
Butler University Butler University

Digital Commons @ Butler University Digital Commons @ Butler University

Undergraduate Honors Thesis Collection Undergraduate Honors Thesis Collection

2020

The Knapsack Subproblem of the Algorithm to Compute the The Knapsack Subproblem of the Algorithm to Compute the

Erdos-Selfridge Function Erdos-Selfridge Function

Brianna Sorenson
Butler University

Follow this and additional works at: https://digitalcommons.butler.edu/ugtheses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sorenson, Brianna, "The Knapsack Subproblem of the Algorithm to Compute the Erdos-Selfridge Function"
(2020). Undergraduate Honors Thesis Collection. 513.
https://digitalcommons.butler.edu/ugtheses/513

This Thesis is brought to you for free and open access by the Undergraduate Honors Thesis Collection at Digital
Commons @ Butler University. It has been accepted for inclusion in Undergraduate Honors Thesis Collection by an
authorized administrator of Digital Commons @ Butler University. For more information, please contact
digitalscholarship@butler.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ Butler University

https://core.ac.uk/display/343738527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.butler.edu/
https://digitalcommons.butler.edu/ugtheses
https://digitalcommons.butler.edu/undergrad_honors_thesis_collection
https://digitalcommons.butler.edu/ugtheses?utm_source=digitalcommons.butler.edu%2Fugtheses%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.butler.edu%2Fugtheses%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.butler.edu/ugtheses/513?utm_source=digitalcommons.butler.edu%2Fugtheses%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@butler.edu

The Knapsack Subproblem of the Algorithm to Compute the

Erdős-Selfridge Function

A Thesis

Presented to the Department of Computer Science and Software Engineering

College of Liberal Arts and Sciences

and

The Honors Program

of

Butler University

In Partial Fulfillment

of the Requirements for Graduation Honors

Brianna Sorenson

May 10, 2020

Contents

1 Introduction 2

1.1 The g(k) Problem . 2

1.2 The Knapsack Problem . 5

1.3 Thesis Statement . 6

1.4 How We Make the Knapsack Algorithms Work For Us 6

2 Knapsack Background 8

2.1 NP-Complete . 8

2.2 Greedy, Branch-and-bound, and Dynamic Algorithms 9

2.3 Why These? . 9

3 Experimental Results 9

3.1 Greedy vs. Optimal Solutions . 9

3.2 Branch-and-bound . 10

3.3 Dynamic Programming . 10

3.4 Computations . 11

4 Conclusions and Future Work 13

5 Code 14

6 Bibliography 27

1

1 Introduction

After explaining the g(k) function and how to compute it, we will explore ways of solving the

knapsack subproblem embedded in this algorithm.

1.1 The g(k) Problem

The Erdős-Selfridge Function, which I will continue referring to as g, takes an integer input k and

returns the smallest integer n > k+1 such that the smallest prime divisor of the binomial coefficient(
n
k

)
is greater than k. To get a better sense of the problem, we can use Pascal’s triangle [6] to get

the first few values explicitly:

0 1 2 3 4 5 6 7
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

A simple way to find g(k) for small k is to check each integer in column k, starting at row k + 1,

until you find the first integer whose smallest prime factor is greater than k, and the answer will be

that row number. For k = 2 we start looking in column 2 (1, 3, 6, 10, 15, 21, ...) and start with 6

because it is on row 4. It is divisible by 2, so we move on to 10, which is also divisible by 2. We

move on to 15, whose smallest prime factor is 3, so our answer for g(2) will be the number of the

row we found 15 in, so

g(2) = 6.

Similarly, we find that

g(3) = g(4) = 7

because 35’s smallest prime factor is 5, and for both k’s, it is the first number in their column which

is not divisible by 2 or 3.

This is not the method we use in the algorithm, as the values of g(k) grow very quickly, and

generating Pascal’s triangle for well over 100 rows is a lot of work we do not need to do. Instead,

we use a kind of sieve called a wheel which works using the following theorem.

Theorem 1.1 (Kummer’s Theorem) [3]

2

Let k < n be positive integers, and let p be a prime ≤ k. Let t be a positive integer with t ≥ logk n.

Write

k =

t∑
i=0

aip
i and n =

t∑
i=0

bip
i

as the base-p representations of k and n respectively. Then p does not divide
(
n
k

)
if and only if bi ≥ ai

for i = 0, . . . , t.

