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The Pseudosquares Prime Sieve

Jonathan P. Sorenson?

Computer Science and Software Engineering
Butler University

Indianapolis, IN 46208 USA
http://www.butler.edu/~sorenson

sorenson@butler.edu

Abstract. We present the pseudosquares prime sieve, which finds all
primes up to n. Define p to be the smallest prime such that the pseu-
dosquare Lp > n/(π(p)(log n)2); here π(x) is the prime counting func-
tion. Our algorithm requires only O(π(p)n) arithmetic operations and
O(π(p) log n) space. It uses the pseudosquares primality test of Lukes,
Patterson, and Williams.
Under the assumption of the Extended Riemann Hypothesis, we have
p ≤ 2(log n)2, but it is conjectured that p ∼ 1

log 2
log n log log n. Thus,

the conjectured complexity of our prime sieve is O(n log n) arithmetic
operations in O((log n)2) space. The primes generated by our algorithm
are proven prime unconditionally. The best current unconditional bound
known is p ≤ n1/(4

√
e−ε), implying a running time of roughly n1.132 using

roughly n0.132 space.
Existing prime sieves are generally faster (O(n/ log log n) operations) but
take at least n1/3 space, greatly limiting their range. Our algorithm found
all 13284 primes in the interval [1033, 1033 + 106] in about 4 minutes on
a 1.3GHz Pentium IV.
We also present an algorithm to find all pseudosquares Lp up to n in
O(n exp[−c log n/ log log n]) operations and O((log n)2) space (under the
ERH), where c > 0 is constant. Our innovation here is a new, space-
efficient implementation of the wheel datastructure.

1 Introduction

A prime number sieve is an algorithm that finds all prime numbers up to a
bound n. The fastest known sieves take O(n/ log log n) arithmetic operations [2,
10, 17, 22], which is quite fast, considering there are π(n) ∼ n/ log n primes to
find. However in practice, the utility of a prime number sieve is often limited by
how much memory space it needs. For example, a sieve that uses O(

√
n) space

[2, 18, 22] cannot, on current hardware, generate primes larger than about 1018.
Even with Galway’s clever improvements [11] to the Atkin-Bernstein sieve [2],
the space requirement is still n1/3+ε, giving an effective limit of roughly 1027.
(Note that the space needed to write down the output, the primes up to n, is
not included.)
? This work was supported by a grant from the Holcomb Research Institute



If we applied trial division to each integer up to n separately, we would only
need O(log n) space, but the time of O(n

√
n/ log n) would be prohibitive. We

could sieve by a few primes, then apply a quick base-2 pseudoprime test to
remove most composites [16] and then use a prime test. If we used the AKS test
[1] with Bernstein’s complexity improvements [8], the result would be a sieve
that takes n(log n)2+o(1) operations. (The modified AKS test is (log n)4+o(1) bit
operations; we save a log n factor with the 2-psp test, and another log n factor
because in this paper we count arithmetic operations instead of bit operations.)
We can improve the time to O(n(log n)2) by using Miller’s prime test [15], but
then our output is correct only if the ERH is true. And of course if we are willing
to accept probable primes, the Miller-Rabin [19] or Solovay-Strassen [21] tests
could give us O(n log n) operations. But in most applications for prime sieves,
we need to be certain of our output.

In this paper, we present a new prime number sieve, the pseudosquares prime
sieve (Algorithm PSSPS), that uses very little space and yet is fast enough to
be practical. It uses an Eratosthenes-like sieve followed by the pseudosquares
prime test of Lukes, Patterson, and Williams [14] (which effectively includes a
base-2 pseudoprime test). Our sieve has a conjectured running time of O(n log n)
arithmetic operations and O((log n)2) bits of space. This is the complexity we
observed in practice, and is as fast as using one of the probabilistic tests men-
tioned above. Assuming the ERH, we obtain O(n(log n)2/ log log n) operations
and O((log n)3/ log log n) space. But in any case, the primes generated by our
sieve are unconditionally proven prime. Our sieve found all the primes in the in-
terval [1033, 1033 +106] in just over 4 minutes on a 1.3 GHz Pentium IV running
Linux.

