15,664 research outputs found

    A comparison of the Benjamini-Hochberg procedure with some Bayesian rules for multiple testing

    Full text link
    In the spirit of modeling inference for microarrays as multiple testing for sparse mixtures, we present a similar approach to a simplified version of quantitative trait loci (QTL) mapping. Unlike in case of microarrays, where the number of tests usually reaches tens of thousands, the number of tests performed in scans for QTL usually does not exceed several hundreds. However, in typical cases, the sparsity pp of significant alternatives for QTL mapping is in the same range as for microarrays. For methodological interest, as well as some related applications, we also consider non-sparse mixtures. Using simulations as well as theoretical observations we study false discovery rate (FDR), power and misclassification probability for the Benjamini-Hochberg (BH) procedure and its modifications, as well as for various parametric and nonparametric Bayes and Parametric Empirical Bayes procedures. Our results confirm the observation of Genovese and Wasserman (2002) that for small p the misclassification error of BH is close to optimal in the sense of attaining the Bayes oracle. This property is shared by some of the considered Bayes testing rules, which in general perform better than BH for large or moderate pp's.Comment: Published in at http://dx.doi.org/10.1214/193940307000000158 the IMS Collections (http://www.imstat.org/publications/imscollections.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotic Bayes-optimality under sparsity of some multiple testing procedures

    Full text link
    Within a Bayesian decision theoretic framework we investigate some asymptotic optimality properties of a large class of multiple testing rules. A parametric setup is considered, in which observations come from a normal scale mixture model and the total loss is assumed to be the sum of losses for individual tests. Our model can be used for testing point null hypotheses, as well as to distinguish large signals from a multitude of very small effects. A rule is defined to be asymptotically Bayes optimal under sparsity (ABOS), if within our chosen asymptotic framework the ratio of its Bayes risk and that of the Bayes oracle (a rule which minimizes the Bayes risk) converges to one. Our main interest is in the asymptotic scheme where the proportion p of "true" alternatives converges to zero. We fully characterize the class of fixed threshold multiple testing rules which are ABOS, and hence derive conditions for the asymptotic optimality of rules controlling the Bayesian False Discovery Rate (BFDR). We finally provide conditions under which the popular Benjamini-Hochberg (BH) and Bonferroni procedures are ABOS and show that for a wide class of sparsity levels, the threshold of the former can be approximated by a nonrandom threshold.Comment: Published in at http://dx.doi.org/10.1214/10-AOS869 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Parameter tuning in pointwise adaptation using a propagation approach

    Full text link
    This paper discusses the problem of adaptive estimation of a univariate object like the value of a regression function at a given point or a linear functional in a linear inverse problem. We consider an adaptive procedure originated from Lepski [Theory Probab. Appl. 35 (1990) 454--466.] that selects in a data-driven way one estimate out of a given class of estimates ordered by their variability. A serious problem with using this and similar procedures is the choice of some tuning parameters like thresholds. Numerical results show that the theoretically recommended proposals appear to be too conservative and lead to a strong oversmoothing effect. A careful choice of the parameters of the procedure is extremely important for getting the reasonable quality of estimation. The main contribution of this paper is the new approach for choosing the parameters of the procedure by providing the prescribed behavior of the resulting estimate in the simple parametric situation. We establish a non-asymptotical "oracle" bound, which shows that the estimation risk is, up to a logarithmic multiplier, equal to the risk of the "oracle" estimate that is optimally selected from the given family. A numerical study demonstrates a good performance of the resulting procedure in a number of simulated examples.Comment: Published in at http://dx.doi.org/10.1214/08-AOS607 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore