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Abstract

We study the approximation of the smallest eigenvalue of a Sturm-Liouville prob-
lem in the classical and quantum settings. We consider a univariate Sturm-Liouville
eigenvalue problem with a nonnegative function q from the class C 2([0, 1]) and study
the minimal number n(ε) of function evaluations or queries that are necessary to com-
pute an ε-approximation of the smallest eigenvalue. We prove that n(ε) = Θ(ε−1/2) in
the (deterministic) worst case setting, and n(ε) = Θ(ε−2/5) in the randomized setting.
The quantum setting offers a polynomial speedup with bit queries and an exponential
speedup with power queries. Bit queries are similar to the oracle calls used in Grover’s
algorithm appropriately extended to real valued functions. Power queries are used for
a number of problems including phase estimation. They are obtained by considering
the propagator of the discretized system at a number of different time moments. They
allow us to use powers of the unitary matrix exp( 1

2 iM), where M is an n × n matrix
obtained from the standard discretization of the Sturm-Liouville differential operator.
The quantum implementation of power queries by a number of elementary quantum
gates that is polylog in n is an open issue.

In particular, we show how to compute an ε-approximation with probability 3
4

using n(ε) = Θ(ε−1/3) bit queries. For power queries, we use the phase estimation
algorithm as a basic tool and present the algorithm that solves the problem using n(ε) =
Θ(log ε−1) power queries, log2 ε−1 quantum operations, and 3

2 log ε−1 quantum bits. We
also prove that the minimal number of qubits needed for this problem (regardless of
the kind of queries used) is at least roughly 1

2 log ε−1. The lower bound on the number
of quantum queries is proven in [5].

We derive a formula that relates the Sturm-Liouville eigenvalue problem to a
weighted integration problem. Many computational problems may be recast as this
weighted integration problem, which allows us to solve them with a polylog number of
power queries. Examples include Grover’s search, the approximation of the Boolean
mean, NP-complete problems, and many multivariate integration problems. In this
paper we only provide the relationship formula. The implications are covered in [25].
Keywords: Eigenvalue problem, numerical approximation, quantum algorithms
PACS numbers: 03.67.Lx, 02.60.-x
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1 Introduction

The study of the potential power of quantum computers has been a major theoretical chal-
lenge. There will be an additional incentive to build a quantum computer if we can iden-
tify computationally important problems for which quantum computation offers significant
speedups over computation on a classical computer.

For discrete problems, the best known quantum algorithms are due to Shor and Grover,
see [27, 13]. Shor’s algorithm for factorization has an exponential speedup over all known
algorithms on a classical computer. Still, we can not yet claim that we have an exponential
speedup for this problem, since the complexity of factorization on a classical computer is
unknown. Grover’s algorithm for data search offers a quadratic speedup.

For continuous problems, quantum complexity is known for linear problems such as mul-
tivariate integration, path integration and multivariate approximation, see [14, 15, 16, 17,
24, 32]. For these problems we have an exponential speedup over the worst case setting, and
a polynomial speedup over the randomized setting. The first quantum study of a nonlin-
ear continuous problem was done in [20] for ordinary differential equations with polynomial
speedups over the classical settings.

The purpose of this paper is to present classical and quantum complexity results of
another nonlinear continuous problem. This continuous problem is quite natural and com-
putationally important, since it corresponds to the (simplified) univariate Sturm-Liouville
eigenvalue problem. The Sturm-Liouville eigenvalue problem is defined in [10] in full gener-
ality. Here it is defined as finding the smallest eigenvalue of the differential operator

Lqu (x) := −u′′(x) + q(x) u(x) for x ∈ (0, 1),

with the boundary conditions u(0) = u(1) = 0. We assume that the function q is non-
negative and belongs to the class C2([0, 1]) of twice continuously differentiable functions
whose norm ‖q‖ := maxi=0,1,2 maxx∈[0,1] |q(i)(x)| is bounded by 1. The operator Lq maps
C2([0, 1]) into C([0, 1]).

The Sturm-Liouville eigenvalue problem has been extensively studied in the literature.
The properties of the eigenvalues and the eigenfunctions are well known and so are numerical
algorithms for approximating them on a classical computer, see, e.g. [2, 9, 10, 19, 28].
Nevertheless, the complexity of approximating the smallest eigenvalue in the worst case and
randomized settings, as well as in the quantum setting, has not yet been addressed.

In this paper we study classical and quantum algorithms. We prove bounds on the
worst case and randomized complexities on a classical computer, and bounds on the query
complexity and on the qubit complexity. We prove that the complexity in the classical
settings is a polynomial in ε−1.

We study the quantum setting with bit queries and prove polynomial speedups over the
classical settings. Bit queries correspond to approximate computation of function values,
see [14], and are used in all papers dealing with the quantum study of continuous problems.

We also study the quantum setting with power queries. Such queries are formally defined
in Section 5.2. Here we only mention that they are used in the phase estimation algorithm,
which is the core of many quantum algorithms including Shor’s and Grover’s algorithms.
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Power queries are controlled-W pj queries for some n× n unitary matrix W and some expo-
nents pj. For the phase estimation algorithm, we have pj = 2j−1 for j = 1, 2, . . . , m, with m
of order log ε−1. For the factoring problem of a large integer N , Shor’s algorithm uses
the unitary matrix W such that power queries can be implemented by at most O(log3N)
elementary quantum gates.

For the Sturm-Liouville eigenvalue problem, as well for all problems studied in [25], we
use power queries with the specific unitary matrix

W = exp
(

1
2
iMq

)
with i =

√
−1, (1)

where Mq is an n × n real symmetric tridiagonal matrix that is a classical approximation
of the differential operator Lq, see Section 3.2. The matrix Mq depends on the values of
q(j/(n+ 1)) that appear on the diagonal of Mq for j = 1, 2, . . . , n.

Unitary matrices similar to (1) play a key role in quantum mechanics. They give the
solution of the Schrödinger equation, they are the propagator of a system evolving with
Hamiltonian Mq, and are important in quantum simulation, see [22]. Zalka [34] deals with
their implementation. The crucial point about power queries is that we can use W j of the
matrix W given by (1) as one quantum query for some j. Hence, lower bound results for bit
queries do not apply to power queries.

We prove that in the quantum setting with power queries, the Sturm-Liouville eigenvalue
problem requires only roughly log ε−1 power queries with the matrix W of (1). As shown
in [25], many computational problems can be reduced to the solution of the Sturm-Liouville
eigenvalue problem, and they can be also solved in polylog number of power queries. The
list of such problems include Grover’s search, NP-complete problems, and many continuous
problems. This proves that the quantum setting with power queries with the matrix W of
(1) is exponentially more powerful than the quantum setting with bit queries.

We stress that, contrary to Shor’s algorithm, we do not know if power queries with the
n×n matrix W of (1) can be implemented by a number of existing elementary quantum gates
that is polylog in n. We asked a number of colleagues and most of them doubt whether this
can be achieved. If this is indeed the case, then the positive results on the polylog number of
such power queries will be of only theoretical interest. Still, if a future quantum computer is
able to perform such power queries in a polylog number of, perhaps, more general elementary
quantum gates or by some other quantum devices, the polylog number of power queries will
lead to efficient quantum algorithms, and will allow us to solve many computational problems
exponentially faster than on a classical computer. From this point of view, we may interpret
the positive results on the number of power queries with the matrix W of (1) as the indication
that building a quantum computer with such queries would be a very desirable task which
would give us a very powerful computational device.

2 Survey of the Results

In this section we explain our results in more technical terms. For a classical computer, we
study the worst case and randomized settings in the real number model of computation with
oracles, see [23, 30, 31]. That is, we assume that arithmetic operations (addition, subtraction,
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multiplication, division, and evaluation of elementary functions), as well as comparisons of
real numbers, are performed exactly with cost taken as unity. We also assume that the
information about functions q is given by sampling q at finitely many points with the cost
of one function evaluation taken as c. Typically c � 1.

We want to approximate the smallest eigenvalue λ(q) of the operator Lq to within ε.
Let n(ε) be the smallest number of function values of q needed to compute such an ε-
approximation in a given setting. The number n(ε) is called the information complexity. The
complexity, comp(ε), is defined as the minimal total cost of computing an ε-approximation
in a given setting. Obviously we have

cn(ε) ≤ comp(ε).

We prove that in both classical settings, the complexity of the Sturm-Liouville eigenvalue
problem is polynomial in ε−1, or equivalently is exponential in the number blog ε−1c of
correct bits of a computed approximation. More precisely, there exist positive numbers αi

independent of ε such that:

• in the worst case setting,

α1 ε
−1/2 ≤ n(ε) ≤ α2 ε

−1/2,

α1 c ε−1/2 ≤ comp(ε) ≤ α2 c ε−1/2 + α3 ε
−1/2 log ε−1,

• in the randomized setting,

α4 ε
−2/5 ≤ n(ε) ≤ α5 ε

−2/5,

α4 c ε−2/5 ≤ comp(ε) ≤ α5 c ε−2/5 + α6 ε
−1/2 log ε−1.

The lower bounds on n(ε), and consequently on comp(ε), are obtained by relating the
eigenvalue problem to the integration problem for functions from the unit ball of C2([0, 1]).
It is well known that the minimal number of function values for this integration problem is
bounded from below by roughly ε−1/2 in the worst case setting and by ε−2/5 in the randomized
setting; see, e.g., [23, 30] and the survey of these results in [31].

The upper bounds on n(ε) and comp(ε) in the worst case setting are obtained by the
cost of the classical algorithm that computes an ε-approximation by the bisection algorithm
of the Sturm sequence [33, p. 300], see also [11, Ch. 5.3.4], applied to an n× n matrix which
is the classical discretization of the operator Lq with n = Θ(ε−1/2). The matrix depends
on n function values of q computed at equidistant points of [0, 1]. Since we need roughly
log ε−1 bisection steps, and the cost of each step is proportional to n, the total cost is of
order (c + log ε−1)ε−1/2. Hence, modulo the logarithm of ε−1, the worst case complexity is
of order c ε−1/2.

