research

Classical and Quantum Complexity of the Sturm-Liouville Eigenvalue Problem

Abstract

We study the approximation of the smallest eigenvalue of a Sturm-Liouville problem in the classical and quantum settings. We consider a univariate Sturm-Liouville eigenvalue problem with a nonnegative function qq from the class C2([0,1])C^2([0,1]) and study the minimal number n(\e) of function evaluations or queries that are necessary to compute an \e-approximation of the smallest eigenvalue. We prove that n(\e)=\Theta(\e^{-1/2}) in the (deterministic) worst case setting, and n(\e)=\Theta(\e^{-2/5}) in the randomized setting. The quantum setting offers a polynomial speedup with {\it bit} queries and an exponential speedup with {\it power} queries. Bit queries are similar to the oracle calls used in Grover's algorithm appropriately extended to real valued functions. Power queries are used for a number of problems including phase estimation. They are obtained by considering the propagator of the discretized system at a number of different time moments. They allow us to use powers of the unitary matrix exp(12iM)\exp(\tfrac12 {\rm i}M), where MM is an n×nn\times n matrix obtained from the standard discretization of the Sturm-Liouville differential operator. The quantum implementation of power queries by a number of elementary quantum gates that is polylog in nn is an open issue.Comment: 33 page

    Similar works