, more generic social media for 
online communities (e.g., Epinions, Qype, Rotten Tomatoes) is that electronic word-of-mouth 
generally takes place between members who have some kind of personal relationship with one another 
(Coulter and Roggeveen 2012). Hence, the structure of an online social network is specified by its 
members and the relationships (linkages) among them (Bampo et al. 2008). 

We represent the structure of a social network as a graph G(V,E), where V is the set of nodes 
(each node corresponds to a member) and E is the set of edges. Due to the symmetric nature of social 
connections in most social networks, we consider the edges in E to be undirected. Nevertheless, our 
approach can be extended to consider directed edges (representing asymmetric social connections), by 
extending the centrality scores of Section 3.2 to their counterparts for directed graphs. An example of 
a graph G representing the structure of a social network is illustrated in Figure 1a. 

For the above explained reasons, the graph G of Figure 1a is undirected. Additionally, it is 
also unweighted, i.e., its edges have no weights attached to them. The reason is that we focus only on 
the structure of the network without assuming any knowledge about the strength of its connections. 

1Hubs and bridges are described in more detail together with the rest examined centrality scores in Section 3.2. 
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Figure 1. (a) Example of an undirected graph representing the structure of a social network.   
(b) The corresponding directed and weighted latent graph that contains the influence 
factors (with values between 0 and 1). 

Nevertheless, each edge of G represents a connection that has an existing but unknown 
strengthexpressed through an influence factor (for a description of influence factors see Section 3). 
Therefore, each such graph G has a corresponding graph G’ whose edges are weighted with influence 
factors. For the graph G of Figure 1a, a corresponding graph G’ is illustrated in Figure 1b. It has to be 
noticed that G’ is both weighted and directed, since the influence factors between two nodes connected 
with an edge may in general not be equal. In the example of G’ depicted in Figure 1b, the influence 
factor of node A to node C is 0.3, whereas of node C to node A is 0.1. We have to emphasize, however, 
that we consider as known only the undirected and unweighted graph G that represents the structure of 
a social network (like the graph of Figure 1a), whereas the directed and weighted graph G’ with the 
influence factors (like the graph of Figure 1b) is considered as unknown. Actually, G’ is latent and 
realized only during the spread of information through the network. We will utilize this assumption 
whenwe will describe our experimental framework in Section 6. 

Influence maximization problem: The problem of influence maximization seeks for a seed 
set, S, of k members of a social network that will be targeted initially and will maximize the expected 
spread of a given piece of information through the network. We assume that the size of S is controlled 
by the number, k, of members in it. As described in Section 2, k is predefined and represents the cost 
to target the members of S. The total number of members of the network that will beactivated during 
the spread initiated by S, is denoted as Ak(S). Given the graph G(V,E) that represents the structure of 
the network, the influence maximization problem can be defined as the problem of finding the seed S 
of size k with the maximum possible Ak(S) value; i.e.: 

𝑆𝑆 = argmax
𝑈𝑈⊆ 𝑉𝑉

𝐴𝐴𝑘𝑘(𝑈𝑈), 𝑠𝑠. 𝑡𝑡. |𝑆𝑆| = 𝑘𝑘 

As described in Section 2, Kempe, Kleinberg and Tardos (2003) showed that this is an NP problem. 
For this reason, in Section 3.2, we will present a method based on the centrality of members in G, in 
order to obtain an approximation of the optimal solution. 

 

3.2 Seed Selection based on Centrality Scores 

The centrality of a vertex in a graph determines the relative importance of the vertex. In the 
context of a social network, centrality determines how influential a member is within the network. The 
idea behind using centrality for seed selection is based on the premise that, the more central a member 
is in the structure of a social network, the higher its influence is going to be on other members, 
because it is easier for this member to reach all other members. For seed selection based on centrality, 
we have as input the structure of the social network. Thus, given the undirected and unweighted graph 
G(V, E) that represents the structure of a social network, we can define for each node v∈V, its 
centrality score c(v). We assume that centrality scores are normalized in the [0, 1] range and that the 
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higher the score of a node, the more important the node is.2 Having determined for each node v∈V its 
centrality score c(v), we then rank the nodes according to decreasing order of their score and select the 
top-k nodes with the highest scores. Finally, the selected top-knodes comprise the seed. 

