921 research outputs found

    The quantum complexity of approximating the frequency moments

    Get PDF
    The kk'th frequency moment of a sequence of integers is defined as Fk=jnjkF_k = \sum_j n_j^k, where njn_j is the number of times that jj occurs in the sequence. Here we study the quantum complexity of approximately computing the frequency moments in two settings. In the query complexity setting, we wish to minimise the number of queries to the input used to approximate FkF_k up to relative error ϵ\epsilon. We give quantum algorithms which outperform the best possible classical algorithms up to quadratically. In the multiple-pass streaming setting, we see the elements of the input one at a time, and seek to minimise the amount of storage space, or passes over the data, used to approximate FkF_k. We describe quantum algorithms for F0F_0, F2F_2 and FF_\infty in this model which substantially outperform the best possible classical algorithms in certain parameter regimes.Comment: 22 pages; v3: essentially published versio

    Quantum query complexity of entropy estimation

    Full text link
    Estimation of Shannon and R\'enyi entropies of unknown discrete distributions is a fundamental problem in statistical property testing and an active research topic in both theoretical computer science and information theory. Tight bounds on the number of samples to estimate these entropies have been established in the classical setting, while little is known about their quantum counterparts. In this paper, we give the first quantum algorithms for estimating α\alpha-R\'enyi entropies (Shannon entropy being 1-Renyi entropy). In particular, we demonstrate a quadratic quantum speedup for Shannon entropy estimation and a generic quantum speedup for α\alpha-R\'enyi entropy estimation for all α0\alpha\geq 0, including a tight bound for the collision-entropy (2-R\'enyi entropy). We also provide quantum upper bounds for extreme cases such as the Hartley entropy (i.e., the logarithm of the support size of a distribution, corresponding to α=0\alpha=0) and the min-entropy case (i.e., α=+\alpha=+\infty), as well as the Kullback-Leibler divergence between two distributions. Moreover, we complement our results with quantum lower bounds on α\alpha-R\'enyi entropy estimation for all α0\alpha\geq 0.Comment: 43 pages, 1 figur

    Classical and Quantum Complexity of the Sturm-Liouville Eigenvalue Problem

    Get PDF
    We study the approximation of the smallest eigenvalue of a Sturm-Liouville problem in the classical and quantum settings. We consider a univariate Sturm-Liouville eigenvalue problem with a nonnegative function qq from the class C2([0,1])C^2([0,1]) and study the minimal number n(\e) of function evaluations or queries that are necessary to compute an \e-approximation of the smallest eigenvalue. We prove that n(\e)=\Theta(\e^{-1/2}) in the (deterministic) worst case setting, and n(\e)=\Theta(\e^{-2/5}) in the randomized setting. The quantum setting offers a polynomial speedup with {\it bit} queries and an exponential speedup with {\it power} queries. Bit queries are similar to the oracle calls used in Grover's algorithm appropriately extended to real valued functions. Power queries are used for a number of problems including phase estimation. They are obtained by considering the propagator of the discretized system at a number of different time moments. They allow us to use powers of the unitary matrix exp(12iM)\exp(\tfrac12 {\rm i}M), where MM is an n×nn\times n matrix obtained from the standard discretization of the Sturm-Liouville differential operator. The quantum implementation of power queries by a number of elementary quantum gates that is polylog in nn is an open issue.Comment: 33 page

    Improved Bounds on the Randomized and Quantum Complexity of Initial-Value Problems

    Get PDF
    We deal with the problem, initiated in [8], of finding randomized and quantum complexity of initial-value problems. We showed in [8] that a speed-up in both settings over the worst-case deterministic complexity is possible. In the present paper we prove, by defining new algorithms, that further improvement in upper bounds on the randomized and quantum complexity can be achieved. In the H\"older class of right-hand side functions with r continuous bounded partial derivatives, with r-th derivative being a H\"older function with exponent \rho, the \epsilon-complexity is shown to be O((1/\epsilon)^{1/(r+\rho+1/3)}) in the randomized setting, and O((1/\epsilon)^{1/(r+\rho+1/2)}) on a quantum computer (up to logarithmic factors). This is an improvement for the general problem over the results from [8]. The gap still remaining between upper and lower bounds on the complexity is further discussed for a special problem. We consider scalar autonomous problems, with the aim of computing the solution at the end point of the interval of integration. For this problem, we fill up the gap by establishing (essentially) matching upper and lower complexity bounds. We show that the complexity in this case is of order (1/\epsilon)^{1/(r+\rho+1/2)} in the randomized setting, and (1/\epsilon)^{1/(r+\rho+1)} in the quantum setting (again up to logarithmic factors).Comment: 17 pages, extended version (new section added), to appear in the Journal of Complexit

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page

    Average-Case Quantum Query Complexity

    Get PDF
    We compare classical and quantum query complexities of total Boolean functions. It is known that for worst-case complexity, the gap between quantum and classical can be at most polynomial. We show that for average-case complexity under the uniform distribution, quantum algorithms can be exponentially faster than classical algorithms. Under non-uniform distributions the gap can even be super-exponential. We also prove some general bounds for average-case complexity and show that the average-case quantum complexity of MAJORITY under the uniform distribution is nearly quadratically better than the classical complexity.Comment: 14 pages, LaTeX. Some parts rewritten. This version to appear in the Journal of Physics
    corecore