As an example, we will use Kummer’s Theorem to see if
(
7
4

)
is divisible by 3. First, we will write

7 in base 3: 213; and we will write 4 in base 3: 113. the base-3-digits (or trits) of 213 are all greater

than or equal to 113, so
(
7
4

)
does not have a factor of 3. And we know this from our earlier exercise

with Pascal’s triangle. Next, we will see if
(
7
5

)
is divisible by 3. We recall 7 base 3 is 213, and now

we see that 5 base 3 is 123. The last trit of 123 is greater than the last trit of 213, so
(
7
5

)
must have

a factor of 3. From Pascal’s triangle, we can see that
(
7
5

)
= 21 which is clearly a multiple of 3.

The main idea behind how the algorithm we use to compute the Erdős-Selfridge function works

is that we need to use the information that Kummer’s theorem gives us about the divisibility of g(k)

for each prime power and the Chinese remainder theorem will allow us to combine those separate

moduli into one, so that we can get an answer that is admissible for each one.

Theorem 1.2 (Chinese Remainder Theorem) Let p, q be coprime. Then the system of equa-

tions

x = a mod p

x = b mod q

has a unique solution for x modulo pq.

We use a wheel sieve to achieve this aim. A wheel is a data structure made up of rings, which

each have a modulus and a set of remainders for that modulus, and it enumerates the solutions to

the Chinese remainder theorem quickly. As an example, if you wanted to get numbers that are 3 or

5 mod 7 and 9 or 10 mod 11, the wheel would have two rings: one for the desired remainders mod

7, and one for the desired remainders mod 11. The wheel made with these rings would then spit

out the numbers 10, 31, 54, and 75. Later on we will go through an example of how this works. In

our application of a wheel sieve for the Erdős-Selfridge function, we only use a subset of the rings

we construct in the main sieve itself, and once we get through the explanation of why using a wheel

for this problem is important, we will discuss how and why we exclude some of our rings. [1, 2]

Here is an example of how we use Kummer’s theorem to make a ring for k = 10. For each

3

prime p ≤ 10, we write k in base p. So, 10 would be 10102 in base 2. Therefore, we will admit the

remainders 10102, 11102, 10112, and 11112. Converting this back into decimal, we get 10, 11, 14,

and 15 mod 16.

We then use the same method to find this information for the other primes smaller than 10 so

that we may use them as rings for our sieving algorithm. So, using our k = 10 example, the ring

for p = 2 would have an array of length 16 where every entry is a zero except the spots for the

admissible remainders, so the 10th, 11th, 14th, and 15th spots will each have a 1, like this:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

Now, in order to quickly find the numbers we want from this ring, we are going to include another

array of the same length that tells us how much we need to add to any arbitrary number in order

to get a number with the next admissible remainder mod 16. Because remainders cycle around like

a clock, the numbers for this array will too. It will look like this:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+10 +9 +8 +7 +6 +5 +4 +3 +2 +1 +1 +3 +2 +1 +1 +11

The reason we do this is because incrementing by one and checking the remainder over and over

until we get to a number we want takes more time than constructing this second array once and

knowing we will be at a correct point once we add the number in the right cell of the array. So with

an example, we start at 0, and the jump array tells us to add 10 in order to get to a number with

an admissible remainder mod 16. Now we have the number 10. We will then be able to send this

number to the next ring, and because this ring has 4 admissible remainders we will continue to send

3 more numbers. Our number 10 is 10 mod 16, so the jump array tells us to add 1 to get 11. We

will send 11 to the next ring, and then add the next jump value: 3. We send 14 to the next ring,

add 1, then send 15. We have now sent all 4, and the work of this ring is done. In this example it

seems like we could have just sent the remainders we got initially from using Kummer’s theorem,

but it becomes more apparent why these jump arrays are important when we see what happens

when these numbers get to the next ring.

Here, we can do an example where we fully compute the value of g(5). I have the rings we will

be using with their admissible remainders and jump arrays constructed below:

k = 5 0 1 2 3 4 5 6 7 8
8 0 0 0 0 0 1 0 1

+5 +4 +3 +2 +1 +2 +1 +6
9 0 0 0 0 0 1 0 0 1

+8 +16 +24 +32 +40 +48 +8 +16 +24

4

As you can see, the jump values of the 9 ring are all multiples of 8. This is important because

when we are adding to numbers in the 9 ring that we got from the 8 ring, we do not want to change

the number’s remainder mod 8 because we know that it is already admissible for that ring. Because

there are two admissible remainders in each ring, we will get 4 numbers from this wheel. First, we

start with 0. It is not admissible to the 8 ring, so we will add 5. now we have 5, which is admissible,

so we will send it to the 9 ring. In the 9 ring, 5 is an admissible remainder, so we have 5 as one of

our four final numbers. Still in the 9 ring, we will add 48 to get the next number in our final four:

53. Now, we will go back to the 8 ring. We are still holding on to that 5 we sent the 9 ring earlier

so that we can now add 2, and send a 7 to the 9 ring. 7 is not admissible for the 9 ring, so we will

add 16 and send 23 to the final 4. 23 is 5 mod 9 so we will add 48 and send 71 as our last number

in the final set. Now we are left with 5, 53, 23, and 71. One of these numbers is g(5). You may

have noticed that we omitted the ring constructed for the prime 5. While we did not use it in the

wheel, we can still use it to eliminate some of our options here. The ring would have admitted all

remainders ≥ 5 mod 25, so we can eliminate 53. We also know that g(5) ≥ k+1 so we can eliminate

5. Now we are left with 23 and 71. Of these, we want the smallest answer, so

g(5) = 23.

As you can likely see at this point, for larger and larger k there will be more and more rings

and therefore the work we do will grow more and more. However, in our example to find g(5), we

excluded the ring for 5 and still got the correct answer because the product of our included ring

lengths is larger than our final answer. We actually only need the product of the sizes of the rings to

be just larger than our final answer. The closer it is, the smaller our range of numbers the wheel will

give us. However, we also want our rings that we do include to have as few admissible remainders as

possible because the number of candidate answers the wheel gives us is the product of the number

of admissible remainders in each ring. Therefore, we could do less work to find the solution for g(k),

but we need some method of determining which rings we want to keep and which rings we want to

exclude from our sieve.

1.2 The Knapsack Problem

There is a similar problem of choosing between things to keep and things to exclude known as the

knapsack problem. Imagine you have broken into a fancy art museum and you only have a certain

amount of time to take what you want, so you can only make one trip and leave with only the

5

things you can carry in the knapsack you brought with you. Your goal is to grab things you can

sell to a fence and get as much money as possible. Therefore, you will probably want to prioritize

grabbing small and expensive things like ancient jewelry found from important archaeological sites.

Even though that huge modern art sculpture would get you enough money that you’d never have

to commit crime in metaphorical thought experiment art museums ever again, there is simply no

way you will ever be able to fit it into your knapsack. So, you could use a knapsack algorithm to

find the best combination of items to take with you so that you get the maximum possible value for

your available capacity.

1.3 Thesis Statement

We can use one of the existing knapsack algorithms to select which rings we want to use in our wheel.

There are 3 popular algorithms to solve this problem: the greedy approach, the branch-and-bound

approach, and the dynamic approach. We used all three of these methods to select combinations

of rings so that we can compare the time it takes each of them to complete the task and see which

of them gives us the best answers. We suspect that the greedy algorithm will prove to be the best

choice here for two reasons: it works well with split rings, which will be explored in more detail soon

enough, and the fact that we have a large number of items with similar mass to select from.

1.4 How We Make the Knapsack Algorithms Work For Us

The unmodified knapsack algorithms work additively, which makes sense in the art heist context

because if you take a vase worth 40,000 dollars weighing 30 pounds and a painting worth 35,000

dollars weighing 15 pounds, you have 75,000 dollars worth of things in your knapsack weighing a

total of 45 pounds. However, for our problem, if you include a ring of size 16 with 4 admissible

remainders and a ring of size 27 with 12 admissible remainders, you end up with a ’mass’ of 432

and a ’value’ of 48 admissible remainders overall, so in order to convert our multiplicative value and

mass into an additive algorithm, we simply take logarithms.1

We actually want to minimize the number of admissible residues while knapsack algorithms

maximize value, so our equation for the value of a ring will need to be larger for fewer admissible

remainders. This is our formula for the value of a ring:

log

(
size of ring

number of admissible remainders

)
1Recall that log(ab) = log(a) + log(b).