The upper bounds on n(ε) and comp(ε) in the randomized setting are obtained by the
following algorithm. We first approximate the function q by a natural cubic spline q̄ using
n deterministic sample points of q at equidistant points of [0, 1] with n = Θ(ε−2/5). The
relationship between the smallest eigenvalue and integration problems, see Section 3, states
that

λ(q) = λ(q̄) +

∫ 1

0

(q(x) − q̄(x)) u2
q̄(x) dx + O(n−4). (2)
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Here uq̄ is the normalized eigenfunction,
∫ 1

0
u2

q̄(x) dx = 1, corresponding to the smallest
eigenvalue λ(q̄).

Since we have complete information on the spline q̄, we may approximate λ(q̄) and uq̄

with arbitrarily small error. For λ(q̄), we achieve an error of order ε as in the worst case
setting, with cost proportional to ε−1/2 log ε−1. To obtain an approximation to uq̄, we apply
one step of the inverse power algorithm with an appropriately chosen initial vector. In this
way we obtain a vector, from which we compute uq̄ via piecewise interpolation. The total
cost of computing λ(q̄) and uq̄ is of order ε−1/2 log ε−1.

We then approximate the second term in (2) using the Monte Carlo algorithm for the
function (q(x)− q̄(x))u2

q̄(x) computed at n randomized points with uniform distribution over
[0, 1]. This leads to an ε-approximation in the randomized setting with cost bounded from
above by a quantity proportional to c ε−2/5 + ε−1/2 log ε−1, where the first term bounds the
information cost and the second term bounds the combinatorial cost of the algorithm. Hence,
we have a sharp estimate on the randomized information complexity n(ε). The ratio of the
upper to lower bounds of the randomized complexity is roughly at most ε−1/10.

In both classical settings, algorithms for which we obtain upper bounds on complexity
require space of order ε−1/2. This follows from the fact that we need to work on n × n
tridiagonal matrices with n of order ε−1/2.

We now turn to the quantum setting. Quantum algorithms are described in Section 4.
Here we only mention that quantum algorithms work on 2ν × 2ν unitary matrices, where ν
is the number of qubits. The qubit complexity is defined as the minimal number of qubits
needed to solve a problem. Roughly speaking, the qubit complexity corresponds to the
space complexity for a classical computer. For the foreseeable future, qubits will be a scarce
resource. That is why the qubit complexity is especially important, and computationally
important problems with relatively small qubit complexity are of special interest.

We prove that the qubit complexity, compqub(ε), of the Sturm-Liouville eigenvalue prob-
lem is of order log ε−1, which is relatively modest. In this paper log denotes log2. More
precisely, we prove that

1
2

log ε−1 + Ω(1) ≤ compqub(ε) ≤ 3
2

log ε−1 + O(1).

These bounds hold regardless of the kind of queries used. Clearly, the qubit complexity
yields a lower bound for the cost of any quantum algorithm solving this problem.

We now turn to the quantum setting with bit queries. We show that the bit query
complexity is Θ(ε−1/3). This result is obtained by using:

• equation (2) relating the Sturm-Liouville eigenvalue problem to integration,

• a lower bound on bit queries for integration, and

• a modification of the classical randomized algorithm described above that uses a quan-
tum summation algorithm instead of Monte Carlo to approximate the weighted integral
in (2).

We now discuss the quantum setting with power queries. In this setting, the Sturm-
Liouville eigenvalue problem can be solved using the well-known phase estimation algorithm
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as a basic tool, see, e.g., [22, Section 5.2]. This algorithm uses power queries and the
quantum inverse Fourier transform as its main ingredients. The power queries have the form
controlled-W 2j

for j ∈ N, i.e., they use powers of the matrix W = exp
(

1
2
iMq

)
, with Mq an

n×n real symmetric tridiagonal matrix whose diagonal elements depend on the values of q.
The matrix Mq is a well-known discretization of the differential operator Lq, and its size n
depends on the necessary accuracy. To obtain an ε-approximation we use n of order ε−1/2.

The phase estimation algorithm uses the exact eigenvector of Mq, equivalently of W , as
part of its initial state, see [22, Section 5.2]. Abrams and Lloyd [1] analyzed the case when
the exact eigenvector is replaced by an approximate eigenvector and concluded that as long
as the approximation is good enough, the phase estimation algorithm will still supply a good
approximation to the corresponding eigenvalue. Jaksch and Papageorgiou [18] proposed an
efficient construction of an approximate eigenvector. Their idea was to solve the problem
with low accuracy on a classical computer and obtain a “short”vector which approximates
the eigenfunction uq at few points. Then the amplitudes of this short vector are replicated
on a quantum computer by the Hadamard transform, which yields a “long”(vector) state
that can be used as the approximate initial state in the phase estimation algorithm.

We show how the construction of Jaksch and Papageorgiou can be used for the Sturm-
Liouville eigenvalue problem. In this way, we compute an ε-approximation of the smallest
eigenvalue with probability 3

4
by the phase estimation algorithm using log ε−1 +O(1) power

queries. The algorithm requires an additional number of quantum operations at most of
order log2 ε−1. This additional cost is for the quantum inverse Fourier transform. Finally,
the number of qubits is 3

2
log ε−1 + O(1). A lower bound on the number of power queries

of order log ε−1 has been proven in [5].
Comparing these quantum estimates to the classical complexity bounds in the worst

case and randomized setting, we see that the quantum setting with power queries yields an
exponential speedup between the number of power queries and the number of function values
needed for the Sturm-Liouville eigenvalue problem.

Finally, we point out important consequences of our results, which we study in detail in
[25]. Knowing that the Sturm-Liouville eigenvalue problem can be solved with polylog power
queries, it is natural to study which computational problems can be reduced to this problem.
In this respect, we think that the most important result of this paper is the formula that
relates this eigenvalue problem to integration. In a particular case, this formula, see (10),
states that

λ(q) = π2 + 1
2

+ 2

∫ 1

0

(
q(x) − 1

2

)
sin2(πx) dx + O

(
‖q − 1

2
‖2
∞
)
. (3)

Hence, the problem of computing the smallest eigenvalue is equivalent, modulo the second
order term, to the weighted integration problem. Since λ(q) can be approximated with poly-
log power queries, so can the weighted integral of q. It turns out that many computational
problems can be formulated as an integration problem. Examples include important discrete
problems such as Grover’s search, the approximation of the Boolean mean, and NP-complete
problems. The approximation of the Boolean mean is used as the primary tool to compute
multivariate integrals and path integrals. Hence, all these problems can be solved by reduc-
ing them to the Sturm-Liouville eigenvalue problem with a polylog number of power queries
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in the quantum setting. It is well-known that Grover’s search and the approximation of the
Boolean mean require a number of bit queries polynomial in the problem size, which in our
case is a polynomial in ε−1. This shows that power queries are exponentially more powerful
than bit queries, see [25] for details.

3 Problem Definition

We deal with functions from the class

Q =
{
q : [0, 1] → [0, 1]

∣∣ q ∈ C2([0, 1]) and ‖q‖ := max
i=0,1,2

max
x∈[0,1]

|q(i)(x)| ≤ 1
}
.

For a function q ∈ Q, we consider the Sturm-Liouville eigenvalue problem Lqu = λ u for a
non-zero u, or equivalently

u′′(x) − q(x)u(x) + λu(x) = 0, for x ∈ (0, 1), (4)

with the boundary conditions
u(0) = u(1) = 0. (5)

Let λ = λ(q) be the smallest eigenvalue of (4), (5). Multiplying (4) by u and integrating by
parts, see [2, 10, 28], we conclude that the smallest eigenvalue satisfies

λ(q) = min
06=u∈H1

0

∫ 1

0
[(u′(x))2 + q(x)u2(x)] dx

∫ 1

0
u2(x) dx

, (6)

where H1
0 is the Sobolev space of absolutely continuous1 functions for which u′ ∈ L2([0, 1])

and u(0) = u(1) = 0.
Let uq be a normalized real eigenfunction corresponding to the smallest eigenvalue. It is

known that the eigenvalues of Lq are simple, and the eigenspace corresponding to λ(q) is of
dimension one. Therefore uq is uniquely defined up to the sign. In particular, u2

q is uniquely
defined. Then (6) states that

λ(q) =

∫ 1

0

((
u′q(x)

)2
+ q(x)u2

q(x)
)
dx and ‖uq‖L2 :=

(∫ 1

0

u2
q(x) dx

)1/2

= 1.

(7)
Observe that q ∈ Q implies that uq ∈ C4([0, 1]). Since ‖q‖ ≤ 1, and ‖uq‖L2 = 1 with

uq(0) = uq(1) = 0, then |u(i)
q (x)| are uniformly bounded for all i ∈ [0, 4], x ∈ [0, 1] and q ∈ Q,

see e.g., [10, p. 337].
The smallest eigenvalue λ(q) is a non-decreasing function of q, i.e., q1(x) ≤ q2(x) for

x ∈ [0, 1] implies λ(q1) ≤ λ(q2). It is known that for q ≡ c we have

λ(c) = π2 + c and uc(x) =
√

2 sin(πx).

1A function f is absolutely continuous if and only if it can be written as f(x) = f(0) +
∫

x

0
f ′(t)dt for all

x ∈ [0, 1].
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This implies that for q ∈ Q, we have λ(q) ∈ [λ(0), λ(1)] = [π2, π2 + 1].
We will need estimates of the smallest eigenvalues and their eigenfunctions for perturbed

functions q. This is a classical problem and many such estimates can be found in the litera-
ture, not only for the simplified Sturm-Liouville problem that we consider in this paper but
also for more general eigenvalue problems. In our case, the problem of perturbed eigenvalues
and eigenvectors is well-conditioned, since the differential operator Lq is symmetric and the
eigenvalues of Lq are well separated. Combining results from [10, 19, 29] one can obtain the
following estimates for q, q̄ ∈ Q:

|λ(q) − λ(q̄)| ≤ ‖q − q̄‖∞ := max
x∈[0,1]

|q(x) − q̄(x)|, (8)

‖uq − uq̄‖∞ = O (‖q − q̄‖∞) , (9)

λ(q) = λ(q̄) +

∫ 1

0

(q(x) − q̄(x)) u2
q̄(x) dx + O

(
‖q − q̄‖2

∞
)
. (10)

We stress that the factors in the big-O notation are independent of q and q̄.
These relations follow by elementary arguments. Indeed, (8) follows from (6) by taking

u = uq̄, which leads to λ(q) − λ(q̄) ≤ ‖q − q̄‖∞. By replacing the roles of q and q̄ we get
λ(q̄) − λ(q) ≤ ‖q − q̄‖∞, which implies (8). The next relation (9) can be also proved by
a matrix approximation to the operator Lq, which will be done in Section 4. Finally, (10)
follows by again taking u = uq̄ in (6), which leads to

λ(q) ≤ λ(q̄) +

∫ 1

0

(q(x) − q̄(x)) u2
q̄(x) dx

= λ(q̄) +

∫ 1

0

(q(x) − q̄(x)) u2
q(x) dx +

∫ 1

0

(q(x) − q̄(x))
(
u2

q̄(x) − u2
q(x)

)
dx.

By (9), the last term is of order ‖q− q̄‖2
∞. Taking u = uq in the expression (6) defining λ(q̄),

we obtain

λ(q̄) ≤ λ(q) +

∫ 1

0

(q̄(x) − q(x)) u2
q(x) dx.

The last two inequalities imply (10). We shall see later that the formula (10) will be very
useful in deriving lower bounds for classical algorithms. Note that if we take q̄ ≡ 1

2
, then the

formula (10) becomes (3).

4 Classical Algorithms

In this section we consider classical algorithms, i.e., algorithms on a classical (non-quantum)
computer. These algorithms can be either deterministic or randomized. They use informa-
tion about the functions q from Q by computing q(ti) for some discretization points ti ∈ [0, 1].
Here, i = 1, 2, . . . , nq, for some nq, and the points ti can be adaptively chosen, i.e., ti can be
a function

ti = ti(t1, q(t1), . . . , ti−1, q(ti−1)),

of the previously computed function values and points for i ≥ 2. The number nq can also be
adaptively chosen, see, e.g., [30] for details.
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A classical deterministic algorithm produces an approximation

φ(q) = φ(q(t1), . . . , q(tnq
))

to the smallest eigenvalue λ(q) based on finitely many values of q computed at deterministic
points. Let n = supq∈Q nq. We assume that n < ∞. The worst case error of such a
deterministic algorithm φ is given by

ewor(φ, n) = sup
q∈Q

|λ(q) − φ(q)|. (11)

A classical randomized algorithm produces an approximation to λ(q) based on finitely
many values of q computed at random points, and is of the form

φω(q) = φω(q(t1,ω), . . . , q(tnq,ω,ω)),

where φω, ti,ω and nq,ω are random variables. We assume that the mappings

ω 7→ ti,ω = ti(t1,ω, q(t1,ω), . . . , ti−1,ω, q(ti−1,ω)),

ω 7→ φω,

ω 7→ nq,ω

are measurable. Let nq = E(nq,ω) be the expected number of values of the function q with
respect to ω . As before, we assume that n = supq∈Q nq < ∞. The randomized error of
such a randomized algorithm φ is given by

eran(φ, n) = sup
q∈Q

(
E[λ(q) − φω(q)]2

)1/2
. (12)

For simplicity and brevity we consider the error of randomized algorithms in the L2 sense.
It is straightforward to extend our results for the error of randomized algorithms defined in
the Lp-sense with p ∈ [1,∞].

We denote the minimal number of function values needed to compute an ε-approximation
of the Sturm-Liouville eigenvalue problem in the worst case and randomized settings by

nwor(ε) = min{n : ∃ φ such that ewor(φ, n) ≤ ε } and

nran(ε) = min{n : ∃ φ such that eran(φ, n) ≤ ε },

respectively.

4.1 Lower Bounds

We now prove lower bounds on nwor(ε) and nran(ε).

Theorem 4.1.

nwor(ε) = Ω
(
ε−1/2

)
, nran(ε) = Ω

(
ε−2/5

)
.

9



Proof. Define

F =
{
f : f ∈ C2([0, 1]), max (‖f‖∞, ‖f ′‖∞, ‖f ′′‖∞ ) ≤ 1 }

)
, (13)

and consider the weighted integration problem

I(f) =

∫ 1

0

f(x) sin2(πx) dx ∀ f ∈ F.

It is well-known that any algorithm using n function values for approximating of this weighted
integration problem has worst case error at least proportional to n−2 in the worst case setting,
and to n−2.5 in the randomized setting, see [23, 30]2.

For c ∈ (0, 1
2
], consider the class

Fc = F ∩ { f ∈ F : ‖f‖∞ ≤ c }. (14)

For n−2 much less than c, the proofs for the class F can be used to deduce the same lower
bounds on algorithms for approximation of the weighted integration problem for the class Fc.

For f ∈ Fc define q = 1
2

+ f . Then q ∈ Q. From (3) we have

λ(q) = π2 + 1
2

+ 2 I(f) + O(c2).

For any algorithm φ using n function values of q for the Sturm-Liouville eigenvalue problem,
define the algorithm ψ(f) = 1

2
(φ(q)− π2 − 1

2
) for the weighted integration problem. Then ψ

uses n function values of f , and

λ(q) − φ(q) = 2 (I(f) − ψ(f)) + O(c2). (15)

Let c = n−3/2. Then n−2 = o(c), and therefore the error of φ is lower bounded by Ω(n−2) in
the worst case setting, and by Ω(n−2.5) in the randomized setting. Hence, the error of φ is
at most ε when n = Ω(ε−1/2) in the worst case setting, and n = Ω(ε−2/5) in the randomized
setting. Since this holds for an arbitrary algorithm φ, the proof is complete.

4.2 Upper Bounds in the Worst Case Setting

We now discuss upper bounds on nwor(ε), as well as bounds on the complexity in the worst
case setting. The worst case cost of an algorithm φ using n function values is defined as

costwor(φ) = sup
q∈Q

(cnq +mq) ,

where mq is the number of arithmetic operations used by the algorithm for a function q
from Q. The worst case complexity compwor(ε) is defined as the minimal cost of an algorithm
whose worst case error is at most ε,

compwor(ε) = min { costwor(φ) : φ such that ewor(φ, n) ≤ ε } .
2Formally, these results are proved for I(f) =

∫
1

0
f(x) dx. However, the same proofs can be applied for

the integration problem with the weight sin2(πx) and the same lower bounds hold.
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Obviously, compwor(ε) ≥ cnwor(ε).
We now discuss the classical algorithm for the Sturm-Liouville eigenvalue problem, see

e.g., [11, 19], and show that it is almost optimal in the worst case setting. This algorithm
uses n = Θ(ε−1/2) function values of q at the equidistant points i/(n+ 1) for i = 1, 2, . . . , n.
Then the operator Lq is approximated by the tridiagonal n× n matrix Mq of the form

Mq = (n+ 1)2




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




+




q( 1
n+1

)

q( 2
n+1

)
. . .

q(n−1
n+1

)

q( n
n+1

)



.

Clearly, Mq is a symmetric and positive definite matrix. Let λj = λj(Mq) and zj = zj(Mq)
be the eigenvalues and eigenvectors of Mq, i.e., Mqzj = λjzj with

λ1 ≤ λ2 ≤ · · · ≤ λn,

where the vectors zj are orthogonal and normalized such that

‖zj‖2
L2

:=
1

n

n∑

k=1

z2
j,k = 1

with zj,k being the kth component of zj. Note that we use the subscript L2 in the norm of a
vector to stress similarity to the L2 norm of functions, and to distinguish from the Euclidean
second norm. Clearly, ‖zj‖L2 = 1√

n
‖z‖2.

For q ≡ c, it is known, see, e.g., [11], that

λj(Mc) = c + 4(n+ 1)2 sin2

(
jπ

2(n+ 1)

)
,

and zj(Mc) = [zj,1(Mc), zj,2(Mc), . . . , zj,n(Mc)]
T with

zj,k(Mc) =

(
2n

n+ 1

)1/2

sin

(
jkπ

n+ 1

)
.

It is known, see, e.g., [19], that the smallest eigenvalue λ1(Mq) of the matrix Mq approx-
imates the smallest eigenvalue λ(q) of the operator Lq with error of order n−2, i.e.,

λ(q) − λ1(Mq) = O
(
n−2
)

= O(ε).

Hence, it is enough to approximate λ1(Mq) with error of order ε. This can be achieved by
using roughly log ε−1 bisection steps. Each step consists of computing the n terms of the
Sturm sequence, and this can be done in cost proportional to n. The total cost is of order
(c + log ε−1)ε−1/2. For details, see [11, 33]. Theorem 4.1 and the cost of this algorithm lead
to the following bounds for the minimal number of function values and for the worst case
complexity.
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Theorem 4.2.

nwor(ε) = Θ(ε−1/2), Ω(c ε−1/2) = compwor(ε) = O(c ε−1/2 + ε−1/2 log ε−1).

Remark 4.1. We now show how (9) can be proven, based on the properties of the
matrix Mq. First observe that for q = 0, the eigenvalues λj(M0) are well separated, since

λj+1(M0) − λj(M0) = 4(n+ 1)2 sin
(2j + 1)π

2(n+ 1)
sin

π

2(n+ 1)

≥ 4(n+ 1)2 sin
3π

2(n+ 1)
sin

π

2(n+ 1)
≈ 3π2.

For q ∈ Q, the Hermitian matrix Mq differs from M0 by the diagonal matrix diag q(i/(n+1))
whose elements satisfy q(i/(n + 1)) ∈ [0, ‖q‖∞] with ‖q‖∞ ≤ 1. Using the known estimates
on the perturbed eigenvalues of Hermitian matrices, see [33], we have

min
i=1,2,...,n

|λj(Mq) − λi(M0)| ≤ ‖q‖∞

for all j = 1, 2, . . . , n. Since the intervals [λi(M0) − 1, λi(M0) + 1] are disjoint, we conclude
that

|λj(Mq) − λj(M0)| ≤ ‖q‖∞ ≤ 1,

and that
λj+1(Mq) − λj(Mq) ≥ λj+1(M0) − λj(M0) − 2 ≈ 3π2 − 2.