We also present a new, space-efficient implementation of the wheel data struc-
ture that leads to an algorithm for finding all pseudosquares Lp ≤ n in time
O(n · exp[−c log n/ log log n]) for some fixed c > 0. This data structure may
prove to be useful in other areas of computational number theory.

For recent advances on prime number sieves, see [2, 11, 22].
The rest of this paper is organized as follows. In §2 we discuss some prelim-

inaries, followed by a description of our algorithm in §3. In §4 we present our
new wheel data structure and give our algorithm for finding pseudosquares. We
conclude in §5 with some timings.

2 Preliminaries

2.1 Model of Computation

Our model of computation is a RAM with a potentially infinite, direct access
memory. If n is the input, then all arithmetic and memory access operations on
integers of O(log n) bits are assigned unit cost. Memory may be addressed either
at the bit level or at the word level, where each machine word is composed of
O(log n) bits.

When we present code fragments, we use a C++ style that should be famil-
iar to most readers [24]. We occasionally declare integer variables with an INT



datatype instead of the int datatype. This indicates that these integers typically
exceed 32 bits in practice and may require special implementation (we used the
Gnu-MP mpz t datatype and associated functions [12]). We still limit INTs to
O(log n) bits.

The space used by an algorithm under our model is counted in bits. The
space used by the output of a prime number sieve (the list of primes up to n) is
not counted against the algorithm. For further discussion, see [10].

2.2 Some Number Theory

p always denotes a prime, with pi denoting the ith prime, so that p1 = 2. For
integers a, b let gcd(a, b) denote the greatest common divisor of a and b. We say
a and b are relatively prime if gcd(a, b) = 1. For a positive integer m let φ(m)
be the number of positive integers up to m that are relatively prime to m, with
φ(1) = 1. The number of primes up to x is given by π(x).

An integer x is a square, or quadratic residue, modulo p if there exists an
integer r such that r2 ≡ x (mod p). We normally require that gcd(x, p) = 1.

The pseudosquare Lp is the least non-square positive integer satisfying these
two properties:

1. Lp ≡ 1 (mod 8), and
2. Lp is a quadratic residue modulo every odd prime q ≤ p.

Thus L3 = 73 and L5 = 241. See Williams [25, §16.2].
We make use of the following estimates. Here x, x1, x2 > 0, and except for

(5), all sums and products are only over primes.∑
p≤x

1
p

= log log x + O(1); (1)

∑
p≤x

log p = x(1 + o(1)); (2)

∑
p≤x

1 = π(x) =
x

log x
(1 + o(1)); (3)

∏
p≤x

p− 1
p

= O

(
1

log x

)
; (4)

∑
x1<d≤x2

gcd(d,m)=1

1
d

=
φ(m)

m
log(x2/x1)(1 + o(1)). (5)

For proofs of (1)–(4), see Hardy and Wright [13]. For a proof of (5), see [22,
Lemma 1].

2.3 The Wheel

A wheel, as we will use it, is a data structure that encapsulates information
about the integers relatively prime to the first k primes. Generally speaking, a



wheel can often be used to reduce the running time of a prime number sieve by a
factor proportional to log pk. Pritchard was the first to show how to use a wheel
in this way. We begin with the following definitions:

Mk :=
k∏

i=1

pi;

Wk(y) := {x ≤ y : gcd(x,Mk) = 1};
Wk := Wk(Mk).

Let #S denote the cardinality of the set S. We have (see (2) and (4)):

log Mk = pk(1 + o(1));

#Wk = φ(Mk) = Mk

k∏
i=1

p− 1
p

= O

(
Mk

log log Mk

)
;

#Wk(n) = O

(
n

log log Mk

)
.

Our data structure, then, is an array W[] of records or structs, indexed by
0 . . . (Mk − 1), defined as follows:

– W[x].rp is 1 if x ∈ Wk, and 0 otherwise.
– W[x].dist is d = y − x, where y > x is minimal with gcd(y, Mk) = 1.

We say that W is the kth wheel, with size Mk. For our C++ notation, we will
declare W to be of class type Wheel(k), where k is an integer parameter. We can
construct a wheel of size Mk in O(Mk) operations.

For examples of the wheel data structure, see [18, 23].

3 Algorithm PSSPS

3.1 Precomputations and Main Loop

We first construct a table of pseudosquares up to n/(log n)2 using the algorithm
we describe later in §4. In the code fragment below, this is stored in an array
pss[] of structs or records:

– pss[i].prime is the largest prime p (an int) such that
– pss[i].pss is Lp (an INT).

In practice, we can use the table from Wooding [26, pp. 92–93], which has
49 entries, with the largest being pss[49].pss = 295363487400900310880401,
pss[49].prime = 353. Storing this table requires O(π(p) log n) space.

Next we specify the parameters p, segment size ∆, and sieve limit s:

– Let p be the smallest prime such that the pseudosquare Lp > n/(π(p)(log n)2).
– ∆ := Θ(π(p) log n). Note ∆ � p.



– s := bn/Lpc+ 1 = O(∆ log n).

We conjecture p ∼ (1/ log 2) log n log log n (see below). Making ∆ larger improves
overall performance; we choose here to give it roughly the same size as the
pseudosquares table so it does not dominate overall space use. Our choice for s
will balance the time spent in sieving versus the time applying the pseudosquares
prime test.

In practice, we might choose ∆ first. One normally chooses ∆ to be as large
as possible yet small enough to fit in cache memory, say around 220. Then choose
s = Θ(∆ log n), and pick the smallest prime p so that Lp > n/s. If this choice
for p is larger than our largest pseudosquares table entry, we simply set p to
the largest entry (353) and set s := bn/Lpc + 1. Once p and s are set, the
pseudosquares table is no longer needed.

We wrap up precomputation by building a wheel of size Θ(log n). In practice,
a wheel of size 30 = 2 · 3 · 5 (k = 3) works fine. We must have pk ≤ p.

Our main loop iterates over segments of size ∆.

int p,s;
INT l,r,n; // declare multiprec. ints
pssentry pss[]; // Pseudosquare table
PssBuild(pss,n); // Builds the pseudosq. tbl.
Initialize(); // Compute p,delta,s etc.
Wheel W(pi(log(n))); // Wheel of size O(log n)

//** Main Loop
Primelist PL(p); // Find primes up to p
output(PL); // Output primes up to p
for(l=p; l<n; l=l+delta) // Loop over segments
{
r=min(l+delta,n);
sieve(l,r,p,s,PL,W); // Sieve the inverval [l+1,r]

}

Precomputation is dominated by the time to build the pseudosquares table;
this is o(n) operations and O(π(p) log n) space. Constructing the wheel takes
O(log n) operations and space. The list of primes up to p takes at most O(p)
operations and space. We will analyze the cost of the main loop at the end of
this section.

3.2 Finding Primes in a Segment

Here we implement the sieve() function called in the main loop above. We
begin by sieving, then we perform the pseudosquares prime test, and we finish
by removing perfect powers.



Sieving. We sieve by the primes up to p, and then we sieve by integers from p
to s using the wheel.

Here our BitVector class is created with left and right endpoints (` and r),
of length ∆, that supports functions to set and clear bits. Also, the member
function first(x) will return the first integer larger than ` divisible by x.

BitVector B(delta,l,r); // bit vector for the interval
B.setall(); // assume all are prime to start

//** Sieve by primes up to p
int i; INT x;
for(i=1; i<=PL.length(); i++)
// Loop through multiples of PL[i]:
for(x=B.first(PL[i]); x<=r; x=x+PL[i])
B.clear(x);

//** Sieve by integers d up to s, gcd(d,m)=1
int d, m=W.size(); // m is the size of the wheel
for(d=W[p%m].next; d<=min(s,sqrt(l)); d=d+W[d%m].next)
// Loop through multiples of d:
for(x=B.first(d); x<=r; x=x+d)
B.clear(x);

At this point, B represents only those integers from the interval [`+1, r], with no
prime divisors smaller than min{s,

√
`}. In practice, one can implement this so

that all the work done in these inner loops requires only single-precision integers:
work with x− ` rather than x.