6

And we calculate the mass of each ring with this formula:

log (size of ring)

We calculate the size of the knapsack as:

log(ĝ(k)) + log(k)

Here, ĝ(k) is an estimate of g(k) and we include a fudge factor of k to ensure the knapsack is large

enough to contain g(k) in the candidate solution set for the wheel. [8]

Right now, we are using a greedy algorithm to select which rings we want to use in our main

calculations, which is fast but not necessarily optimal. It works by sorting the rings by the ratio

of value to mass and takes the ones with the best ratios in order until the knapsack is too full to

fit more items. This method has so far been successful, as we have now used it to calculate values

for k well over 300. Previous algorithms were unable to compute g(200) in less than a month while

using specialized hardware and multiple processors, but our algorithm has been able to calculate

this same value in around an hour using only a single general purpose processor. [7, 8]

While our current method works well enough, my aim is to see if it would be worth the extra

time to use a knapsack algorithm which is optimal for other applications of the knapsack problem,

and if so, discover what implementation thereof would be best to use for our case.

Splitting Prime Rings

Our application is actually a slight variation of the original knapsack problem because we have a

method to split up prime rings into smaller rings which may retain most of the filtering value of those

rings while taking up less weight. This difference will require us to make changes to the established

optimal solutions to account for this, since splitting the rings will be made redundant if the solutions

given by the knapsack algorithms include more than one split from the same prime ring, so we must

find a way to exclude such cases.

For example, using our length 16 ring for k = 10, we could make smaller rings using what we

know from our original, so long as they all have lengths that are powers of p, which in this case is 2.

7

16 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

8 0 0 1 1 0 0 1 1

4 0 0 1 1

2 1 1

As you can see here, since 10, 11, 14, and 15 are 2, 3, 6, and 7 mod 8 respectively, we have

a smaller ring which will admit all the same numbers we want it to admit but it will also admit

numbers which we want to eliminate. This would normally be a problem, but as long as we keep

the 16 length ring for filtering at the end, we still eliminate the candidate answers we do not want.

However, splitting rings creates new problems which require attention. Each smaller ring from the

same prime will never have greater value than the larger ones. In this example, we can see that

the length 8 ring is less valuable than the length 16 ring because they have the same number of

admissible residues. Also, the length 2 ring is completely worthless.

This also shows why it is redundant to include any two of these splits in our wheel. Because

bigger rings always have greater or equal filtering value than smaller ones, including more than one

from the same prime does not give us any new information. In this particular case, you can see that

it is likely better to just use the biggest ring, but sometimes the rings we get end up being like the

8 length one is here, where the length 4 ring has exactly the same value with a smaller size, and

so choosing 4 over 8 would clearly be the correct choice. This illustrates why having a specialized

knapsack algorithm which takes this into account is so beneficial.

2 Knapsack Background

2.1 NP-Complete

The knapsack problem is part of a class of problems known as NP-complete. A problem is in NP if

a candidate solution to that problem can be verified in polynomial time, which means that the time

it takes for the function to run is some polynomial function of the input. A problem is NP-complete

if it is in NP and every problem in NP is reducible to that problem in polynomial time. This is

interesting because there are also many other problems that are NP-complete, like the travelling

salesperson problem, the graph coloring problem, and the Hamiltonian path problem to name only

a few. The best known algorithms for these types of problems are exponential in time, and for a

problem to be considered feasible, it must have a solution which runs in polynomial time. This

essentially means that NP-complete problems are quite hard to solve quickly. [5, 4]

8

2.2 Greedy, Branch-and-bound, and Dynamic Algorithms

The greedy algorithm works by sorting the items according to some criteria and takes the items

in order from the top of the list until there is no more room in the knapsack to hold more items.

Some common criteria used to determine the sort include most to least valuable items, least to most

massive items, and greatest to least ratio of value to mass. This last criteria is the one we selected

for our algorithm, and it has been working well for us so far. The greedy algorithm, although just

as fast as whichever sorting algorithm is chosen for the items, cannot guarantee an optimal solution,

unlike the two of the common optimal knapsack algorithms which I will explain later. However,

with our added feature of ring splitting, these so-called optimal solutions may not be as effective as

they are for the general problem, so this is still anyone’s game. For more information on knapsack

algorithms, see the book Knapsack Problems by Kellerer, Pferschy, and Pisinger. [5]

2.3 Why These?

Greedy, as has been said before, is the simple quick and dirty method which gives us good enough

solutions to be very helpful indeed to this problem. It is the easiest, laziest option. The dynamic

approach is slower and optimal for the usual knapsack cases but it is difficult to adapt to our splitting

criteria. Branch-and-bound is slower still but optimal for the general problem and far more easily

customized to our specifications than dynamic. These three options give us a good amount of variety

for our purposes so we have room to play around with them.

