6,710 research outputs found

    The random graph

    Full text link
    Erd\H{o}s and R\'{e}nyi showed the paradoxical result that there is a unique (and highly symmetric) countably infinite random graph. This graph, and its automorphism group, form the subject of the present survey.Comment: Revised chapter for new edition of book "The Mathematics of Paul Erd\H{o}s

    All reducts of the random graph are model-complete

    Full text link
    We study locally closed transformation monoids which contain the automorphism group of the random graph. We show that such a transformation monoid is locally generated by the permutations in the monoid, or contains a constant operation, or contains an operation that maps the random graph injectively to an induced subgraph which is a clique or an independent set. As a corollary, our techniques yield a new proof of Simon Thomas' classification of the five closed supergroups of the automorphism group of the random graph; our proof uses different Ramsey-theoretic tools than the one given by Thomas, and is perhaps more straightforward. Since the monoids under consideration are endomorphism monoids of relational structures definable in the random graph, we are able to draw several model-theoretic corollaries: One consequence of our result is that all structures with a first-order definition in the random graph are model-complete. Moreover, we obtain a classification of these structures up to existential interdefinability.Comment: Technical report not intended for publication in a journal. Subsumed by the more recent article 1003.4030. Length 14 pages

    Hitting time results for Maker-Breaker games

    Full text link
    We study Maker-Breaker games played on the edge set of a random graph. Specifically, we consider the random graph process and analyze the first time in a typical random graph process that Maker starts having a winning strategy for his final graph to admit some property \mP. We focus on three natural properties for Maker's graph, namely being kk-vertex-connected, admitting a perfect matching, and being Hamiltonian. We prove the following optimal hitting time results: with high probability Maker wins the kk-vertex connectivity game exactly at the time the random graph process first reaches minimum degree 2k2k; with high probability Maker wins the perfect matching game exactly at the time the random graph process first reaches minimum degree 22; with high probability Maker wins the Hamiltonicity game exactly at the time the random graph process first reaches minimum degree 44. The latter two statements settle conjectures of Stojakovi\'{c} and Szab\'{o}.Comment: 24 page

    The isoperimetric constant of the random graph process

    Full text link
    The isoperimetric constant of a graph GG on nn vertices, i(G)i(G), is the minimum of SS\frac{|\partial S|}{|S|}, taken over all nonempty subsets SV(G)S\subset V(G) of size at most n/2n/2, where S\partial S denotes the set of edges with precisely one end in SS. A random graph process on nn vertices, G~(t)\widetilde{G}(t), is a sequence of (n2)\binom{n}{2} graphs, where G~(0)\widetilde{G}(0) is the edgeless graph on nn vertices, and G~(t)\widetilde{G}(t) is the result of adding an edge to G~(t1)\widetilde{G}(t-1), uniformly distributed over all the missing edges. We show that in almost every graph process i(G~(t))i(\widetilde{G}(t)) equals the minimal degree of G~(t)\widetilde{G}(t) as long as the minimal degree is o(logn)o(\log n). Furthermore, we show that this result is essentially best possible, by demonstrating that along the period in which the minimum degree is typically Θ(logn)\Theta(\log n), the ratio between the isoperimetric constant and the minimum degree falls from 1 to 1/2, its final value

    The integrated density of states of the random graph Laplacian

    Full text link
    We analyse the density of states of the random graph Laplacian in the percolating regime. A symmetry argument and knowledge of the density of states in the nonpercolating regime allows us to isolate the density of states of the percolating cluster (DSPC) alone, thereby eliminating trivially localised states due to finite subgraphs. We derive a nonlinear integral equation for the integrated DSPC and solve it with a population dynamics algorithm. We discuss the possible existence of a mobility edge and give strong evidence for the existence of discrete eigenvalues in the whole range of the spectrum.Comment: 4 pages, 1 figure. Supplementary material available at http://www.theorie.physik.uni-goettingen.de/~aspel/data/spectrum_supplement.pd
    corecore