Different algorithms have been proposed to compute centrality scores (Borgatti & Everett 
2006; Newman 2010). In the reminder of this section we will give a brief overview of the main 
existing algorithms for computing centrality scores: 
• Degree centrality: computes the number of paths of length one that emanate from a node. The 

nodes with high degree centrality usually have increased activity and thus more likely to engage in 
diffusion of information through the network. However, these nodes might be overloaded with 
information and harder to activate (Hinz et al. 2011). 

• Betweenness centrality: computes the share of times that one node need another node to reach the 
third node via the shortest path. Nodes with high betweenness centrality are usually the nodes that 
connect otherwise unconnected parts of the network. Thus they allow the access and propagation 
of the idea in several parts of the network at the same time. Disadvantage of this method is that it 
is harder to compute than, for example, degree centrality.  

• Closeness centrality: computes the sum of distances from all other nodes where the distance from 
a node to another is defined as the length of the shortest path from one to the other (since graph G 
is unweighted, each edge has length equal to 1). For the nodes with high closeness centrality, it is 
usually easier and faster to reach other nodes. Disadvantage of this method is as with betweenness 
centrality – difficulty to compute. Another disadvantage is that this score is mostly suitable for 
connected graphs. 

• Eigenvector centrality: computes relative scores to all nodes in the network based on the principle 
that connections to nodes having a high score contribute more to the score of the node in question, 
i.e., not only the connectedness of the node in questions is analysed but also the connectedness of 
the nodes it is connected to is taken into account too. PageRank centrality is a variant of 
Eigenvector centrality that we use in our experimental evaluation. 

These four centrality scores are the most widely used (Borgatti & Everett 2006). Existing 
research (e.g., Hinz et al. 2011; Kempe, Kleinberg & Tardos 2003) focuses mostly on degree and 
betweenness centrality. In the following we will consider all the scores listed above and compare their 
performance in different social network settings. 

 

4 Experimental Design 

In this section, we describe the design of our experimental study that comparesthe centrality 
scores presented in Section 3.2. 

Data set: We used real data on Facebook users belonging to New Orleans regional network. 
This data set is publically available at “Online Social Networks Research”3and contains 60,290 users 
connected together by 1,545,686 links in the social network with an average node degree of 25.3. 
Based on this data set we are able to construct the graph that represents the structure of this network 
(i.e., an undirected and unweighted graph similar to the example in Figure 1a). According to this graph 
we can compute the centrality score of each node and select in the seed set those with the top-k scores, 
based on the method described in Section 3.2. Additionally, in order to be able to implement the task 
of information diffusion through this network, we need to realize the latent graph with information 
about the influence factors (i.e., a directed and weighted graph similar to the example of Figure 1b). 

2 There exist some algorithms that compute centrality scores with inverse order, i.e., important nodes have scores closer to 0. 
However, we can trivially reverse the monotonicity of such scores in order to satisfy our assumption. 
3http://socialnetworks.mpi-sws.org/ 
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We have to note that this latent graph is not used during the seed selection, but only to implement the 
information diffusion that will measure the performance of each selected seed (please refer to the 
discussion in Section 3.1). To obtain the required influence factors in the latent graph, the data set also 
provides information about the interaction of users in the social network through the so called wall 
posts, which represent a broadcast-style messaging service between users connected in Facebook. The 
data set provides 838,092 wall posts, for an average of 13.9 wall posts per user. Following the 
approach commonly used in related research (Kempe, Kleinberg & Tardos 2003), we consider the 
number of messages (wall posts) that user u sends to user v as an indicator of the influence that u has 
on v. Also following existing approaches (Kempe, Kleinberg & Tardos 2003), we normalized the 
influence factor that u has on v, by dividing the number of messages sent from u to v by the total 
number of messages sent to v. This way, all influence factors are in the range between 0 and 1, and the 
total sum of influence factors on each node is equal to 1. 