Define

ũq,n =

[
uq

(
1

n+ 1

)
, . . . , uq

(
n

n+ 1

)]T

,

where uq is the normalized real eigenfunction corresponding to the smallest eigenvalue. Then
‖ũq,n‖L2 = 1 + o(1). We normalize ũq,n and obtain

uq,n =
1

‖ũq,n‖L2

ũq,n.

As mentioned in Section 3, the eigenfunction uq is defined uniquely up to its sign. Ob-
viously, the same is true for the eigenvector z1(Mq). We choose the signs of uq and z1(Mq)
such that

‖uq,n − z1(Mq)‖L2 ≤ ‖uq,n + z1(Mq)‖L2 .

All the components of the vector

ηn := Mquq,n − λ(q)uq,n

are of order n−2, and therefore ‖ηn‖L2 = O(n−2). From the a posteriori error estimate, see
[33, p. 173], we conclude that

‖uq,n − z1(Mq)‖L2 = O(n−2) ∀ q ∈ Q

12



with the factor in the big-O notation independent of q. Note also that

Mquq̄,n − λ(q)uq̄,n = Mq̄uq̄,n − λ(q̄)uq̄,n + rn,

with ‖rn‖L2 = O(‖q − q̄‖∞). Hence

‖uq̄,n − z1(Mq)‖L2 = O(‖q − q̄‖∞ + n−2).

Finally, we have

‖uq,n − uq̄,n‖L2 = ‖uq,n − z1(Mq) + z1(Mq) − uq̄,n‖L2 = O(n−2 + ‖q − q̄‖∞).

Letting n tend to infinity, we conclude that

‖uq − uq̄‖L2 = O(‖q − q̄‖∞).

Since both uq and uq̄ satisfy (4) for (q, λ(q)) and (q̄, λ(q̄)), respectively, we have

u′′q(x) − u′′q̄(x) = (q(x) − λ(q))(uq(x) − uq̄(x)) + uq̄(x) ((q(x) − q̄(x)) − (λ(q) − λ(q̄))) .

Therefore
‖u′′q − u′′q̄‖L2 = O(‖q − q̄‖∞).

This and the fact that u− uq̄ vanishes at 0 and 1 imply

‖uq − uq̄‖∞ = O(‖q − q̄‖∞),

as claimed.

4.3 Upper Bounds in the Randomized Setting

We now turn to the randomized setting. The cost of a randomized algorithm φ, using
n = supq∈Q E(nq,ω) <∞ randomized function values, is now defined as

costran(φ) = sup
q∈Q

(
E (cnq,ω +mq,ω)2)1/2

,

where mq,ω is the number of arithmetic operations used by the algorithm for a function q
from Q and a random variable ω. The randomized complexity

compran(ε) = min { costran(φ) : φ such that eran(φ, n) ≤ ε } ,

is the minimal cost of an algorithm whose randomized error is at most ε. Obviously,
compran(ε) ≥ cnran(ε).

We now derive upper bounds on nran(ε) and compran(ε) by presenting a randomized algo-
rithm that depends on a number of parameters. Then we find the values of these parameters
for which the randomized error is ε. We first compute m+1 function values of q at determin-
istic points i/m, for i = 0, 1, . . . , m, and construct a cubic natural spline qcub interpolating
q at these points, see e.g., [7] for information about cubic splines. It is well known that this
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can be done with cost proportional to m, and ‖q−qcub‖∞ = O(m−2). The function qcub does
not have to be non-negative. Since q ≥ 0 then q̄ = qcub + c ≥ 0 with a constant c = O(m−2).
We have q̄ ∈ Q and ‖q − q̄‖∞ = O(m−2). We apply the formula (10) for the function q̄ and
obtain

λ(q) − λ(q̄) =

∫ 1

0

(q(x) − q̄(x)) u2
q̄(x) dx + O

(
m−4

)
. (16)

This suggests that we can improve the accuracy of approximating λ(q) − λ(q̄) by using the
classical Monte Carlo algorithm applied to the first term of the right hand side of (16).
We will need to know, at least approximately, the eigenvalue λ(q̄) and the eigenvector uq̄.
Suppose we approximate λ(q̄) by λq̄ with the worst case error

sup
q∈Q

|λ(q̄) − λq̄| ≤ δ1, (17)

and the eigenfunction uq̄ by zq̄ with the worst case error

sup
q∈Q

‖uq̄ − zq̄‖L2 ≤ δ2. (18)

Assume for a moment that λq̄ and zq̄ have been computed. For a function v, define

fv(x) = (q(x) − q̄(x))v2(x) and I(fv) =
∫ 1

0
fv(x) dx.

The randomized algorithm φ based on the Monte Carlo with k randomized samples takes
the form

φω(q) = λq̄ +
1

k

k∑

j=1

(
q(xj,ω) − q̄(xj,ω)

)
z2

q̄ (xj,ω),

where xj,ω are independent and uniformly distributed numbers from [0, 1]. Here ω represents
a random element. We have

|λ(q) − φω(q)| ≤ |λ(q̄) − λq̄| + |I(fuq̄
) − I(fzq̄

)|

+

∣∣∣∣I(fzq̄
) − 1

k

k∑

j=1

fzq̄
(xj,ω)

∣∣∣∣ + O(m−4).

Clearly,

∣∣I(fuq̄
) − I(fzq̄

)
∣∣ ≤

∫ 1

0

|q(x) − q̄(x)|
∣∣u2

q̄(x) − z2
q̄ (x)

∣∣ dx = O(m−2 δ2).

Since ‖fzq̄
‖L2 = O(m−2), the well known formula for the randomized error of Monte Carlo

yields that


Eω

(
I(fzq̄

) − 1

k

k∑

j=1

fzq̄
(xj,ω)

)2



1/2

=
(I(f 2

zq̄
) − I2(fzq̄

))1/2

k1/2
= O

(
m−2k−1/2

)
.

We have obtained the bound

eran(φ, n) = O
(
δ1 +m−2δ2 +m−2k−1/2 +m−4

)

14



on the randomized error of φ. Hence, to guarantee error at most ε, it is enough to take

δ1 = Θ(ε), m = k = Θ(ε−2/5) and δ2 = Θ(ε1/5).

We now explain how to achieve (17) and (18). To get λq̄ approximating λ(q̄) with error
of order ε, we approximate the operator Lq̄ by the matrix Mq̄ as in the worst case setting,
now with n = Θ(ε−1/2). Then λ(q̄) − λ1(Mq̄) = O(n−2) = O(ε), and we compute λq̄ as an
ε-approximation of λ1(Mq̄) as for the worst case setting. This can be done with cost of order
ε−1/2 function values of q̄, and of order ε−1/2 log ε−1 arithmetic operations. Since the cost
of computing one function value of q̄ is of order 1, the total cost of computing λq̄ is of order
ε−1/2 log ε−1.

To get zq̄ approximating uq̄ with error of order ε1/5 we proceed as follows. Consider the
eigenvector z1(Mq̄) of the matrix Mq̄, with n not yet specified. By Remark 4.1, we have

‖uq̄,n − z1(Mq̄)‖L2 = O(n−2). (19)

We approximate the smallest eigenvalue λ1(Mq̄) by λ̄, with error δ. This can be achieved
with cost of order n log δ−1. Without loss of generality we assume that λ̄ 6= λ1(Mq̄). Indeed,
we can check this condition by computing det(Mq̄ − λ̄I) and if this determinant is zero we
perturb λ̄ a little. Then the matrix

A =
(
Mq̄ − λ̄I

)−1

is non-singular and its eigenvalues are βj = (λj(Mq̄) − λ̄)−1. Note that |β1| ≥ δ−1 and
βj = O(1) for j ≥ 2. For the jth vector ej = [0, . . . , 0, 1, 0, . . . , 0]T with 1 in the jth position,
define

xj = Aej.

We can compute xj with cost of order n by solving the tridiagonal linear system (Mq̄−λ̄I)xj =
ej. Then we compute

‖xj0‖2 = max
j=1,2,...,n

‖xj‖2,

and
z = ‖xj0‖−1

2 xj0 .

Observe that the cost of computing z is of order n2.
Since {n−1/2zj(Mq̄)}n

j=1 is orthonormal, we have ‖xj‖2
2 =

∑n
`=1 β

2
` (ej, n

−1/2 z`(Mq̄))
2 and

‖n−1/2 z1(Mq̄)‖2
2 = 1 =

∑n
j=1(ej, n

−1/2 z1(Mq̄))
2. Hence, there exists an index j such that

(ej, n
−1/2 z1(Mq̄))

2 ≥ n−1,

and therefore
‖xj0‖2 ≥ ‖xj‖2 ≥ δ−1n−1/2.

We have

(Mq̄ − λ1(Mq̄)I)z = (Mq̄ − λ̄I)z + (λ̄− λ1(Mq̄))z =
1

‖xj0‖2
ej0 + (λ̄− λ1(Mq̄))z,
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and therefore
‖(Mq̄ − λ1(Mq̄)I)z‖2 ≤ δ

√
n+ δ.

From [33, p. 173], we conclude that ‖n−1/2 z1(Mq̄) − z‖2 = O(δ
√
n), and

‖z1(Mq̄) −
√
n z‖L2 = O(δ

√
n). (20)

We are finally ready to define zq̄ by piecewise linear interpolation from the successive
components of the vector

√
n z = [z1, z2, . . . , zn]T . More precisely, for j = 0, 1, . . . , n let

tj = j/(n+ 1). For t ∈ [tj, tj+1], we set

zq̄(t) = zj(1 − (n+ 1)t+ j) + zj+1((n+ 1)t− j)

with z0 = zn+1 = 0.
We need to estimate uq̄ − zq̄ in the L2 norm. Observe that for t ∈ [tj, tj+1] we have

uq̄(t) = uq̄(tj)(1 − (n + 1)t+ j) + uq̄(tj+1)((n + 1)t− j) + O(n−2)

since uq̄ ∈ Q. Therefore

|uq̄(t) − zq̄(t)| ≤ |uq̄(tj) − zq̄(tj)| + |uq̄(tj+1) − zq̄(tj+1)| + O(n−2).

