134 research outputs found

    Robust Quantitative Comparative Statics for a Multimarket Paradox

    Full text link
    We introduce a quantitative approach to comparative statics that allows to bound the maximum effect of an exogenous parameter change on a system's equilibrium. The motivation for this approach is a well known paradox in multimarket Cournot competition, where a positive price shock on a monopoly market may actually reduce the monopolist's profit. We use our approach to quantify for the first time the worst case profit reduction for multimarket oligopolies exposed to arbitrary positive price shocks. For markets with affine price functions and firms with convex cost technologies, we show that the relative profit loss of any firm is at most 25% no matter how many firms compete in the oligopoly. We further investigate the impact of positive price shocks on total profit of all firms as well as on social welfare. We find tight bounds also for these measures showing that total profit and social welfare decreases by at most 25% and 16.6%, respectively. Finally, we show that in our model, mixed, correlated and coarse correlated equilibria are essentially unique, thus, all our bounds apply to these game solutions as well.Comment: 23 pages, 1 figur

    A Study of Truck Platooning Incentives Using a Congestion Game

    Full text link
    We introduce an atomic congestion game with two types of agents, cars and trucks, to model the traffic flow on a road over various time intervals of the day. Cars maximize their utility by finding a trade-off between the time they choose to use the road, the average velocity of the flow at that time, and the dynamic congestion tax that they pay for using the road. In addition to these terms, the trucks have an incentive for using the road at the same time as their peers because they have platooning capabilities, which allow them to save fuel. The dynamics and equilibria of this game-theoretic model for the interaction between car traffic and truck platooning incentives are investigated. We use traffic data from Stockholm to validate parts of the modeling assumptions and extract reasonable parameters for the simulations. We use joint strategy fictitious play and average strategy fictitious play to learn a pure strategy Nash equilibrium of this game. We perform a comprehensive simulation study to understand the influence of various factors, such as the drivers' value of time and the percentage of the trucks that are equipped with platooning devices, on the properties of the Nash equilibrium.Comment: Updated Introduction; Improved Literature Revie

    Efficiency of Restricted Tolls in Non-atomic Network Routing Games

    Full text link
    An effective means to reduce the inefficiency of Nash flows in non- atomic network routing games is to impose tolls on the arcs of the network. It is a well-known fact that marginal cost tolls induce a Nash flow that corresponds to a minimum cost flow. However, despite their effectiveness, marginal cost tolls suffer from two major drawbacks, namely (i) that potentially every arc of the network is tolled, and (ii) that the imposed tolls can be arbitrarily large. In this paper, we study the restricted network toll problem in which tolls can be imposed on the arcs of the network but are restricted to not exceed a predefined threshold for every arc. We show that optimal restricted tolls can be computed efficiently for parallel-arc networks and affine latency functions. This generalizes a previous work on taxing subnetworks to arbitrary restrictions. Our algorithm is quite simple, but relies on solving several convex programs. The key to our approach is a characterization of the flows that are inducible by restricted tolls for single-commodity networks. We also derive bounds on the efficiency of restricted tolls for multi-commodity networks and polynomial latency functions. These bounds are tight even for parallel-arc networks. Our bounds show that restricted tolls can significantly reduce the price of anarchy if the restrictions imposed on arcs with high-degree polynomials are not too severe. Our proof is constructive. We define tolls respecting the given thresholds and show that these tolls lead to a reduced price of anarchy by using a (\lambda,\mu)-smoothness approach

    The Anarchy-Stability Tradeoff in Congestion Games

    Full text link
    This work focuses on the design of incentive mechanisms in congestion games, a commonly studied model for competitive resource sharing. While the majority of the existing literature on this topic focuses on unilaterally optimizing the worst case performance (i.e., price of anarchy), in this manuscript we investigate whether optimizing for the worst case has consequences on the best case performance (i.e., price of stability). Perhaps surprisingly, our results show that there is a fundamental tradeoff between these two measures of performance. Our main result provides a characterization of this tradeoff in terms of upper and lower bounds on the Pareto frontier between the price of anarchy and the price of stability. Interestingly, we demonstrate that the mechanism that optimizes the price of anarchy inherits a matching price of stability, thereby implying that the best equilibrium is not necessarily any better than the worst equilibrium for such a design choice. Our results also establish that, in several well-studied cases, the unincentivized setting does not even lie on the Pareto frontier, and that any incentive with price of stability equal to 1 incurs a much higher price of anarchy.Comment: 27 pages, 1 figure, 1 tabl

    Uncertainty in Multi-Commodity Routing Networks: When does it help?

    Full text link
    We study the equilibrium behavior in a multi-commodity selfish routing game with many types of uncertain users where each user over- or under-estimates their congestion costs by a multiplicative factor. Surprisingly, we find that uncertainties in different directions have qualitatively distinct impacts on equilibria. Namely, contrary to the usual notion that uncertainty increases inefficiencies, network congestion actually decreases when users over-estimate their costs. On the other hand, under-estimation of costs leads to increased congestion. We apply these results to urban transportation networks, where drivers have different estimates about the cost of congestion. In light of the dynamic pricing policies aimed at tackling congestion, our results indicate that users' perception of these prices can significantly impact the policy's efficacy, and "caution in the face of uncertainty" leads to favorable network conditions.Comment: Currently under revie

    Demand-Independent Optimal Tolls

    Get PDF
    3sìWardrop equilibria in nonatomic congestion games are in general inefficient as they do not induce an optimal flow that minimizes the total travel time. Network tolls are a prominent and popular way to induce an optimum flow in equilibrium. The classical approach to find such tolls is marginal cost pricing which requires the exact knowledge of the demand on the network. In this paper, we investigate under which conditions demand-independent optimum tolls exist that induce the system optimum flow for any travel demand in the network. We give several characterizations for the existence of such tolls both in terms of the cost structure and the network structure of the game. Specifically we show that demand-independent optimum tolls exist if and only if the edge cost functions are shifted monomials as used by the Bureau of Public Roads. Moreover, non-negative demand-independent optimum tolls exist when the network is a directed acyclic multi-graph. Finally, we show that any network with a single origin-destination pair admits demand-independent optimum tolls that, although not necessarily non-negative, satisfy a budget constraint.openopenRiccardo Colini-Baldeschi; Max Klimm; Marco ScarsiniCOLINI BALDESCHI, Riccardo; Klimm, Max; Scarsini, Marc
    • …
    corecore