Methodology and Performance Measures: All centrality scores described in Section 3.2 
were implemented in Java using the JUNG framework4. The performance of each seed S with k 
members is measured according to Ak(S), i.e., the total number of members of the network that will be 
activated during the spread initiated by S (see Section 3.1), where higher Ak(S) value denotes better 
performance. To be able to make this measurement, we implemented diffusion processes over the 
latent graph of the examined social network using the two widely applied diffusion models: 

• Independent Cascade (IC) model (Goldenberg, Libai & Muller 2001). IC starts by activating the 
nodes in the seed set and then the diffusion process unfolds in discrete steps. When a node v 
becomes active in a step t, it has a single chance to activate each of the nodes w connected to it (w 
is called the neighbour of v) that are currently inactive. Node v succeeds in activating w with 
probability pv,w equal to the (normalized) influence factor that v has on w. If v succeeds, then w 
becomes active in a step t+1 and recursively tries to activate its neighbours. Otherwise, v makes 
no further attempts to activatew. The process runs until no more node activation is possible. 
Therefore, IC models the individual influence each node has on all its neighbours. 

• Linear Threshold (LT) model (Granovetter 1978). Each node w is influenced by each of its 
neighbours v with a weight bv,w that is equal to the (normalized) influence factor that v has on w. 
Additionally, each node v has a threshold θv in the range between 0 and 1, which corresponds to 
the attitude of v. With the term attitude we refer to the predisposition of a member in a social 
network to respond positively or negatively towards a diffused piece of information. Therefore, 
the higher θv is, the harder it is to activate v. The diffusion process of LT unfolds in discrete steps. 
In each step all nodes that were active before, remain active. An inactive node v is activated only 
if the total weight of its active neighbours is equal or more than its threshold θv. The process runs 
until no more node activation is possible. Therefore, LT models the collective influence that each 
node receives from all its neighbours. 

IC and LT differ with respect to the activation process. According to LT, a member becomes 
activated when enough members connected to it become active, which represents a kind of “social 
pressure”. IC focuses on the pair-wise relationships between members: the higher the influence of one 
member on another, the higher the probability of the second member becoming activated. Therefore, 
as explained above, the attitude of a member v in a social network corresponds to the threshold θv that 
is used in LT and quantifies the “resistance” of v to “social pressure”. In contrast, IC model does not 
consider a parameterisation that corresponds to members’ attitude. However, this cannot be consider 
as a limitation, since IC and LT model information diffusion in social networks from different 
perspectives, as described above, and are both widely used in related research. 

Parameterization: In the case of LT, we consider the thresholdθv of each node v as a random variable 
that follows Beta distribution, i.e., 𝜃𝜃𝑣𝑣~𝐵𝐵𝐵𝐵𝑡𝑡𝐵𝐵(𝛼𝛼,𝛽𝛽). The reason for this is that Beta distribution is very 

4http://jung.sourceforge.net/ 
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flexible and, by tuning its parameters 𝛼𝛼,𝛽𝛽, it can represent social networks with entirely different 
overall attitudes of their members. Therefore, within the same network, members have various 
attitudes and the Beta distribution allows us to choose the tendency of the varying attitude scores. In 
our results we examine the following set of values: i) 𝛼𝛼 = 2,𝛽𝛽 = 2 representing a network with most 
members having neutral attitude, as the mean value is 0.5, and some members having positive and 
some having negative attitude; ii) 𝛼𝛼 = 5,𝛽𝛽 = 2 representing a network with most members having 
negative attitude, because the mean value is high, thus making them harder to activate; iii) 𝛼𝛼 =
0.5,𝛽𝛽 = 0.5 representing a network with members that either have positive or negative attitude and 
almost no members with neutral attitude.  

Since each application of IC and LT involves a probabilistic element (i.e., in each trial IC and 
LT activate nodes with some probability determined by the influence factors in the way that has been 
described above), each measurement is repeated 10,000 and we report the averages. This way, we can 
also compute the standard deviation and statistically check the differences between the examined 
centrality scores. Regarding the centrality scores, we used the following parameter for the PageRank 
variant of the Eigenvector centrality: we used uniformed edge weight 0.1. Finally, regarding the seed 
size, we examine values less than 1% of the total number of network members, because “viral” 
information diffusion in social networks often starts from a very small seed. 

 

5 Experimental Evaluation 

In this section, we first present the results of our experimental evaluation (in Section 5.1), 
which aims at comparing the various centrality scores. Next, we provide a discussion of the presented 
results (in Section 5.2). 