This yields

‖uq̄ − zq̄‖2
L2

=
n∑

j=0

∫ tj+1

tj

(uq̄(t) − zq̄(t))
2 dt

= O

(
1

n + 1

n∑

j=0

(uq̄(tj) − zq̄(tj))
2 + n−4

)
.

Hence,
‖uq̄ − zq̄‖L2 = O

(
‖uq̄,n −

√
n z‖L2 + n−2

)

Since ‖uq̄,n − √
n z‖L2 ≤ ‖uq̄,n − z1(Mq̄)‖L2 + ‖z1(Mq̄) −

√
n z‖L2 , we use (19) and (20) to

see that
‖uq̄ − zq̄‖L2 = O(δ

√
n + n−2).

For δ = n−5/2 we obtain
‖uq̄ − zq̄‖L2 = O(n−2).

Setting n = Θ(ε−1/10) we obtain (18) with δ2 = Θ(ε1/5). The cost of computing zq̄ is of order
n2 = Θ(ε−1/5).

Theorem 4.1 and the cost of this randomized algorithm lead to the following bounds on
the minimal number of function values and the randomized complexity.

Theorem 4.3.

nran(ε) = Θ(ε−2/5), Ω(c ε−2/5) = compran(ε) = O(c ε−2/5 + ε−1/2 log ε−1).
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5 Quantum Setting

We now turn our attention to the quantum setting. In this setting, we are using hybrid
algorithms that are combinations of classical algorithms using function values, as explained
in the previous sections, and quantum algorithms which we now describe. A quantum
algorithm applies a sequence of unitary transformations to an initial state, and the final
state is measured, see [3, 8, 14, 22] for the details of the quantum model of computation.
We briefly summarize this model to the extent necessary for this paper.

The initial state |ψ0〉 is a unit vector of the Hilbert space Hν = C2 ⊗ · · · ⊗ C2, ν times,
for some appropriately chosen integer ν, where C

2 is the two dimensional space of complex
numbers. Obviously, the dimension of Hν is 2ν. The number ν denotes the number of qubits
used in quantum computation.

The final state |ψ〉 is also a unit vector of Hν and is obtained from the initial state |ψ0〉
by applying a number of unitary 2ν × 2ν matrices, i.e.,

|ψ〉 := UTQY UT−1QY · · ·U1QY U0|ψ0〉. (21)

Here, U0, U1, . . . , UT are unitary matrices that do not depend on the input function q. The
unitary matrix QY with Y = [q(t1), . . . , q(tn)] is called a quantum query and depends on
n, with n ≤ 2ν, function evaluations of q computed at some non-adaptive points ti ∈ [0, 1].
The quantum query QY is the only source of information about q. The integer T denotes
the number of quantum queries we choose to use.

At the end of the quantum algorithm, a measurement is applied to its final state |ψ〉. The
measurement produces one of M outcomes, where M ≤ 2ν. Outcome j ∈ {0, 1, . . . ,M − 1}
occurs with probability pY (j), which depends on j and the input Y . For example, if M = 2ν

and the final state is |ψ〉 =
∑2ν−1

j=0 cj|j〉, with
∑2ν−1

j=0 |cj|2 = 1, then a measurement in
the computational orthonormal basis {|j〉} produces the outcome j with probability pY (j) =
|cj|2. Knowing the outcome j, we compute an approximation λ̂Y (j) of the smallest eigenvalue
on a classical computer.

In principle, quantum algorithms may have many measurements applied between se-
quences of unitary transformations of the form presented above. However, any algorithm
with many measurements and a total of T quantum queries can be simulated by a quantum
algorithm with only one measurement at the end, for details see e.g., [14].

We stress that classical algorithms in floating or fixed point arithmetic can also be written
in the form of (21). Indeed, all classical bit operations can be simulated by quantum com-
putations, see e.g., [4]. Classically computed function values will correspond to bit queries
which we discuss in Section 5.2.

In our case, we formally use the real number model of computation. Since the Sturm-
Liouville eigenvalue problem is well conditioned and properly normalized, we obtain practi-
cally the same results in floating or fixed point arithmetic. More precisely, it is enough to use
O(log ε−1) mantissa bits, and the cost of bit operations in floating or fixed point arithmetic
is of the same order as the cost in the real number model multiplied by a power of log ε−1.

Hence, a hybrid algorithm may be viewed as a finite sequence of algorithms of the form
(21). It is also known that if we use finitely many algorithms of the form (21) then they can
be written as one quantum algorithm of the form (21), see [14, 15].
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That is why an arbitrary hybrid algorithm in the quantum setting is of the form (21).
This is important when we want to prove lower bounds because it is enough to work with
algorithms of the form (21). For upper bounds, it seems to us more natural to distinguish
between classical and quantum computations and charge their cost differently. The cost
of classical computations is defined as before whereas the cost of quantum computations is
defined as the sum of the number of quantum queries multiplied by the cost of one query,
and the number of quantum operations besides quantum queries. It will be also important
to indicate how many qubits are used by the quantum computations.

We now define the error in the quantum setting. In this setting, we want to approximate
the smallest eigenvalue λ(q) with a probability p > 1

2
. For simplicity, we take p = 3

4
for

the rest of this section. As it is common for quantum algorithms, we can achieve an ε-
approximation with probability arbitrarily close to 1 by repetition of the original quantum
algorithm, and by taking the median as the final approximation.

The local error of the quantum algorithm with T queries that computes λ̂Y (j) for the
function q ∈ Q and the outcome j ∈ {0, 1, . . . ,M − 1} is defined by

e(λ̂Y , T ) = min

{
α :

∑

j: |λ(q)−λ̂Y (j)|≤α

pY (j) ≥ 3
4

}
.

This can be equivalently rewritten as

e(λ̂Y , T ) = min
A:µ(A)≥3

4

max
j∈A

∣∣λ(q) − λ̂Y (j)
∣∣,

where A ⊂ {0, 1, . . . ,M − 1} and µ(A) =
∑

j∈A pY (j).

The worst probabilistic error of a quantum algorithm λ̂ with T queries for the Sturm-
Liouville eigenvalue problem is defined by

equant(λ̂, T ) = sup

{
e(λ̂Y , T ) : Y = [q(t1), . . . , q(tn)], ti ∈ [0, 1], for q ∈ Q

}
. (22)

5.1 Bit Queries

Quantum queries are important in the complexity analysis of quantum algorithms. A quan-
tum query corresponds to a function evaluation in classical computation. By analogy with
the complexity analysis of classical algorithms, we analyze the cost of quantum algorithms in
terms of the number of quantum queries that are necessary to compute an ε-approximation
with probability 3

4
. Clearly, this number is a lower bound on the quantum complexity, which

is defined as the minimal total cost of a quantum algorithm that solves the problem.
Different quantum queries have been studied in the literature. Probably the most com-

monly studied query is the bit query. For a Boolean function f : {0, 1, . . . , 2m − 1} → {0, 1},
the bit query is defined by

Qf |j〉|k〉 = |j〉|k ⊕ f(j)〉.
Here ν = m + 1, |j〉 ∈ Hm, and |k〉 ∈ H1 with ⊕ denoting the addition modulo 2. For real
functions, such as functions q, the bit query is constructed by taking the most significant
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bits of the function q evaluated at some points tj. More precisely, as in [14], the bit query
for q has the form

Qq|j〉|k〉 = |j〉|k ⊕ β(q(τ(j)))〉,
where the number of qubits is now ν = m′+m′′ and |j〉 ∈ Hm′ , |k〉 ∈ Hm′′ with some functions
β : [0, 1] → {0, 1, . . . , 2m′′ − 1} and τ : {0, 1, . . . , 2m′ − 1} → [0, 1]. Hence, we compute q at
tj = τ(j) ∈ [0, 1] and then take the m′′ most significant bits of q(tj) by β(q(tj)), for details
and a possible use of ancilla qubits see again [14].

Using bit queries, the well known quantum algorithm of Grover [13] requires Θ(N 1/2)
queries for searching an unordered database of N items. Similarly, the quantum summation
algorithm of Brassard et al. [6] computes the mean of a Boolean function defined on the
set of N elements with accuracy ε and probability 3

4
using of order min{N, ε−1} bit queries.

Both algorithms are optimal modulo multiplicative factors in terms of the number of bit
queries.

The quantum summation algorithm can be also used for the approximate computation
of the mean of a real function f : [0, 1] → R with |f(x)| ≤ M for all x ∈ [0, 1], see [14, 23].
More precisely, if we want to approximate

SN(f) :=
1

N

N−1∑

j=0

f(xj)

for some xj ∈ [0, 1] and N , then the quantum summation algorithm QSN(f) approximates
SN(f) such that

|SN(f) − QSN(f)| ≤ ε with probability 3
4

(23)

using of order min(N,Mε−1) bit queries, min(N,Mε−1) log N quantum operations, and
log N qubits.

Bit queries have been also used for a number of continuous problems such as multivariate
and path integration, multivariate approximation, and ordinary differential equations. Tight
bit query complexity bounds are known for a number of such problems, see [14, 15, 16, 17,
20, 24, 32].

In particular, Novak [24] proved that for the integration problem
∫ 1

0
f(x) dx for functions

f from the class F given by (13), the bit query complexity is

nbit−query(ε, INTF ) = Θ(ε−1/3). (24)

Here and elsewhere by the bit query complexity we understand the minimal number of bit
queries needed to compute an ε-approximation to a given problem with probability 3

4
. In

particular, nbit-query(ε) denotes the bit query complexity of the Sturm-Liouville eigenvalue
problem.

Based on the result (24) of Novak and the relationship between the Sturm-Liouville
eigenvalue problem with integration, we now prove the following theorem.