The time to sieve by primes is proportional to∑
pi≤p

(
1 +

∆

pi

)
= O(π(p) + ∆ log log p) = o(∆ log n).

Sieving by integers generated by the wheel between p and s takes time propor-
tional to ∑

p<d≤s
gcd(d,m)=1

(
1 +

∆

d

)
= O

(
φ(m)

m
(s + ∆ log(s/p))

)

using (5). This simplifies to O((s + ∆ log(s/p))/ log log log n) = o(∆ log n) using
(4). In total, this phase requires o(∆ log n) operations and O(∆) space.

The Pseudosquares Prime Test. The next phase of our algorithm is based
on the following lemma, due to Lukes, Patterson, and Williams [14].

Lemma 3.1. Let n and s be positive integers. If

1. All prime divisors of n exceed s,
2. n/s < Lp for some prime p,



3. p
(n−1)/2
i ≡ ±1 (mod n) for all primes pi ≤ p,

4. 2(n−1)/2 ≡ −1 (mod n) when n ≡ 5 (mod 8),
p
(n−1)/2
i ≡ −1 (mod n) for some pi ≤ p when n ≡ 1 (mod 8),

then n is a prime or a prime power.

Note that if n is prime, then the conditions of the lemma hold with s = 1 and
n < Lp.

We code this prime test as function psspt(), which tests conditions (3) and
(4) of the lemma. We make sure to perform the 2(n−1)/2 mod n test first, for this
has the effect of performing a base-2 pseudoprime test [16].

INT x;
for(x=l+1; x<=r; x++) // loop over the interval
if(B[x]==1) // x meets conditions (1) & (2)
if(!psspt(x,p)) // if x fails the test
B.clear(x); // x is not prime

Because of our earlier sieving, only O(∆/ log s) = O(∆/ log log n) integers remain
that pass conditions (1) and (2) for our prime test. Function psspt() will first
effectively perform a base-2 pseudoprime test. This takes O(log n) arithmetic
operations per test, for a total time to this point of O(∆(log n)/ log log n) =
o(∆ log n). From [16] and elsewhere in the literature, we know that only O(n/ log n)
integers up to n pass the base-2 pseudoprime test, or an average of O(∆/ log n)
per interval. (A particular interval could conceivably have more than this.) The
psspt() function performs π(p) − 1 more modular exponentiations, at a cost
of O(log n) arithmetic operations each, on each remaining integer for an overall
average cost of O(π(p)∆) operations.

Removing Perfect Powers. At this point, the only remaining integers repre-
sented by B are either prime or the power of a prime. Note that if n ≤ 6.4 · 1037,
only primes remain and we are done [25, p. 417].

To remove the prime powers, in theory we use a perfect power testing algo-
rithm [6, 7, 9] which, in our model of computation, requires sublinear time per
integer on average, making the cost negligible (o(∆) operations on average, since
we only perform the tests on the remaining O(∆/ log n) integers). In practice,
one can very efficiently enumerate perfect powers using a priority queue data
structure; we leave the details to the reader in the interest of space.

3.3 Complexity

Let us summarize what we have from above:

– Precomputation takes o(n) operations and O(π(p) log n) space (dominated
by building the pseudosquares table).

– Sieving a segment takes o(∆ log n) operations; a segment takes O(∆) =
O(π(p) log n) space.



– Performing base-2 pseudoprime tests and the pseudosquares prime test takes,
on average, O(π(p)∆) operations per interval.

– Removing perfect powers takes o(∆) operations on average.

By multiplying the average cost per segment by n/∆, the number of segments,
we prove the following.

