18,423 research outputs found

    Coherent control of correlated nanodevices: A hybrid time-dependent numerical renormalization-group approach to periodic switching

    Full text link
    The time-dependent numerical renormalization-group approach (TD-NRG), originally devised for tracking the real-time dynamics of quantum-impurity systems following a single quantum quench, is extended to multiple switching events. This generalization of the TD-NRG encompasses the possibility of periodic switching, allowing for coherent control of strongly correlated systems by an external time-dependent field. To this end, we have embedded the TD-NRG in a hybrid framework that combines the outstanding capabilities of the numerical renormalization group to systematically construct the effective low-energy Hamiltonian of the system with the prowess of complementary approaches for calculating the real-time dynamics derived from this Hamiltonian. We demonstrate the power of our approach by hybridizing the TD-NRG with the Chebyshev expansion technique in order to investigate periodic switching in the interacting resonant-level model. Although the interacting model shares the same low-energy fixed point as its noninteracting counterpart, we surprisingly find the gradual emergence of damped oscillations as the interaction strength is increased. Focusing on a single quantum quench and using a strong-coupling analysis, we reveal the origin of these interaction-induced oscillations and provide an analytical estimate for their frequency. The latter agrees well with the numerical results.Comment: 20 pager, Revtex, 10 figures, submitted to Physical Review

    Analytical and Numerical Study of Photocurrent Transients in Organic Polymer Solar Cells

    Full text link
    This article is an attempt to provide a self consistent picture, including existence analysis and numerical solution algorithms, of the mathematical problems arising from modeling photocurrent transients in Organic-polymer Solar Cells (OSCs). The mathematical model for OSCs consists of a system of nonlinear diffusion-reaction partial differential equations (PDEs) with electrostatic convection, coupled to a kinetic ordinary differential equation (ODE). We propose a suitable reformulation of the model that allows us to prove the existence of a solution in both stationary and transient conditions and to better highlight the role of exciton dynamics in determining the device turn-on time. For the numerical treatment of the problem, we carry out a temporal semi-discretization using an implicit adaptive method, and the resulting sequence of differential subproblems is linearized using the Newton-Raphson method with inexact evaluation of the Jacobian. Then, we use exponentially fitted finite elements for the spatial discretization, and we carry out a thorough validation of the computational model by extensively investigating the impact of the model parameters on photocurrent transient times.Comment: 20 pages, 11 figure

    Dynamical systems and forward-backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator

    Full text link
    In a Hilbert framework, we introduce continuous and discrete dynamical systems which aim at solving inclusions governed by structured monotone operators A=∂Φ+BA=\partial\Phi+B, where ∂Φ\partial\Phi is the subdifferential of a convex lower semicontinuous function Φ\Phi, and BB is a monotone cocoercive operator. We first consider the extension to this setting of the regularized Newton dynamic with two potentials. Then, we revisit some related dynamical systems, namely the semigroup of contractions generated by AA, and the continuous gradient projection dynamic. By a Lyapunov analysis, we show the convergence properties of the orbits of these systems. The time discretization of these dynamics gives various forward-backward splitting methods (some new) for solving structured monotone inclusions involving non-potential terms. The convergence of these algorithms is obtained under classical step size limitation. Perspectives are given in the field of numerical splitting methods for optimization, and multi-criteria decision processes.Comment: 25 page

    Optimal control in ink-jet printing via instantaneous control

    Full text link
    This paper concerns the optimal control of a free surface flow with moving contact line, inspired by an application in ink-jet printing. Surface tension, contact angle and wall friction are taken into account by means of the generalized Navier boundary condition. The time-dependent differential system is discretized by an arbitrary Lagrangian-Eulerian finite element method, and a control problem is addressed by an instantaneous control approach, based on the time discretization of the flow equations. The resulting control procedure is computationally highly efficient and its assessment by numerical tests show its effectiveness in deadening the natural oscillations that occur inside the nozzle and reducing significantly the duration of the transient preceding the attainment of the equilibrium configuration
    • …
    corecore