Theorem 5.1.

nbit-query(ε) = Ω(ε−1/3).
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Proof. We first prove that the bit query complexity for the weighted integration problem
for the class Fc given by (14) is of the same order as for integration for the class F ,

nbit-query(ε, INTFc
) = Θ(ε−1/3). (25)

The upper bound follows from (24). To prove the lower bound, we use the standard proof
technique of reducing the integration problem to the mean Boolean summation problem for
which a lower bound on bit queries is known.

Assume then that we use an arbitrary quantum algorithm with k bit queries that com-
putes an ε-approximation with probability 3

4
for the integration problem over the class Fc.

Without loss of generality we assume that k−2 ≤ c.
Consider the function h(x) = αx3(1 − x)3 for x ∈ [0, 1] and h(x) = 0 for x > 1. Here, α

is a positive number chosen such that h ∈ F with F given by (13). For j = 0, 1, . . . , N − 1,
with N > k, define hj(x) = N−2h(N(x − j/N)). Clearly, hj ∈ F and the support of hj is

(j/N, (j + 1)/N . Observe that ‖hj‖∞ ≤ N−2. Hence hj ∈ Fc. We also have
∫ 1

0
hj(x) dx =

N−3
∫ 1

0
h(x) dx. For an arbitrary Boolean function B : {0, 1, . . . , N − 1} → {0, 1}, define the

function

fB(x) =

N−1∑

j=0

B(j)hj(x) ∀ x ∈ [0, 1].

Then fB ∈ Fc and ∫ 1

0

fB(x) dx =

∫ 1

0
h(x) dx

N2

1

N

N−1∑

j=0

B(j).

Hence, modulo the factor of order N−2, the computation of the Boolean mean is reduced to
the integration problem. Note that fB(t) = B(j)hj(t) if t ∈ [j/N, (j + 1)/N ], and sampling
of fB is equivalent to sampling of B. From [21] we know that Ω(k−1) is a lower bound
for the error of the quantum approximation of the Boolean mean, with k bit queries, and
probability 3

4
, where N ≥ βk for some positive β. Letting N = dβke, we conclude that the

corresponding lower bound on the integration problem over the class Fc is Ω(k−3). Hence to
achieve the error ε we must have k = Ω(ε−1/3), as claimed in (25).

The same proof techniques allows us to consider the classes Fc(ε) with varying c(ε), even
with c(ε) tending to zero, although not too fast. We have

nbit-query(ε, INTFc(ε)
) = Θ(ε−1/3) if lim

ε→0
c(ε) ε−2/3 = ∞. (26)

We now turn to the Sturm-Liouville eigenvalue problem. As in the proof of Theorem 4.1,
for f ∈ Fc with c ∈ (0, 1

2
], we define q = 1

2
+f and consider an arbitrary quantum algorithm φ

that uses k quantum bit queries and computes an ε-approximation of the smallest eigenvalue
with probability 3

4
. Then ψ(f) = 1

2
(φ(q)−π2− 1

2
) is a quantum algorithm for approximating

the integration problem over the class Fc. We have

|I(f) − ψ(f)| =
∣∣1
2
(λ(q) − φ(q)) + O(c2)

∣∣ ≤ 1
2
ε+O(c2).

Take now c = c(ε) = Θ(ε2/3−δ) with δ ∈ (0, 1
6
). Then

|I(f) − ψ(f)| ≤ 1
2
ε+O(ε4/3−2δ) = 1

2
ε(1 + o(1)) ≤ ε for small ε.

20



Hence, the quantum error of ψ with probability 3
4

is ε, and ψ uses k bit queries. Due to (26),
we have k = Ω(ε−1/3) which completes the proof.

We now derive upper bounds on the bit query complexity nbit-query(ε) and on the total
quantum complexity compbit-quant(ε). The total quantum complexity is defined as the mini-
mal cost of a hybrid algorithm that solves the Sturm-Liouville eigenvalue problem with error
at most ε and probability 3

4
. The hybrid algorithm may require some classical computations

and the use of function values and the cost of them is defined just as before. It may also
require some quantum computations and the cost of them is defined as the sum of the num-
ber of bit queries multiplied by the cost of one such query plus the number of additional
quantum operations. The cost of one bit query is denoted by cbit.

We present a hybrid algorithm, which will be a combination of the classical algorithm
from Section 4 and the quantum summation algorithm QSN for a properly chosen N . We
proceed as in Section 4 and use the same notation. From (16), (17), and (18), we have

λ(q) = λq̄ +

∫ 1

0

(q(x) − q̄(x))zq̄(x) dx + O(δ1 +m−2δ2 +m−4) (27)

with δ1, δ2 and m to be specified later. Let

f(x) = (q(x) − q̄(x))zq̄(x) x ∈ [0, 1].

Observe that f(x) = O(m−2), and f(x) depends on q(x), and q(i/m) for i = 0, 1, . . . , m,
which are used in the construction of q̄. Furthermore, we can compute f(x) by computing
one function value q(x) and one function value of the already computed functions q̄ and zq̄

at x. We approximate
∫ 1

0
f(x) dx by

SN(f) =
1

N

N−1∑

j=0

f

(
j + 1

N

)

with N = (m + 1)k, where the parameters m and k will be specified later. Since f is twice
continuously differentiable and f ′′(x) is uniformly bounded on the subintervals (i/m, (i +
1)/m) for i = 0, 1, . . . , m− 1, it is easy to see that

∫ 1

0

f(x) dx − SN(f) = O

(
1

N2

)
.

We define N such that N−2 is of order ε.
We now apply QSN(f) algorithm to compute an Θ(ε)-approximation with probability 3

4

to SN(f), or, equivalently to
∫ 1

0
f(x) dx. To do it, we need to use the bit query Qf for the

function f , although so far we assumed that we can use only bit queries Qq for the functions q
from Q. This problem is resolved in Section 2 of [15] where it is shown that algorithms using
the bit query Qf can be simulated by algorithms using bit queries Qq at the expense of
multiplying the number of bit queries by a factor of 2.

From this and (23) with M = O(m−2), we conclude that its is enough to perform of order
min(ε−1/2, m−2ε−1) bit queries, min(ε−1/2, m−2ε−1) log ε−1 quantum operations, and using
of order log ε−1/2 qubits.
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We finally approximate λ(q) by the following algorithm

φ(q) = λq̄ + QSN(f). (28)

This algorithm differs from the randomized algorithm of Section 4 since we now apply the
QSN quantum algorithm instead of Monte Carlo to approximate

∫ 1

0
f(x) dx. Its error is

clearly of the form
ebit-quant(φ, T ) = O

(
δ1 +m−2δ2 +m−4 + ε

)
.

To guarantee that this error is at most ε, we take

δ1 = Θ(ε), m = Θ(ε−1/3), k = Θ(ε−1/6) and δ2 = Θ(ε1/3).

Using the cost analysis of Section 4 and the results of this section, we conclude the following
theorem.

Theorem 5.2. The Sturm-Liouville eigenvalue problem can be solved in the quantum setting
with bit queries by the algorithm φ defined by ( 28). This algorithm approximates the smallest
eigenvalue λ(q) with error at most ε and probability 3

4
using of order

• ε−1/3 bit queries and function values,

• ε−1/3 log ε−1 quantum operations,

• ε−1/2 log ε−1 classical operations,

• log ε−1 qubits.

Furthermore,
nbit-query = Θ(ε−1/3),

and
Ω(cbit ε

−1/3) = compbit-query(ε) = O
(
(c + cbit) ε

−1/3 + ε−1/2 log ε−1
)
.

Hence, we have a sharp bound of order ε−1/3 on the number of bit queries whereas the
upper bound on the total cost depends, as in the worst case and randomized settings, on
ε−1/2 log ε−1, which is the cost of classical computations.

5.2 Power Queries

In this subsection we study power queries. We formally define them as follows. For some
problems, a quantum algorithm can be written in the form

|ψ〉 := UmW̃mUm−1W̃m−1 · · ·U1W̃1U0|ψ0〉. (29)

Here U1, . . . , Um denote unitary matrices independent of the function q, just as before,
whereas the unitary matrices W̃j are of the form controlled-Wj, see [22, p. 178]. That
is, Wj = W pj for an n×n unitary matrix W that depends on the input of the computational
problem, and for some non-negative integers pj, j = 1, 2, . . . , m. Without loss of generality
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we assume that n is a power of two. Let {|yk〉} be orthonormalized eigenvectors of W ,
W |yk〉 = αk|yk〉 with the corresponding eigenvalue αk, where |αk| = 1 and αk = eiλk with
λk ∈ [0, 2π) for k = 1, 2, . . . , n. For the unit vectors |x`〉 = α`|0〉+β`|1〉 ∈ C

2, ` = 1, 2, . . . , r,

the quantum query W̃j is defined as

W̃j |x1〉|x2〉 · · · |xr〉|yk〉 = |x1〉| · · · |xj−1〉
(
αj|0〉 + βje

iγpjλk |1〉
)
|xj+1〉 · · · |xr〉|yk〉. (30)

Hence, W̃j is a 2ν × 2ν unitary matrix with ν = r + log n. We stress that the exponent pj

only affects the power of the complex number eiγλk .
We call W̃j a power query since they are derived from powers of W . Power queries have

been successfully used for a number of problems, see again [22], including the phase estima-
tion problem that will be discussed in the next section. The phase estimation algorithm,
see [8, 22], is at the core of many quantum algorithms. It plays a central role in the fast
quantum algorithms for factoring and discrete logarithms of Shor [27]. We stress that for
Shor’s algorithm, power queries can be implemented by a number of elementary quantum
gates that is polylog in n. The phase estimation algorithm approximates an eigenvalue of a
unitary operator W using the corresponding eigenvector, or its approximation, as part of the
initial state. The powers of W are defined by pi = 2i−1. Therefore, phase estimation uses
queries with W1 = W , W2 = W 2, W3 = W 22

, . . . , Wm = W 2m−1
. It is typically assumed,

see [8], that we do not explicitly know W but we are given quantum devices that perform
controlled-W , controlled-W 2, controlled-W 22

, and so on.
For the Sturm-Liouville eigenvalue problem, as well as for problems studied in [25], we

will use the matrix

W = exp (iγMq) with i =
√
−1 and a positive γ, (31)

where the n×n matrix Mq was introduced in Section 3.2 as a discretization of the differential
operator Lq. The matrix W is unitary since Mq is symmetric.