Theorem 3.2. Let p be defined as above. Algorithm PSSPS finds all primes up
to n using O(π(p)n) + o(n log n) arithmetic operations and O(π(p) log n) space.

The work of Bach and Huelsbergen [4] implies the following conjecture.

Conjecture 3.3. log Lp ∼ log 2 p
log p , or equivalently, p ∼ 1

log 2 log Lp log log Lp.

Lukes, Patterson, and Williams [14] studied the relationship between Lp and p
for all known pseudosquares, and their data supports the conjecture.

Corollary 3.4. If Conjecture 3.3 is true, then Algorithm PSSPS finds all primes
up to n in O(n log n) arithmetic operations and O((log n)2) space.

Fortunately in practice, Conjecture 3.3 appears to hold.

Corollary 3.5. If the ERH is true, then Algorithm PSSPS finds all primes up
to n in O(n(log n)2/ log log n) arithmetic operations and O((log n)3/ log log n)
space.

This follows from Bach’s Theorem [3], which implies p < 2(log n)2, or asymptot-
ically p < (1 + o(1))(log n)2. Note that this weaker result still outperforms the
use of Miller’s prime test [15] or AKS [1, 8] in a prime sieve.

Currently the best unconditional result is p ≤ Lp
1/(4

√
e−ε) ≈ Lp

0.1516..., due
to Schinzel [20]. Since we use Lp ≈ n/p, we obtain that p ≈ n1/(4

√
e+1−ε) ≈

n0.132. This implies the following much weaker result:

Corollary 3.6. Let ε > 0. Algorithm PSSPS finds all primes up to n in
O(n1+1/(4

√
e+1−ε)) ≈ n1.132 arithmetic operations and O(n1/(4

√
e+1−ε)) ≈ n0.132

space.

Algorithm 3.1 from [22] would require a running time of roughly n1.368 to stay
within the same space bound. Of course, an AKS-based sieve would give the
best unconditional result.

4 Finding Pseudosquares

In this section we present an algorithm to find all pseudosquares Lp ≤ n. It makes
use of a new way to implement a wheel-like datastructure that uses significantly
less space.

We begin by presenting our new wheel datastructure, after which we show
how to adapt it to find pseudosquares.



4.1 A New Wheel

As mentioned in §2.3, the wheel datastructure is used primarily to enumerate
integers relatively prime to Mk, like this:

for(x=1; x<n; x=x+W[x%m].dist)
output(x);

Here we present a new implementation of the wheel, which has the following
differences:

– The space used by the wheel is O(log Mk

∑k
i=1 pi) = O((log Mk)3/ log log Mk)

bits instead of O(log pk

∏k
i=1 pi) = O(Mk log log Mk) bits. This is a huge sav-

ings.
– The integers relatively prime to Mk are not enumerated in ascending order.

An Example - Enumerating Primes to 100. Sometimes it is best to intro-
duce a new datastructure with an example. We construct our new wheel with
moduli 2, 3, 5, 7 to enumerate primes up to 100. In fact the datastructure will
enumerate 1, plus the primes pi with 7 < pi ≤ 100.

For each prime modulus pi except for 2, we create an array of structs or
records, indexed from 0 . . . pi− 1, each of which has 3 fields. Let mi be the input
modulus, which is mi := 2 · 3 · · · · pi−1. For our example, m2 = 2,m3 = 6, and
m4 = 30. Here 0 ≤ x < pi.

– W[i][x].rp is 1 if gcd(x, pi) = 1, 0 otherwise (int),
– W[i][x].dist is the smallest integer d > 0 such that gcd(x + d, pi) = 1

(int), and
– W[i][x].jump is the smallest multiple j > 0 of the input modulus mi such

that gcd(x + j, pi) = 1 (INT).

