14 research outputs found

    The pseudosquares prime sieve

    Get PDF
    Abstract. We present the pseudosquares prime sieve

    On Pseudopoints of Algebraic Curves

    Full text link
    Following Kraitchik and Lehmer, we say that a positive integer n1(mod8)n\equiv1\pmod 8 is an xx-pseudosquare if it is a quadratic residue for each odd prime pxp\le x, yet is not a square. We extend this defintion to algebraic curves and say that nn is an xx-pseudopoint of a curve f(u,v)=0f(u,v) = 0 (where fZ[U,V]f \in \Z[U,V]) if for all sufficiently large primes pxp \le x the congruence f(n,m)0(modp)f(n,m)\equiv 0 \pmod p is satisfied for some mm. We use the Bombieri bound of exponential sums along a curve to estimate the smallest xx-pseudopoint, which shows the limitations of the modular approach to searching for points on curves

    Two Compact Incremental Prime Sieves

    Get PDF
    A prime sieve is an algorithm that finds the primes up to a bound nn. We say that a prime sieve is incremental, if it can quickly determine if n+1n+1 is prime after having found all primes up to nn. We say a sieve is compact if it uses roughly n\sqrt{n} space or less. In this paper we present two new results: (1) We describe the rolling sieve, a practical, incremental prime sieve that takes O(nloglogn)O(n\log\log n) time and O(nlogn)O(\sqrt{n}\log n) bits of space, and (2) We show how to modify the sieve of Atkin and Bernstein (2004) to obtain a sieve that is simultaneously sublinear, compact, and incremental. The second result solves an open problem given by Paul Pritchard in 1994

    Sieving for pseudosquares and pseudocubes in parallel using doubly-focused enumeration and wheel datastructures

    Full text link
    We extend the known tables of pseudosquares and pseudocubes, discuss the implications of these new data on the conjectured distribution of pseudosquares and pseudocubes, and present the details of the algorithm used to do this work. Our algorithm is based on the space-saving wheel data structure combined with doubly-focused enumeration, run in parallel on a cluster supercomputer

    Approximately counting semismooth integers

    Full text link
    An integer nn is (y,z)(y,z)-semismooth if n=pmn=pm where mm is an integer with all prime divisors y\le y and pp is 1 or a prime z\le z. arge quantities of semismooth integers are utilized in modern integer factoring algorithms, such as the number field sieve, that incorporate the so-called large prime variant. Thus, it is useful for factoring practitioners to be able to estimate the value of Ψ(x,y,z)\Psi(x,y,z), the number of (y,z)(y,z)-semismooth integers up to xx, so that they can better set algorithm parameters and minimize running times, which could be weeks or months on a cluster supercomputer. In this paper, we explore several algorithms to approximate Ψ(x,y,z)\Psi(x,y,z) using a generalization of Buchstab's identity with numeric integration.Comment: To appear in ISSAC 2013, Boston M

    The Knapsack Subproblem of the Algorithm to Compute the Erdos-Selfridge Function

    Get PDF
    This thesis summarizes the methodology of a new algorithm to compute the Erdos-Selfridge function which uses a wheel sieve, shows that a knapsack algorithm can be used to minimize the work needed to compute these values by selecting a subset of rings for use in the wheel, and compares the results of several different knapsack algorithms in this particular scenario

    The I/O Complexity of Computing Prime Tables

    Get PDF
    International audienceWe revisit classical sieves for computing primes and analyze their performance in the external-memory model. Most prior sieves are analyzed in the RAM model, where the focus is on minimizing both the total number of operations and the size of the working set. The hope is that if the working set fits in RAM, then the sieve will have good I/O performance, though such an outcome is by no means guaranteed by a small working-set size. We analyze our algorithms directly in terms of I/Os and operations. In the external-memory model, permutation can be the most expensive aspect of sieving, in contrast to the RAM model, where permutations are trivial. We show how to implement classical sieves so that they have both good I/O performance and good RAM performance, even when the problem size N becomes huge—even superpolynomially larger than RAM. Towards this goal, we give two I/O-efficient priority queues that are optimized for the operations incurred by these sieves
    corecore