1,929 research outputs found

    The logic engine and the realization problem for nearest neighbor graphs

    Get PDF
    AbstractRoughly speaking, a “nearest neighbor graph” is formed from a set of points in the plane by joining two points if one is the nearest neighbor of the other. There are several ways in which this intuitive concept can be made precise.This paper investigates the complexity of determining whether, for a given graph G, there is a set of points P in the plane such that G is isomorphic to a nearest neighbor graph on P. We show that this problem is NP-hard for several definitions of nearest neighbor graph.Our proof technique uses an interesting simulation of a mechanical device called a “logic engine”

    06481 Abstracts Collection -- Geometric Networks and Metric Space Embeddings

    Get PDF
    The Dagstuhl Seminar 06481 ``Geometric Networks and Metric Space Embeddings\u27\u27 was held from November~26 to December~1, 2006 in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. In this paper we describe the seminar topics, we have compiled a list of open questions that were posed during the seminar, there is a list of all talks and there are abstracts of the presentations given during the seminar. Links to extended abstracts or full papers are provided where available

    Localizability of Wireless Sensor Networks: Beyond Wheel Extension

    Full text link
    A network is called localizable if the positions of all the nodes of the network can be computed uniquely. If a network is localizable and embedded in plane with generic configuration, the positions of the nodes may be computed uniquely in finite time. Therefore, identifying localizable networks is an important function. If the complete information about the network is available at a single place, localizability can be tested in polynomial time. In a distributed environment, networks with trilateration orderings (popular in real applications) and wheel extensions (a specific class of localizable networks) embedded in plane can be identified by existing techniques. We propose a distributed technique which efficiently identifies a larger class of localizable networks. This class covers both trilateration and wheel extensions. In reality, exact distance is almost impossible or costly. The proposed algorithm based only on connectivity information. It requires no distance information

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    Two-Level Rectilinear Steiner Trees

    Get PDF
    Given a set PP of terminals in the plane and a partition of PP into kk subsets P1,...,PkP_1, ..., P_k, a two-level rectilinear Steiner tree consists of a rectilinear Steiner tree TiT_i connecting the terminals in each set PiP_i (i=1,...,ki=1,...,k) and a top-level tree TtopT_{top} connecting the trees T1,...,TkT_1, ..., T_k. The goal is to minimize the total length of all trees. This problem arises naturally in the design of low-power physical implementations of parity functions on a computer chip. For bounded kk we present a polynomial time approximation scheme (PTAS) that is based on Arora's PTAS for rectilinear Steiner trees after lifting each partition into an extra dimension. For the general case we propose an algorithm that predetermines a connection point for each TiT_i and TtopT_{top} (i=1,...,ki=1,...,k). Then, we apply any approximation algorithm for minimum rectilinear Steiner trees in the plane to compute each TiT_i and TtopT_{top} independently. This gives us a 2.372.37-factor approximation with a running time of O(PlogP)\mathcal{O}(|P|\log|P|) suitable for fast practical computations. The approximation factor reduces to 1.631.63 by applying Arora's approximation scheme in the plane
    corecore