This gives us the following three datastructures:

p2 = 3: 0 1 2
rp 0 1 1

dist 1 1 2
jump 2 4 2

(m2 = 2, φ(3) = 2)

p3 = 5: 0 1 2 3 4
rp 0 1 1 1 1

dist 1 1 1 1 2
jump 6 6 6 6 12

(m3 = 6, φ(5) = 4)

p4 = 7: 0 1 2 3 4 5 6
rp 0 1 1 1 1 1 1

dist 1 1 1 1 1 1 2
jump 30 30 30 30 30 60 30

(m4 = 30, φ(7) = 6)

We will explain how to compute the jump fields below.
To enumerate the primes (and 1) we use the following code fragment:



//** Loop for p[2]=3 (loops 2 times):
x2=1; // we want ==1 mod 2
if(!W[2][x2%p[2]].rp) // make sure gcd(x2,p[2])=1
x2=x2+W[2][x2%p[2]].jump;

for(cnt2=0; cnt2<phi(p[2]); cnt2++)
{ //** Loop for p[3]=5 (loops 4 times):
x3=x2;
if(!W[3][x3%p[3]].rp) // make sure gcd(x3,p[3])=1
x3=x3+W[3][x3%p[3]].jump;

for(cnt3=0; cnt3<phi(p[3]); cnt3++)
{ //** Loop for p[4]=7 (loops ? times):
x4=x3;
if(!W[4][x4%p[4]].rp) // make sure gcd(x4,p[4])=1
x4=x4+W[4][x4%p[4]].jump;

for( ; x4<100; x4=x4+W[4][x4%p[4]].jump) output(x4);
x3=x3+W[3][x3%p[3]].jump;

}
x2=x2+W[2][x2%p[2]].jump;

}

Here x2 will take the values 1 and 5.
When x2 is 1, x3 loops through 1, 7, 13, and 19. When x2 is 5, x3 loops

through 11, 17, 23, and 29. (x2 = 5 is not relatively prime to p3 = 5, so the
if-statement before the loop is triggered, adding 6 to get 11.)

The values x4 loops through are listed in the table below, giving the primes
from 11 to 100, plus 1.

1 31 61 91 11 41 71
37 67 97 17 47
13 43 73 23 53 83
19 79 29 59 89

The values to the left of the line arise from x2 = 1; they are ≡ 1 mod 6. The
values to the right of the line arise from x2 = 5; they are ≡ 5 mod 6.

To enumerate integers relatively prime to 210 = 2 · 3 · 5 · 7 up to n, simply
replace the 100 bound for x4 in the innermost loop with n.

Computing jumps. Computing the rp and dist fields for each prime is the
same as for the basic wheel, and takes time linear in pi. Computing the jump
fields is a bit trickier, and takes O(p2

i log pi) operations.
For each column x = 0 . . . pi − 1, we do the following:

1. Compute a list of distances to all other residue classes that are relatively
prime to pi.
For pi = 7 and x = 5, we get the list 1, 3, 4, 5, 6.

2. For each distance d in the list, use the extended Euclidean algorithm [5, §4.3]
to find a multiple of the modulus, a · pi, such that d + api is divisible by mi,
the input modulus.



Continuing our example, for d = 1 we must use a = 17 to get 1+17 ·7 = 120.
Repeating this for the entire list gives 120 = 17 · 7 + 1, 150 = 21 · 7 + 3, 60 =
8 · 7 + 4, 180 = 25 · 7 + 5, 90 = 12 · 7 + 6.

3. Write down the smallest number from the list computed in the last step.
In our example, it is 60.

The value of jump entries will not exceed pimi.
The total time to build a datastructure for the first k primes is proportional

to k · p2
k log pk = O(p3

k) operations. The space needed is proportional to k ·
pk log Mk = O(p3

k/ log pk).

Using Recursion. The code fragment above to enumerate integers relatively
prime to Mk requires k−1 nested loops in general. This is not practical to code,
so we rely instead on recursion.

