This paper concerns the optimal control of a free surface flow with moving
contact line, inspired by an application in ink-jet printing. Surface tension,
contact angle and wall friction are taken into account by means of the
generalized Navier boundary condition. The time-dependent differential system
is discretized by an arbitrary Lagrangian-Eulerian finite element method, and a
control problem is addressed by an instantaneous control approach, based on the
time discretization of the flow equations. The resulting control procedure is
computationally highly efficient and its assessment by numerical tests show its
effectiveness in deadening the natural oscillations that occur inside the
nozzle and reducing significantly the duration of the transient preceding the
attainment of the equilibrium configuration