5.1 Experimental Results 

In our first experiment, we focused on the case of information diffusion based on the IC 
model. We examined all centrality scores listed Section 3.2 as well as the random selection as a 
baseline. (Please note that, because we focus on the case where influence factors cannot be considered 
as available, the greedy hill-climbing algorithm (Kempe, Kleinberg & Tardos 2003) is not possible to 
be used as baseline.) Figure 2 shows the number of activated nodes (in thousands) for varying seed 
size. All the examined centrality scores clearly surpass random selection. Betweenness centrality 
presents the best performance, followed by Eigenvector centrality that shows comparable 
performance. Degree centrality performs favourably only for very small seed sizes. Finally, closeness 
centrality performs the worst among all other centrality scores. We have to note that the differences in 
the reported averages (out of 10,000 repetitions) among all examined methods were larger than one 
standard deviation. Since in all our rest experiments random selection is consistently and by large 
outperformed, to make our charts more readable, we avoid farther presentation of results for random 
selection. 

Next we move on to examine diffusion based on the LT model. We first focus on the case 
where members have neutral attitude (i.e., according to the parameterization described in Section 4, 
this case uses 𝛼𝛼 = 2,𝛽𝛽 = 2). The results are shown in Figure 3a. In contrast to the previous 
measurement, Degree centrality is outperforming all other centrality scores. Betweenness and 
Eigenvector centrality scores present almost identical performance, whereas Closeness centrality is 
again outperformed by all others. The differences between the reported averages were larger than one 
standard deviation except among Betweeness and Eigenvector centrality. 

Continuing with the LT model, we next examine the case where members either have positive 
or negative attitude and there are almost no members with neutral attitude (i.e., according to the 
parameterization described in Section 4, this case uses 𝛼𝛼 = 0.5,𝛽𝛽 = 0.5). The results are shown in 
Figure 3b. In this case, since there is an adequately large number of members with positive attitude, all 
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Figure 2. Number of activated nodes (in thousands) vs. seed size for the IC model. 

centrality scores attain to activate a much larger number of members compared to the previously 
examined cases. Focusing on their relative performance, unlike the previous case with normal 
attitudes, Degree centrality is outperformed by Betweenness and Eigenvector centrality. The 
differences between the reported averages for Degree centrality and both Betweeness and Eigenvector 
centrality were larger than one standard deviation. 

Finally, we examine the most challenging case where members have a negative attitude (i.e., 
according to the parameterization described in Section 4, this case uses 𝛼𝛼 = 5,𝛽𝛽 = 2). The results are 
shown in Figure 3c. Interestingly, for this challenging case, it is the Eigenvector centrality that clearly 
outperforms all other methods, with Betweenness centrality being the second best. The reported 
averages among all examined methods were larger than one standard deviation. 

 

5.2 Discussion 

The main conclusion from the experimental results of Section 5.1 is that the diffusion of information, 
which is initiated by a small seed set, depends on both the centrality of members in the seed set and on 
the attitude of all other network members. Although this conclusion seems intuitive, recent research in 
this area (Hinz et al. 2011) did not thoroughly investigate the interplay between the two 
aforementioned factors, i.e., centrality and attitude. Our experimental study indicated that the outcome 
of information diffusion in a social network varies with varying members’ attitude and varying 
centrality of the seed members. In particular, when the members’ attitude is mostly negative, 
Eigenvector centrality, which has not been considered at all by Hinz et al. (2011), is very effective in 
selecting influential seed members. Regarding Betweenness and Degree centralities, which were 
considered by Hinz et al. as performing almost equal, our results showed that their performance 
differs: Degree centrality is more effective when the members attitude is mostly neutral, whereas in all 
other cases Betweenness centrality outperforms Degree centrality. Another conclusion from our 
experimental evaluation is that information spreads faster with increasing seed size as well as with 
increasing number of members with positive attitude (this is evident, for instance, in case of Figure 3b 
where the network has a large number of members with positive attitude in relation to the other cases 
in Figure 3). 

 Therefore, with a more thorough evaluation that takes into account more centrality scores, as 
well as the attitude of the members, our results offer more insights into the influence mechanism that 
emerges in social networks. In particular, our findings can help towards the following directions: 
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Figure 3. Number of activated nodes (in thousands) vs. seed size for the LT model. (The same 

legend is used as in Figure 2.) 