For the W̃j with the matrix W of (31) we modify the query definition in equation (21)

and assume, as in [22, Ch. 5], that for each j the W̃j is one quantum query. Accordingly,
for algorithms that can be expressed in the form (29), the number of power queries is m,
independently of the powers pj. By analogy with (22), we denote their error by equant(λ̂, m).

Allowing quantum algorithms of the form (29) with power queries, we define the power
query complexity npower−query(ε) to be the minimal number of power queries required to
approximate the Sturm-Liouville eigenvalue problem with error ε, i.e.,

npower−query(ε) = min{m : ∃ λ̂ such that equant(λ̂, m) ≤ ε}.

The cost of one power query is denoted by cpower. The total complexity, comppower−query(ε),
is the defined as the minimal cost of a hybrid algorithm in the same way as for bit queries.

We will use the phase estimation algorithm as a basic module for approximating the
smallest eigenvalue λ(q). As shown by Abrams and Lloyd [1], the phase estimation algorithms
can also be used if a good approximation of the eigenvector corresponding to the smallest
eigenvalue is known. Such an approximation is obtained by the algorithm of Jaksch and
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Papageorgiou [18]. Combining these algorithms, we obtain the quantum algorithm that
computes the smallest eigenvalue with error ε and probability 3

4
using Θ(log ε−1) power

queries, and Θ(log ε−1) qubits.
For the sake of completeness, we review the phase estimation problem and algorithm,

the results of Abrams and Lloyd and the results of Jaksch and Papageorgiou in the next
subsections.

5.3 Phase Estimation

Consider W defined by (31) with γ = 1
2
, i.e.,

W = exp

(
1

2
iMq

)
.

The eigenvalues of W are eiλj(Mq)/2 with λj(Mq) being the eigenvalues of the n × n matrix
Mq and n is assumed to be a power of two. These eigenvalues can be written as e2πiϕj , where

ϕj = ϕj(Mq) =
1

4π
λj(Mq)

are called phases. We are interested in estimating the smallest phase ϕ1(Mq), which belongs
to (0, 1) since λ1(Mq) ∈ [π2, π2 + 1]. For convenience, we renumber and normalize the
eigenvectors of Mq, and also of W , as

|yj〉 =
√
n |zj+1(Mq)〉,

for j = 0, 1, . . . , n− 1. We will use {|yj〉} as the orthonormal basis of the space.
Phase estimation, see [22, Section 5.2], is a quantum algorithm that approximates the

phase ϕ1(Mq). Note that to compute an ε-approximation of λ1(Mq), it is enough to com-
pute an ε/(4π)-approximation of ϕ1(Mq). The original phase estimation algorithm has been
derived for the initial state |0⊗m〉|y0〉, where m is related to the accuracy and will be deter-
mined later, and |y0〉 = |y0(Mq)〉 is the eigenvector of the matrix Mq corresponding to the
smallest eigenvalue λ1(Mq). Abrams and Lloyd [1] showed that phase estimation can still be
used if the eigenvector |y0〉 is replaced by a good approximation |ψ0〉 as the initial state.

More precisely, expanding |ψ0〉 in the basis of the eigenvectors |yj〉, the initial state takes
the form

|0〉⊗m|ψ0〉 = |0〉⊗m
n−1∑

j=0

dj|yj〉.

Using m Hadamard gates, we place the first register in an equal superposition, which gives
the state

|ψ1〉 =
1√
2m

1∑

x1=0

1∑

x2=0

· · ·
1∑

xm=0

|x1〉|x2〉 · · · |xm〉
n−1∑

j=0

dj|yj〉.

We now apply the controlled quantum gates, see (30), to create the state

|ψ2〉 = W̃2m−1W̃2m−2 · · · W̃20 |ψ1〉

=
1√
2m

n−1∑

j=0

dj|ηj〉|yj〉
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with

|ηj〉 =

(
|0〉 + e2πiϕj |1〉

)
⊗
(
|0〉 + e2πi2ϕj |1〉

)
⊗ · · · ⊗

(
|0〉 + e2πi2m−1ϕj |1〉

)

=

1∑

x1=0

1∑

x2=0

· · ·
1∑

xm=0

e2πi(x120+x221+···xm2m−1)ϕj |x1〉|x2〉 · · · |xm〉

=

2m−1∑

`=0

e2π i ` ϕj |`〉,

see also [22, p. 222]. Hence,

|ψ2〉 =
1√
2m

n−1∑

j=0

dj

(
2m−1∑

`=0

e2π i `ϕj |`〉
)
|yj〉.

The inverse Fourier transform performed on the first register creates the state

n−1∑

j=0

dj

(
2m−1∑

`=0

g(ϕj, `)|`〉
)
|yj〉,

where

g(ϕj, `) =

{
sin(π(2mϕj−`))eπi(ϕj−`2−m)(2m

−1)

2m sin(π(ϕj−`2−m))
if ϕj 6= 2−m`,

1, if ϕj = 2−m`.

A measurement of the first register produces the outcome j with probability

pj =

n−1∑

`=0

|d`|2|g(ϕ`, j)|2,

and the second register collapses to the state

n−1∑

`=0

d`g(ϕ`, j)√
pj

|y`〉.

The quantity
∆(φ0, φ1) = min

x∈Z

{|x+ φ1 − φ0|} for φ0, φ1 ∈ R

is defined in [6] and is the fractional part of the distance between two phases φ0 and φ1. It is
used to derive the relationship between the approximation error and the success probability.
A measurement of the first register produces an outcome from the set

Gk = {j : ∆(j/2b, ϕ1(Mq)) ≤ k/2m },

where k > 1, with probability

Pr(Gk) =
∑

j∈Gk

n−1∑

`=0

|d`g(ϕ`, j)|2 ≥ |d|2
∑

j∈Gk

|g(ϕ1(Mq), j)|2 ≥ |d|2 − |d|2
2(k − 1)

,
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where d = 〈y0|ψ0〉. For k = 1 the probability that

∆(j/2m, ϕ1(Mq)) ≤ 2−m is bounded from below by
8

π2
|d|2. (32)

The proof of the probability bounds can be found in [6, 22]. Using this fact, the authors
of [1] conclude that as long as |d|2 is large enough or, equivalently, |ψ0〉 is close enough to
|y0〉 then phase estimation can be used to approximate the phase ϕ1(Mq) with probability
close to 8/π2 = 0.81 . . . .

We stress that the phase estimation algorithm uses m power queries. In addition to the
cost of the queries there is a quantum operations cost proportional to at most m2, which is
an upper bound on the cost of the quantum inverse Fourier transform, see [22, Section 5.2].

5.4 Eigenvalue and Eigenvector Approximation

The results of Jaksch and Papageorgiou [18] can be applied to efficiently construct a good

approximate eigenvector when W = e
i
2
Mq as in the previous subsection.

The matrix Mq = M
(n)
q has been derived from the discretization of the operator Lq with

mesh size hn = (n + 1)−1. Its eigenvectors are also eigenvectors of W = W (n), and we

denote them here by |y(n)
j 〉, where j = 0, 1, . . . , n− 1. We want to approximate λ1(M

(n)
q ) =

4πϕ1(M
(n)
q ) but we do not know the corresponding eigenvector

|y(n)〉 := |y(n)
0 〉.

The expansion of |y(n)〉 in the computational basis is denoted by

|y(n)〉 =

n−1∑

j=0

y
(n)
j |j〉, (33)

Recall that uq is the normalized, ‖uq‖L2 =
(∫ 1

0
u2(x) dx

)1/2

= 1, eigenfunction of the dif-

ferential operator Lq that corresponds to λ(q), and uq as well as u′q and u′′q are uniformly
bounded, i.e., ‖uq‖∞, ‖u′q‖∞ and ‖u′′q‖∞ are O(1).

Let |U (n)〉 =
∑n−1

j=0 uq((j + 1)hn)|j〉 be the vector obtained by sampling uq at the dis-
cretization points. Then it is known, see [12, 19] as well as Remark 4.1, that

∥∥∥∥|y
(n)〉 − |U (n)〉

‖|U (n)〉‖2

∥∥∥∥
2

= O(h2
n) and (34)

|λ(q) − λ1(M
(n)
q )| = O(h2

n).

Consider a coarse discretization of Lq with mesh size hn0 = (n0 +1)−1 with n0 being a power
of two. Assume that

|z̃(n0)〉 =

n0−1∑

j=0

z̃
(n0)
j |j〉, ‖|z̃(n0)〉‖2 = 1,
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approximates the eigenvector |y(n0)〉 that corresponds to the smallest eigenvalue of the matrix

M
(n0)
q such that,

‖ |z̃(n0)〉 − |y(n0)〉 ‖2 = O(n−2
0 ). (35)

We place the vector |z̃(n0)〉 in a log n0 qubit register. As explained in Section 4.3, we can
compute |z̃(n0)〉 on a classical computer with cost of order n2

0.
For n = 2sn0, we construct an approximation |z̃(n)〉 of |y(n)〉 by first appending s qubits,

all in the state |0〉, to |z̃(n0)〉 and then performing the Hadamard transformation on each one
of these s qubits, i.e.,

|z̃(n)〉 = |z̃(n0)〉
( |0〉 + |1〉√

2

)⊗s

=
1√
2s

n−1∑

j=0

z̃
(n0)
g(j) |j〉, (36)

where z̃
(n0)
g(j) ’s denote the coordinates of |z̃(n0)〉 in the computational basis, and g(j) = bj/2sc.

The effect of g is to replicate 2s times the coordinates of |z̃(n0)〉. As in Jaksch and Papageor-
giou [18], we use the vector |z̃(n)〉 as part of the input to the phase estimation algorithm.