3 Experimental Results

3.1 Greedy vs. Optimal Solutions

The greedy algorithm is by far the most simple algorithm for the knapsack problem. All it does is

sort the items and then it takes those items from the top of that newly sorted list until the next item

cannot fit into the knapsack. Therefore, it is just as fast as whatever sorting algorithm you chose to

use, which in our case is O(i2) because we are using selection sort, but there are algorithms which are

asymptotically faster, like quick sort or merge sort, which are O(i log(i)). We chose to use selection

sort with the idea that it minimizes the number of data moves, which is an expensive procedure

time-wise because we are moving ring data structures around. This algorithm does not guarantee

an optimal solution to our problem, though. The other algorithms we are using are optimal for

the general knapsack problem and may have a chance at retaining that property for our specific

9

application with a few tweaks.

3.2 Branch-and-bound

The branch-and-bound method of solving the knapsack problem has time complexity O(2i), with i

being the number of items to consider, which is quite slow at first glance, but this is a worst-case

estimate. In reality, it is a bit faster when adding in a few clever tricks. Essentially, the algorithm

works by exploring every possible combination of items in a depth-first manner. It will consider all

combinations which include the first item, the first and second item, ..., combinations which do not

include the first item and do include the second, etc. However, we can make this algorithm faster

by telling it to abandon branches of its decision tree by using a heuristic. So long as we keep track

of the greatest value of a combination we have seen so far, and have an estimate of the maximum

value we could get from any combination further down in the next branch of our decision tree, when

the heuristic tells us that the remaining combinations in the rest of the branch will not be able to

add up to a value as high as a combination we have already seen, we can prune off the rest of the

branch by skipping it entirely. This can save us a lot of work, especially if it prunes off a branch

which is close to our root node.

This algorithm is very good for dealing with altered versions of the knapsack problem, like what

we have with our splits, because it is a simple tweak to code in conditions for where the tree should

prune more branches. If the knapsack includes two rings from the same prime, abandon this branch.

This allows us to make the algorithm avoid combinations we want to avoid. This algorithm is also

useful in that it can work unaltered with non-integer values for capacity of the knapsack and size of

the items, which cannot be said of the dynamic algorithm. This is important to us because we are

using non-integer values for both our mass and value variables.

3.3 Dynamic Programming

If branch-and-bound works using a decision tree, dynamic works using a grid. The algorithm first

constructs a two-dimensional array with the dimensions being 1 plus the capacity, W , of the knapsack

and 1 plus the number, i, of items. Then, beginning in the corner which represents 0 items and

0 capacity of the knapsack, the algorithm fills in that place with the highest value which can be

made with that subset of items and that capacity. By working from the bottom in this manner, the

calculations for each individual cell of the array are very fast and simple, requiring only constant

time. In this example, we have the number of items considered as the vertical axis and the capacity

10

allowed as the horizontal axis, with the items in the table on the right:

0 1 2 3 value weight

0 0 0 0 0 10 1

1 0 10 10 10 20 3

2 0 10 10 20 30 2

3 0 10 30 40

Eventually, the array builds up to the very last cell in the very last row and column of the array,

which contains the optimal possible value. Therefore, it makes sense that the time it takes would

simply be equal to the number of cells in this array: O(iW).2

This algorithm can be much faster than branch-and-bound when working with a small enough

knapsack capacity, but because arrays must have integer dimensions, and we are working with non-

integer values for both capacity of the knapsack and size of the items, we must accept the necessary

evil of rounding errors. Also, due to the nature of how the values of item combinations are calculated,

we cannot prune away unhelpful or unacceptable combinations for our special splitting condition

as we could with a decision tree. It is likely that there is a way to achieve a similar effect, but

implementing such a thing would add to its run time rather than lessen it. It is therefore more

difficult to make it come up with the better solutions that splitting provides and would lead to the

greedy algorithm finding better solutions, as we have discovered.

3.4 Computations

We have data comparing our current greedy algorithm which uses split rings (greedy), a branch-and-

bound backtracking algorithm using splits which excludes combinations that include two rings from

the same prime (btp), another branch-and-bound which doesn’t bother to prune away combinations

with rings from the same prime but instead unsplits any pairs which make their way into the solution

by simply removing the smaller one (bt), and a normal dynamic algorithm which doesn’t bother

with splitting (dp).

2This may seem like polynomial time, but in actuality W could, for the general problem, be anything at all. It
may be i2, or 4563827i, or 13. In our case, it’s around k

log(k)
, if we round all masses to the nearest integer, giving up

on optimality.