• The diffusion of information in social networks is often triggered by a small seed of members. The 
increased interconnectedness in social networks and the resulting influence among their members 
can have as a consequence a collective action expressed through a wide acceptance of the diffused 
information, even if it was initiated by a small seed set. Based on our study, we can understand in 
which cases will a piece of information be spread widely or not, based on the centrality of seed 
members and the attitude of other members. Specifically, for varying attitudes, we can determine 
the outcome of information diffusion according to the centrality scores of the seeds in each case. 

• Centrality scores can be used for effective seed selection in cases where influence factors (see 
Section 2) are either not known or not related to the piece of information that will be diffused. As 
shown by our experimental results, by using appropriate centrality measures, the total amount of 
activated members can be increased significantly. 

• A first application of our findings can be in the case we want to characterize how much accessible 
will become a diffused piece of information bythe members of a social network. Since information 
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is often spread “virally”, initiated by a small seed of members, we can determine the chances that 
the diffused information will reach a large part of the network or not. 

• A second application of our findings can be in the case we want to coordinate the diffusion of 
information in order to affect the behaviour (e.g., consumer behaviour) of the network members. 
This is the case in commercial applications, such as “viral” marketing, where we want to optimize 
the diffusion by carefully selecting the seeds. Our results can allow practitioners to select seeds 
based on different centrality scores, by taking into account the attitude of the members (which can 
be inferred with various methods, e.g., either explicitly through questionnaires or implicitly 
through responses to similar campaigns in the past). 

• Finally, another application can be in the case we would like to coordinate a counter action against 
‘negative’ or dangerous information that has started to propagate in a social network. This can be 
the case of a so called “firestorm” against an organization, or the deliberate spread of other 
malicious information. In such cases, we can first have an insight into the chances that the 
‘negative’ information will have to widely spread or not, by investigating the centrality of the 
members that initiated it. Additionally, we can also get an indication about which are the most 
suitable members that we can use in a new seed that will start diffusing ‘positive’ information, 
which will try to compete against the spread of the ‘negative’ information will try to constraint its 
spread as much as possible. 

We believe that our study can help towards: i) better understanding the influence mechanism 
in social networks and how it affects information diffusion; ii) providing a methodology that can find 
various practical applications, in order to coordinate the spread of information in social networks. 

6 Conclusions 

Towards understanding the role of social media in our lives and how people use them to 
interact with each other, in this study we focused on the influence mechanism that emerges with the 
ever increasing interconnectedness that we find nowadays in online social networks. This influence 
mechanism can cause the “viral” diffusion of information in social networks. 

We examined the factors that affect information diffusion in social networks, by investigating 
them in the context of the influence maximization problem. A key motivation in our approach is that 
existing approaches either assume complete knowledge about influence factors (Kempe, Kleinberg & 
Tardos 2003) or about related actions of members of a social network that can help to estimate the 
influence factors (Goyal, Bonchi & Lakshmanan 2012). However, these approaches may not be easily 
applicable, since knowledge about both the influence factors or related actions that can help their 
estimation may not be known. In our study we aimed at recognizing the relation between the influence 
of the seed members that trigger information diffusion and the attitude that the rest members have 
towards the diffused information. To characterize the influence of seed members in a social network, 
we measured their centrality within the structure of the network, based on the premise that more 
central members will be able to reach a larger part of the network. We provided a comprehensive 
study of several centrality scores that were usedto identify the influence of seed members. 

We conducted a thorough experimental evaluation of the examined scores with data from a 
real online social network. Our experimental results contribute to the existing research, by recognizing 
the interplay of the various centrality scores, which characterize the influence of seed members, with 
the members’ attitude, and how this interplay affects the outcome of information diffusion. 

In our future work, we will investigate a larger variety of social network topologies. This will 
allow us to further analyze the effect of centrality measures with respect to the existence of various 
types of communities within the network. Additionally, we will examine the patterns with which 
information is being diffused and whether the various centrality measures result into different patterns, 
by causing diffusion to propagate through paths whose nature is more in depth or in width. 
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