8,773 research outputs found

    The Shipbuilding Industry in East and West: Industry Dynamics, Science and Technology Policies and Emerging Patterns of Cooperation

    Get PDF
    Shipbuilding has changed from a "heavy industry" to become a capital- and technologyintensive activity over the last decades. While Japanese, South Korean and Western European yards dominate the merchant shipbuilding market so far, Eastern European yards are increasingly active, in particular in low and medium complex ships. We develop a market analysis and identify the axes of competition in international civil shipbuilding. From there, we analyze the restructuring process of Eastern European yards. Polish yards have proceeded with relatively quick enterprisation, establishing strong links to domestic and international suppliers. Restructuring in Russian and Ukrainian yards is blocked by local obstacles to enterprization, leading to increasing competitiveness gaps with CEE-yards. We conclude that a science&technology policy should be demand-oriented and target only the clearly identified obstacles to enterprization.

    Trends of Digital Transformation in the Shipbuilding Sector

    Get PDF
    The new paradigms of Industry 4.0 force all the industrial sectors to face a deep digital transformation in order to be on the edge in a competitive and globalized scenario. Following this trend, the shipbuilding industry has to establish its own path to adapt itself to the digital era. This chapter aims to explore this challenge and give an outlook on the multiple transformative technologies that are involved. For that reason, a case of study is presented as a starting point, in which the digital technologies that can be applied are easily recognized. A social network analysis (SNA) is developed among these key enabling technologies (KETs), in order to stress their correlations and links. As a result, artificial intelligence (AI) can be highlighted as a support to the other technologies, such as vertical integration of naval production systems (e.g., connectivity, Internet of things, collaborative robotics, etc.), horizontal integration of value networks (e.g., cybersecurity, diversification, etc.), and life cycle reengineering (e.g., drones, 3D printing (3DP), virtual and augmented reality, remote sensing networks, robotics, etc.)

    Energy-efficient through-life smart design, manufacturing and operation of ships in an industry 4.0 environment

    Get PDF
    Energy efficiency is an important factor in the marine industry to help reduce manufacturing and operational costs as well as the impact on the environment. In the face of global competition and cost-effectiveness, ship builders and operators today require a major overhaul in the entire ship design, manufacturing and operation process to achieve these goals. This paper highlights smart design, manufacturing and operation as the way forward in an industry 4.0 (i4) era from designing for better energy efficiency to more intelligent ships and smart operation through-life. The paper (i) draws parallels between ship design, manufacturing and operation processes, (ii) identifies key challenges facing such a temporal (lifecycle) as opposed to spatial (mass) products, (iii) proposes a closed-loop ship lifecycle framework and (iv) outlines potential future directions in smart design, manufacturing and operation of ships in an industry 4.0 value chain so as to achieve more energy-efficient vessels. Through computational intelligence and cyber-physical integration, we envision that industry 4.0 can revolutionise ship design, manufacturing and operations in a smart product through-life process in the near future

    Laser Scanning Application for the Enhancement of Quality Assessment in Shipbuilding Industry

    Get PDF
    The need for a shipyard to improve the quality of its final products is crucial to be competitive in the shipbuilding market. In particular, in the latest years the attention has moved to reducing the presence and occurrence of dimensional non-conformities throughout the entire construction process, in order to facilitate and speed up subsequent phases and ship blocks assembly. This necessity has led shipyards management to evaluate the introduction of dimensional detection systems for the manufactured articles. As an innovative solution, laser scanning technologies have been already tested in extensive ways at industrial level and have recently found application in the shipbuilding sector. Specifically, among the various available technologies, laser scanner systems and laser trackers proved to be the most suitable ones for the targeted purposes. Within the paper, the authors firstly describe the evolution of shipbuilding process and highlight its peculiarities. Then, they focuse on the quality assessment process with a specific reference to both dimensional controls and laser scanning technologies that may support such operation. The application of the latest-generation tools is validated through the presentation and discussion of a real case study related to a ship block. Finally, the authors present the potential future developments and integration of laser scanning technologies within Industry 4.0 framework

    Comparison of shipbuilding and construction industries from the product structure standpoint

    Full text link
    Copyright © 2018 Inderscience Enterprises Ltd. The use of building information modelling (BIM) in construction compares to the use of product lifecycle management (PLM) in manufacturing. Previous research has shown that it is possible to improve BIM with the features and the best practices from the PLM approach. This article provides a comparison from the standpoint of the bill of materials (BOM) and product structures. It compares the product beginning of life in both construction and shipbuilding industries. The research then tries to understand the use, form and evolution of product structures and BOM concepts in shipbuilding with the aim of identifying equivalent notions in construction. Research findings demonstrate that similar concepts for structuring information exist in construction; however, the relationship between them is unclear. Further research is therefore required to detail the links identified by the authors and develop an equivalent central structuring backbone as found in PLM platforms

    Preliminary Study of an Integrated Calculation of Ship Strength on Tankers with Applicable Regulations

    Get PDF
    Recently, the development of the digital era has increased significantly. Industry 4.0 began to be discussed and applied in the early 21st century. Cyber-Physical systems are becoming a trend in current technological developments. Several technologies in Industry 4.0 are being applied, such as the internet of things, cloud computing, automated simulation, intelligent robots, big data analysis, augmented reality, and additive manufacturing. The shipyard industry is one industry that must be able to adapt to keep up with technological developments. In the ship's preliminary design stage, the strength calculation process that refers to certain regulations has an important role in the design process. The integrated calculation system will make working easier for a naval architect. This paper aims to conduct an initial study in calculating ship strength integrated in real-time with the regulations that govern it. This study produces an idea to integrate the calculation of ship strength with regulations from a class society that continues to grow. The research is expected to provide further development to assist in the preliminary design process that provides efficiency and more accurate monitoring of results

    TOWARD SHIPBUILDING 4.0 - AN INDUSTRY 4.0 CHANGING THE FACE OF THE SHIPBUILDING INDUSTRY

    Get PDF
    The Shipbuilding 4.0 at the principles of the Industry 4.0 will transform the design, manufacturing, operation, shipping, services, production systems, maintenance and value chains in the all aspects of the shipbuilding industry. Over the last few years, the fourth industrial revolution has spread in almost all industries. The whole world is talking about Industry 4.0 which has increased implication in the manufacturing process and the future of the work. The impact of the Shipbuilding 4.0 will be significant. In the past, shipbuilding industry where continuously improved with new machines, software and new implemented organizational restructuring. In today shipbuilding industry, there are three main problems that are considered; production efficiency, the ship safety, cost efficiency and energy conservation and environmental protection. In order to create new value, the ship must become a Smart Ship capable of “thinking”, and to be produced in Smart Shipbuilding Process. The aim of this article is a review of the present academic and industrial progress of this new industrial revolution wave in the shipbuilding sector called Shipbuilding 4.0 (Shipping 4.0, Maritime 4.0, Shipyard 4.0). Reviewed publications were analyzed different topics and level of improvements in the industrial aspects of the society. The implementation of the Shipbuilding 4.0 in the shipbuilding industry, presents the future, creating new value in the process, creating new demands with reduction in production and operational cost while increasing production efficiency
    • …
    corecore