38,273 research outputs found

    An Empirical Study on Decision making for Quality Requirements

    Full text link
    [Context] Quality requirements are important for product success yet often handled poorly. The problems with scope decision lead to delayed handling and an unbalanced scope. [Objective] This study characterizes the scope decision process to understand influencing factors and properties affecting the scope decision of quality requirements. [Method] We studied one company's scope decision process over a period of five years. We analyzed the decisions artifacts and interviewed experienced engineers involved in the scope decision process. [Results] Features addressing quality aspects explicitly are a minor part (4.41%) of all features handled. The phase of the product line seems to influence the prevalence and acceptance rate of quality features. Lastly, relying on external stakeholders and upfront analysis seems to lead to long lead-times and an insufficient quality requirements scope. [Conclusions] There is a need to make quality mode explicit in the scope decision process. We propose a scope decision process at a strategic level and a tactical level. The former to address long-term planning and the latter to cater for a speedy process. Furthermore, we believe it is key to balance the stakeholder input with feedback from usage and market in a more direct way than through a long plan-driven process

    Energy-efficient through-life smart design, manufacturing and operation of ships in an industry 4.0 environment

    Get PDF
    Energy efficiency is an important factor in the marine industry to help reduce manufacturing and operational costs as well as the impact on the environment. In the face of global competition and cost-effectiveness, ship builders and operators today require a major overhaul in the entire ship design, manufacturing and operation process to achieve these goals. This paper highlights smart design, manufacturing and operation as the way forward in an industry 4.0 (i4) era from designing for better energy efficiency to more intelligent ships and smart operation through-life. The paper (i) draws parallels between ship design, manufacturing and operation processes, (ii) identifies key challenges facing such a temporal (lifecycle) as opposed to spatial (mass) products, (iii) proposes a closed-loop ship lifecycle framework and (iv) outlines potential future directions in smart design, manufacturing and operation of ships in an industry 4.0 value chain so as to achieve more energy-efficient vessels. Through computational intelligence and cyber-physical integration, we envision that industry 4.0 can revolutionise ship design, manufacturing and operations in a smart product through-life process in the near future

    Sustainable product development strategies: Business planning and performance implications

    Get PDF
    Copyright © 2012 by Institution of Mechanical Engineers. This is the author's accepted manuscript. The final published article is available from the link below.Manufacturing firms are under many financial and competitive pressures which focus attention on the performance of their manufacturing processes. In this paper the opportunities for improving the environmental impact of products within the constraints of existing manufacturing infrastructure are examined. Approaches which support sustainability in two aspects are proposed, firstly, the provision of products to the users in ways which extend the product life and secondly, manufacturing approaches which reduce resource usage. This paper outlines three different sustainable development strategies for different product types and describes the cost implications for manufacturers across the life-cycle. The performance measures affected by these strategies are examined drawing on product development case studies from a number of high technology sectors to highlight the different approaches taken. The results are intended to aid manufacturers during the earliest stages of business planning to consider alternative product development approaches which are more sustainable

    Product to process lifecycle management in assembly automation systems

    Get PDF
    Presently, the automotive industry is facing enormous pressure due to global competition and ever changing legislative, economic and customer demands. Product and process development in the automotive manufacturing industry is a challenging task for many reasons. Current product life cycle management (PLM) systems tend to be product-focussed. Though, information about processes and resources are there but mostly linked to the product. Process is an important aspect, especially in assembly automation systems that link products to their manufacturing resources. This paper presents a process-centric approach to improve PLM systems in large-scale manufacturing companies, especially in the powertrain sector of the automotive industry. The idea is to integrate the information related to key engineering chains i.e. products, processes and resources based upon PLM philosophy and shift the trend of product-focussed lifecycle management to process-focussed lifecycle management, the outcome of which is the Product, Process and Resource Lifecycle Management not PLM only

    Managing knowledge management tools: a systematic classification and comparison

    Get PDF
    Knowledge management (KM) is playing an important role in commercial and academic activities, and people are usually armed with effective KM tools for implementation. On one hand, KM tools can facilitate KM activities; however, on the other hand, with the “explosion” of KM tools development, people may feel confused about which to choose or which is more suitable. As a result, KM tools should be managed, so this paper aims at making a systematic classification and comparison research and proposes a KM tools selection strategy based on a point of view on knowledge lifecycle

    The suitability of PRINCE2 for engineering infrastructure

    Get PDF
    The view that PRINCE2 was not suitable for application to infrastructure was identified in a study done for a separate purpose, namely, to examine project governance and methodology, which is not reported in this paper. It was asserted by several participants in interviews conducted with a sample of experienced practitioners across a range of industries and disciplines. This paper follows up on those comments by conducting an examination of PRINCE2 from an engineering infrastructure perspective to investigate the validity of this assertion. It takes a deductive, definitional approach to determine if there are any features in it that would cause difficulty for engineering infrastructure use. Seventeen features were examined, and 15 were found to have difficulty in application to the project management of engineering infrastructure. The remaining two found inconsistencies that were unlikely to cause too much difficulty. The features causing difficulty include non-generic terminology for the terms project, lifecycle and stage, using a product rather than a project-based process, use of an iterative product delivery process unsuited to predictive projects, use of a delivery process for all project phases, assumption of a board governance model with inappropriate accountabilities, lack of clarity around the use of the project plan, and absence of a lifecycle appropriate for engineering infrastructure, with PRINCE2 effectively self-declaring its need for a higher-level project lifecycle/ methodology from somewhere else. The paper concludes that PRINCE2 is quite poorly suited to managing engineering infrastructure projects and identifies that some of the reasons for this are likely to also cause difficulty for many ICT projects as well

    Construction informatics in Turkey: strategic role of ICT and future research directions

    Get PDF
    Construction Informatics deals with subjects ranging from strategic management of ICTs to interoperability and information integration in the construction industry. Studies on defining research directions for Construction Informatics have a history over 20 years. The recent studies in the area highlight the priority themes for Construction Informatics research as interoperability, collaboration support, intelligent sites and knowledge sharing. In parallel, today it is widely accepted in the Architecture/Engineering/Construction (AEC) industry that ICT is becoming a strategic asset for any organisation to deliver business improvement and achieve sustainable competitive advantage. However, traditionally the AEC industry has approached investing in ICT with a lack of strategic focus and low level of priority to the business. This paper presents a recent study from Turkey that is focused on two themes. The first theme investigates the strategic role of ICT implementations from an industrial perspective, and explores if organisations within the AEC industry view ICT as a strategic resource for their business practice. The second theme investigates the ‘perspective of academia’ in terms of future research directions of Construction Informatics. The results of the industrial study indicates that ICT is seen as a value-adding resource, but a shift towards the recognition of the importance of ICT in terms of value adding in winning work and achieving strategic competitive advantage is observed. On the other hand, ICT Training is found to be the theme of highest priority from the academia point of view

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems
    • 

    corecore