Let d(n) = 〈y(n)|z̃(n)〉. We show that |d(n)|2 can be made arbitrarily close to one by
choosing a sufficiently large n0. Hence, we can make the success probability of the phase
estimation algorithm at least equal to 3

4
.

Consider two different expansions of |z̃(n)〉,

|z̃(n)〉 =

n−1∑

j=0

ũ
(n)
j |j〉 (37)

|z̃(n)〉 =

n−1∑

j=0

d
(n)
j |y(n)

j 〉. (38)

The first expansion is in the computational basis {|j〉} and, by (36),

ũ
(n)
j = 2−s/2z

(n0)
g(j) for j = 0, 1, . . . , n− 1,

while the second expansion is with respect to the eigenvectors of M
(n)
q . Note that d(n) = d

(n)
0

and clearly
∑n−1

j=0 |d
(n)
j |2 = 1. Equation (38) implies

|z̃(n)〉 − |y(n)〉 = (d(n) − 1)|y(n)〉 +
n−1∑

j=1

d
(n)
j |y(n)

j 〉. (39)

Taking norms on both sides we obtain

∣∣∣∣ |y(n)〉 − |z̃(n)〉
∣∣∣∣2

2
= |d(n) − 1|2 +

n−1∑

j=1

|d(n)
j |2 ≥

n−1∑

j=1

|d(n)
j |2 = 1 − |d(n)|2. (40)
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We now bound the left hand side of (40) from above. Using the expression (33) for |y(n)〉
and the definition of |z̃(n)〉, see (36), (37), we have

∥∥|y(n)〉 − |z̃(n)〉
∥∥2

2
=

n−1∑

j=0

|y(n)
j − 2−s/2z

(n0)
g(j) |2

=
n−1∑

j=0

∣∣∣∣∣
uq((j + 1)hn)

‖|U (n)〉‖2

− uq((g(j) + 1)hn0)√
2s‖|U (n0)〉‖2

+ ∆
(n)
j −

∆
(n0)
g(j)√
2s

∣∣∣∣∣

2

,

where, by (34) and (35), we have

n−1∑

j=0

|∆(n)
j |2 = O(h4

n) and

n−1∑

j=0

|∆(n0)
g(j) |2 = 2sO(h4

n0
).

Applying the triangle inequality, we get

∥∥|y(n)〉 − |z̃(n)〉
∥∥

2
≤
(

n−1∑

j=0

∣∣∣∣
uq((j + 1)hn)

‖|U (n)〉‖2
− uq((g(j) + 1)hn0)√

2s‖|U (n0)〉‖2

∣∣∣∣
2
)1/2

+O(h2
n0

). (41)

The definition of |U (n)〉 and the fact that the derivative of uq is Lipschitz3 with the uniform
Lipschitz constant imply that ‖|U (n)〉‖2 =

√
n(1 +O(hn)). Hence, the square of the term in

the parentheses above is equal to

1

n

n−1∑

j=0

|uq((j + 1)hn)(1 +O(hn)) − uq((g(j) + 1)hn0)(1 + O(hn0))|2. (42)

Since uq is continuous with a bounded first derivative, we have that

uq(x2,j) = uq(x1,j) +O(|x2,j − x1,j|), (43)

where x2,j = (j + 1)hn and x1,j = (g(j) + 1)hn0, j = 0, 1, . . . , n− 1. Let bj/2sc = j/2s − α
with α ∈ (0, 1). Then

|x2,j − x1,j| =

∣∣∣∣
j + 1

2sn0 + 1
− j/2s + 1 − α

n0 + 1

∣∣∣∣

= j
2s − 1

(2sn0 + 1)2s(n0 + 1)
+O(hn0) = O(hn0).

Using (42), (43) and the triangle inequality, we obtain from (41) that
∥∥|y(n)〉 − |z̃(n)〉

∥∥
2

= O(hn0) ≤ c

n0 + 1

for some positive number c independent of n and n0. Combining this with (40) we finally
conclude that

|d(n)|2 ≥ 1 − c2

(n0 + 1)2
(44)

and d(n) can be made arbitrarily close to one by taking a sufficiently large n0.

3A function f : [0, 1] → R is Lipschitz if there is a number L ≥ 0 such that |f(x) − f(y)| ≤ L|x − y| for
all x, y ∈ [0, 1].
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5.5 Quantum Algorithm for the Smallest Eigenvalue

We combine the results of the previous two subsections to derive a quantum algorithm for
computing an ε-approximation of the smallest eigenvalue with probability 3

4
.

We choose the parameters for the phase estimation algorithm. Without loss of generality
we assume that ε−1 is an even power of 2, that is ε−1 = 2m with an even m. We set
n = ε−1/2 = 2m/2 and we will be working with the matrix M

(n)
q . The index n0 = 2k0 is

chosen as the smallest power of two for which

8

π2

(
1 − c2

(n0 + 1)2

)
≥ 3

4
, (45)

where the number c is from (44). Clearly, n0 = O(1). Without loss of generality we assume
that 1

2
m > k0 = log n0, i.e., we assume that ε is sufficiently small. We finally set s = 1

2
m−k0.

We then compute |z̃(n0)〉 on a classical computer as in Section 4.3 with cost O(1) function
values and operations.

We run the phase estimation algorithm for the matrix W = e
i
2
M

(n)
q with the initial state,

see (36),

|0〉⊗m|z̃(n)〉 = |0〉⊗m|z̃(n0)〉
( |0〉 + |1〉√

2

)⊗s

.

Let j be the outcome of the phase estimation algorithm. We finally compute

λ̄j = 4π j 2−m

as an approximation of the smallest eigenvalue λ(q). We have

λ̄j − λ(q) = λ̄j − λ1(M
(n)
q ) + λ1(M

(n)
q ) − λ(q)

= 4π

(
j

2m
− ϕ1(M

(n)
q )

)
+ O(ε).

From (32) we know that

(
j

2m
− ϕ1(M

(n)
q )

)
≤ ε with probability

8

π2
|d(n)|2.

By (44) and the definition of n0 we have

8

π2
|d(n)|2 ≥ 8

π2

(
1 − c2

(n0 + 1)2

)
≥ 3

4
.

Hence,

|λ̄j − λ(q)| = O(ε) with probability at least
3

4
.

The computation of λ̄j requires

m + k0 + s = 3
2
m = 3

2
log ε−1
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qubits, m = log ε−1 power queries, plus a number of quantum operations proportional to
m2 = log2 ε−1. This yields npower-query(ε) = O(log ε−1). A lower bound on npower-query(ε) of
the same order is proved in [5]. Hence,

npower-query(ε) = Θ(log ε−1).

We summarize the results of this section in the following theorem.

Theorem 5.3. The Sturm-Liouville eigenvalue problem can be solved in the quantum setting
with power queries by the phase estimation algorithm applied to the discretized matrix of the
differential operator Lq with the initial state given as an approximate eigenvector computed by
the Jaksch and Papageorgiou algorithm. This quantum algorithm approximates the smallest
eigenvalue λ(q) with error ε and probability 3

4
using

• 3
2
log ε−1 +O(1) power queries,

• O(1) function values and classical operations,

• O(log2 ε−1) quantum operations besides the power queries, and

• 3
2
log ε−1 +O(1) qubits.

Furthermore,
npower-query = Θ(log ε−1),

and

Ω(cpower log ε−1) = comppower-query(ε) = O
(
cpower log ε−1 + c + log2 ε−1

)
.

5.6 Qubit Complexity

In this section we address the qubit complexity, compqub(ε), which is defined as the minimal
number of qubits required to approximate the smallest eigenvalue with error ε and prob-
ability 3

4
by quantum algorithms of the form (21). Clearly, compqub(ε) is upper bounded

by 3
2
log ε−1 + O(1) since that many qubits are used by the phase estimation algorithm of

Section 5.5. Observe that the cost of the classical algorithm computing |z̃(n0)〉 as well as its
quantum simulation [22, p. 189-193] is constant since n0 is bounded by a constant due to
(45).

We turn to a lower bound on compqub(ε). Based on the results obtained in this paper, it
is easy to see that the number of qubits necessary to solve our problem must be proportional
at least to roughly 1

2
log ε−1. Indeed, assume that there is a quantum algorithm of the

form (21) that computes λ(q) with error ε and probability 3
4
, and uses k(ε) qubits. This

algorithm can use arbitrary quantum queries, assuming that each quantum query is based on
at most 2k(ε) function evaluations of q. Note that this holds for bit queries, as well as for the
power queries studied in this paper. Then such an algorithm can be simulated by a classical
algorithm that uses at most 2k(ε) function evaluations of q. From Theorem 3.2 we know that
2k(ε) = Ω(ε−1/2) and therefore k(ε) ≥ 1

2
log ε−1 + Ω(1). Hence, the qubit complexity is lower

bounded by 1
2
log ε−1 + Ω(1). This proves the following theorem.
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Theorem 5.4. The qubit complexity of the Sturm-Liouville eigenvalue problem in the quan-
tum setting with bit or power queries is bounded by

1
2

log ε−1 + O(1) ≤ compqub(ε) ≤ 3
2

log ε−1 + O(1).
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[25] Papageorgiou, A. and Woźniakowski, H., The Sturm-Liouville eigenvalue problem and
NP-complete problems in the quantum setting with queries, in preparation.

[26] Simon, D. R. (1997), On the power of quantum computation, SIAM J. Comput., 26,
1474–1483.

32



[27] Shor, P. W. (1997), Polynomial-time algorithms for prime factorization and discrete
logarithm on a quantum computer, SIAM J. Comput., 26(5), 1484–1509.

[28] Strang, G. and Fix, G. J. (1973), An Analysis of the Finite Element Method, Prentice-
Hall, Englewood Cliffs, NJ.

[29] Titchmarsh, E. C. (1958), Eigenfunction Expansions Associated with Second-Order
Differential Equations, Part 2, Oxford University Press, Oxford, UK.

[30] Traub, J. F., Wasilkowski, G. W. and Woźniakowski, H. (1988), Information-Based
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