Here let k denote the number of prime moduli in the wheel; recall that 2
is not given a datastructure, so there will be k − 1 levels to the recursion. To
enumerate integers relatively prime to Mk up to n, we call enumerate(2,1,n).

function enumerate(int i,INT x,INT n)
{
//** make sure gcd(x,p[i])=1
if(!W[i][x%p[i]].rp) x=x+W[i][x%p[i]].jump;

if(i==k) // base case for the recursion
for( ; x<n; x=x+W[k][x%p[k]].jump) output(x);

else // recursive case for the recursion
{
for(int cnt=0; cnt<phi(p[i]); cnt++)
{
sieve(i+1,x,n); // recursive call
x=x+W[i][x%p[i]].jump;

}
}

}

Note that we are assuming pass-by-value here, so that changes to x in recursive
calls are not reflected in the calling function.

If n > Mk, then analyzing the running time reduces to counting the number
of times output(x) is called, which gives us O((φ(Mk)/Mk)n) operations.

Theorem 4.1. Let n > Mk. Using our new implementation of the wheel datas-
tructure, we can enumerate integers up to n relatively prime to Mk in O((φ(Mk)/Mk)n)
operations. Precomputing the datastructure requires O(p3

k) operations and O(p3
k/ log pk)

space.



4.2 Enumerating Pseudosquares

To search for pseudosquares Lp ≤ n, we simply make a few minor changes to
our new wheel datastructure and enumerate() function from above:

1. We choose k so that Mk ≤ n, but as large as possible. We assume that
all pseudosquares Lpi with pi ≤ pk are already known. (If not, find them
recursively with a smaller n.)

2. Our first prime is p3 = 5, with input modulus m3 = 24; we know Lp ≡ 1
(mod 24) for p ≥ 3. Each successive input modulus satisfies mi := pi−1mi−1.

3. We change the rp field to a qr field, set to 1 if x is a quadratic residue
modulo pi, and 0 otherwise. This can be computed in linear time by setting
all the qr bits to 0, then square each integer 1 . . . pi− 1 modulo pi and mark
the corresponding qr field with a 1.

4. Compute the dist and jump fields from the qr field as if it were the rp field.
5. Replace φ(pi) with (pi−1)/2 in the loop control for the recursive case of the

enumerate() function.
6. Integers x that are output by the enumerate() function are checked to see

if they are quadratic residues modulo the primes pi with pk < pi ≤ p. If they
pass, then we check to see if they are squares. The average cost for this is
O(1) operations per x value if we precompute a table of quadratic residues
modulo several primes pi > pk.

7. An integer x that passes all these tests is Lp; output it, and find the next
prime to serve as p to begin the search for the next pseudosquare.

The algorithm described above can find all pseudosquares Lp ≤ n in
O(n2−k/ log pk) operations, as the output() function will be called roughly

1
4
·

k∏
i=1

(pi − 1)/2
pi

· n

times. By our choice for k, we have k = Θ(log n/ log log n). We have proven the
following.

Theorem 4.2. Our algorithm will find all pseudosquares Lp ≤ n in

O(n exp[−c log n/ log log n])

operations, for c > 0 fixed, using O(p + (log n)3/ log log n) space.

Conjecture 3.3 implies only O((log n)3/ log log n) space is needed; assuming the
ERH instead does not increase this bound.

We apply this theorem in our prime sieve using pk ≈ (log n)2/3 to keep our
space usage under control, yet maintain a o(n) running time.

Our crude implementation of this algorithm found L223 ≈ 1.16 × 1016 in
about 17 hours on a single 1.3GHz Pentium IV processor.

Robert Threlfal observed that this wheel can be used to factor integers of the
form n = p2q, p, q prime, by using (−1/n), (2/n), (3/n), (5/n), etc. to initialize
the datastructures to search for q.



5 Timing Results

In our first set of results (Table 1), we compared our new sieve to the sieve of
Eratosthenes and the Atkin-Bernstein sieve to find the primes up to 109. Our
goal here was to verify our results and to see how bad the log n log log n factor
in the running time affects Algorithm PSSPS. When we used ∆ = 500, we were

Table 1. Sieve Algorithm Comparison

Algorithm Time in Seconds ∆ p s

Atkin-Bernstein 7.2 — — —
Eratosthenes 5.9 — — —

PSSPS 58.1 25000 0 31622
PSSPS 103.5 10000 0 31622
PSSPS 183.0 5000 0 31622
PSSPS 367.2 2500 0 31622

able to force the algorithm to use p = 17, but the running time became quite
large. Simply put, our algorithm is not appropriate for inputs this small; it ends
up performing what is, essentially, the sieve of Eratosthenes in a non-efficient
way.

