8 research outputs found

    The Rabin cryptosystem revisited

    Full text link
    The Rabin public-key cryptosystem is revisited with a focus on the problem of identifying the encrypted message unambiguously for any pair of primes. In particular, a deterministic scheme using quartic reciprocity is described that works for primes congruent 5 modulo 8, a case that was still open. Both theoretical and practical solutions are presented. The Rabin signature is also reconsidered and a deterministic padding mechanism is proposed.Comment: minor review + introduction of a deterministic scheme using quartic reciprocity that works for primes congruent 5 modulo

    A New Hybrid Cryptosystem Involving DNA,Rabin, One Time Pad and Fiestel

    Full text link
    Information security is a crucial need in the modern world. Data security is a real concern, and many customers and organizations need to protect their sensitive information from unauthorized parties and attackers. In previous years, numerous cryptographic schemes have been proposed. DNA cryptography is a new and developing field that combines the computational and biological worlds. DNA cryptography is intriguing due to its high storage capacity, secure data transport, and massive parallel computing. In this paper, a new combination is proposed that offers good security by combining DNA, the Rabin algorithm, one time pad, and a structure inspired by Fiestel. This algorithm employs two keys. The first key is a DNA OTP key which is used for only one secure communication session. The second key, which combines the public and private keys, is a Rabin key. Additionally, by using a Feistel inspired scheme and randomness provided by DNA, the ciphertext is made harder to obtain without the private key.Comment: 11 page

    Unique Rabin-Williams Signature Scheme Decryption

    Get PDF
    Abstract. The extremely efficient Rabin-Williams signature scheme relies on decryption of a quadratic equation in order to retrieve the original message. Customarily, square roots are found using the Chinese Remainder Theorem. This can be done in polynomial time, but generally produces four options for the correct message which must be analyzed to determine the correct one. This paper resolves the problem of efficient deterministic decryption to the correct message modulo p2qp^2q by establishing conditions on the primes pp and qq as well as on any legitimate message. We do this using the CRT modulo pq to find four roots. We show that the correct root (initial message) is the only one of these four which is in our allowed message set (it is in fact the smallest of the four integers) and which satisfies a quadratic equation modulo p2qp^2q; no additional work is required to eliminate the others. As a result, we propose what we believe is now the most efficient version of R-W signature scheme decryption

    EXPLORING CONFIDENTIALITY AND PRIVACY OF IMAGE IN CLOUD COMPUTING

    Get PDF
    With the increasing popularity of cloud computing, clients are storing their data in cloud servers and are using “software as a service” for computing services. However, clients’ data may be sensitive, critical, and private, and processing such data with cloud servers may result in losing data privacy or compromising data confidentiality. Some cloud servers may be dishonest, while malicious entities may compromise others. In order to protect data privacy and confidentiality, clients need to be able to hide their actual data values and send the obfuscated values to cloud servers. This thesis deals with the outsourcing of computing to cloud servers, in which clients’ images can be computed and stored. This thesis proposes a technique that obfuscates images before sending them to servers, so these servers can perform computations on images without knowing the actual images. The proposed technique is expected to ensure data privacy and confidentiality. Servers will not be able to identify an individual whose images are stored and manipulated by the server. In addition, our approach employs an obfuscating technique to maintain the confidentiality of images, allowing cloud servers to compute obfuscated data accurately without knowing the actual data value, thus supporting privacy and confidentiality. The proposed approach is based on the Rabin block cipher technique, which has some weaknesses, however. The main drawback is its decryption technique, which results in four values, and only one of these values represents the actual value of plain data. Another issue is that the blocking technique requires a private key for each block that requires a high-computing effort; requiring one private key for each block of data demands that a great number of keys be stored by the client. As a result, it decreases the robustness of the Rabin block cipher. This thesis proposes additional techniques to overcome some of the weaknesses of the Rabin block cipher by introducing some new features, such as tokenization, a digit counter, and a set of blocks. The new technique increases the privacy of data and decreases the computational complexity by requiring fewer private keys. The new features have been implemented in image processing in order to demonstrate their applicability. However, in order to apply our approach to images, we must first apply some preprocessing techniques on images to make them applicable to being obfuscated by our proposed obfuscating system

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph
    corecore