We used a 1.3 GHz Pentium IV running Linux, with the Gnu g++ com-
piler. The code for the Atkin-Bernstein and Eratosthenes sieves came, unmodi-
fied, from Dan Bernstein’s website (http://cr.yp.to). Our code for Algorithm
PSSPS was not optimized for single-precision use; it used functions from the
GnuMP package for arithmetic, and in particular, to perform modular exponen-
tiations for the pseudosquares prime tests.

In Table 1, for each sieve we give the time to find the primes to 109 in seconds.
For our new algorithm, we also show different times for various choices for ∆,
the size of our interval, p, the largest entry from the pseudosquares table used
for prime tests (a value of 0 indicates no such tests were performed), and the
sieve limit s.

Next, we show how our sieve performs when finding all primes in an interval
of length 106 for much larger values for n (Table 2). The first column gives n,
the starting point of the interval searched for primes. The next three columns
report the performance of the sieving stage, giving the number of integers that
are free of factors below s (the remainder), the time sieving took in seconds,
and the value of s used. The last four columns present the results from the
pseudosquares prime tests, with the number of primes found first, followed by
the time in seconds, the value of p, and an estimate of Lp used by the prime
test. The number of tests performed (beginning with a base-2 psp test) matches
the number in column 2 (the remainder), with the Primes column giving the
number of integers that pass the test. Note that s · Lp should match or exceed



Table 2. Finding all primes between n and n + 106

n Rem. Time s Primes Time p Lp

1010 43427 0.11 100004 43427 0 0 0
1011 39434 0.13 316229 39434 0 0 0
1012 36249 0.17 1000000 36249 0 0 0
1013 33456 0.25 3162277 33456 0 0 0
1014 30892 0.49 10000000 30892 0 0 0

1015 28845 1.25 31622776 28845 0 0 0
1016 28774 2.17 57063204 27168 17.51 67 1.75·108

1017 28286 4.19 111269821 25463 19.49 79 8.98·108

1018 31717 2.09 42343580 24280 24.55 103 2.36·1010

1019 31628 2.48 50951495 23069 27.36 113 1.96·1011

1020 27342 23.29 509514950 21632 39.73 113 1.96·1011

1021 28668 15.95 348208470 20832 44.59 131 2.87·1012

1022 31814 2.7 55885834 19757 55.63 173 1.78·1014

1023 30253 6.64 143644910 18939 55.84 181 6.96·1014

1024 30879 4.06 85900327 18149 63.90 211 1.16·1016

1025 27748 39.06 859003269 17549 63.43 211 1.16·1016

1026 29965 6.54 140326390 16587 67.00 233 7.12·1017

1027 30512 5.18 98057476 16139 74.55 263 1.01·1019

1028 29863 8.14 143167432 15606 80.97 277 6.98·1019

1029 30368 6.11 106761861 15002 107.82 293 9.36·1020

1030 30944 4.24 73264612 14496 117.25 331 1.36·1022

1031 30616 5.74 100509639 13955 116.26 347 9.94·1022

1032 28542 18.95 338566228 13653 122.46 353 2.95·1023

1033 26244 121.22 3385662272 13284 124.56 353 2.95·1023

n+106. When p = 0, sieving only was used, in which case s ≥ b
√

n + 106c must
hold.

Since L353 is currently the largest pseudosquare known, any increase in size
beyond 33 decimal digits would have to be absorbed entirely by using a larger
value for s, which will greatly degrade performance unless a correspondingly
longer interval is used.

Notice that the pseudosquares prime test was not even used until the input
was 16 digits in length.
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