11

Strangely, although greedy is not an optimal algorithm, it is a consistent contender for greatest

value found while the other three methods seem to bounce around in their results. Greedy does not

go undefeated, but especially with the larger values of k, the difference is apparent. It seems that

the splitting condition was enough to revoke the title of ’optimal’ from these other algorithms.

Here is a graph of the time it took for each one.

It is clear that dynamic takes the win here for time. Greedy can likely be improved by using a

different sorting algorithm, and it is more consistent than the branch-and-bound algorithms. The

large spikes from the branch-and-bound algorithms, especially the pruning version, show them to be

poorer than greedy time-wise.

12

4 Conclusions and Future Work

It seems that our initial assumption that the greedy algorithm would do better than the alternatives

has been proven correct. I would have expected the other algorithms to perform at least as well

as the greedy algorithm in terms of maximum value combination found and that the sticking point

would have been in how slow they are to execute, but the greedy algorithm is clearly the best

choice. This is likely because all our rings have similar sizes overall. To bring back the thief analogy,

imagine you are robbing a jewelry store, but the only things they sell are rings. All these items have

similar weight, and your knapsack is quite small. There is a wider range of how valuable each ring

is though, so just grabbing a random handful could leave you with a pretty poor haul. The dynamic

and branch-and-bound approaches both take the weight of each item as an important variable where

that is not as necessary for our specific case. The greedy method of just taking the rings with the

most valuable gems has proven to be the most effective approach.

The greedy algorithm also has the easiest method of dealing with split rings. If two rings split

from the same prime have a great enough value/mass ratio that both would be included for the

wheel, the smaller of the pair of rings can simply be deleted from the sorted list of rings. This

process is repeated until the solution no longer contains more than one ring split from the same

prime.

13

5 Code

#include <iostream>

#include <fstream>

#include "smallprimes.h"

#include "ring.h"

#include "estimate.h"

#include <time.h>

clock_t start;

clock_t ending;

double bt_time_used, btp_time_used, dp_time_used, g_time_used = 0;

// sorts rings in this array by value/size

void sortbyratio(vector<Ring> &r)

{

for (int i = 0; i + 1 < r.size(); i++)

{

for (int j = i + 1; j < r.size(); j++)

if (r[j].ratio > r[i].ratio)

{

Ring x = r[j];

r[j] = r[i];

r[i] = x;

}

}

}

// returns the total value of all the rings in this array

double val(vector<Ring> r)

{

14

double toreturn = 0;

for (int i = 0; i < r.size(); i++)

{

toreturn += r[i].value;

}

return toreturn;

}

// returns the total size of all the rings in this array

double siz(vector<Ring> r)

{

double toreturn = 0;

for (int i = 0; i < r.size(); i++)

toreturn += r[i].size;

return toreturn;

}

vector<Ring> btknapinc, btpknapinc;

double btknapval, btpknapval = 0;

double btknapsizeleft, btpknapsizeleft = 0;

// recursive part of btpknap()

void btpknaprec(double possval, vector<Ring> total,

vector<Ring> included, int place, double value,

double capacity)

{

if (capacity < total[place].size) return; // if there's no room, stop

if (value >= btknapval) // if best value so far, save it

{

btpknapval = value;

15

btpknapsizeleft = capacity;

btpknapinc = included;

}

if (possval < btknapval) return;

// if we cannot get a better value on this branch, stop

if (place >= total.size()) return; // if no items left, stop

for (int i = 0; i < included.size(); i++)

{ // if we have two rings from the same prime, stop

if (total[place].p == included[i].p)

{

vector<Ring> without = included;

btpknaprec(possval - total[place].value, total,

without, place + 1, value, capacity);

return;

}

}

vector<Ring> with = included;

with.push_back(total[place]);

btpknaprec(possval - total[place].value, total,

with, place + 1, value + total[place].value,

capacity - total[place].size); // include item

vector<Ring> without = included;

btpknaprec(possval - total[place].value, total,

without, place + 1, value, capacity); // don't include item

}

// the branch-and-bound algorithm which prunes splits

void btpknap(vector<Ring> r, double W)

{

16

start = clock(); // start timer

vector<Ring> included;

included.resize(0);

btpknaprec(val(r), r, included, 0, 0.0, W); // real work is here

ending = clock(); // end timer

btp_time_used =

((double)(ending - start)) / CLOCKS_PER_SEC;

}

// recursive part of btknap()

void btknaprec(double possval, vector<Ring> total,

vector<Ring> included, int place, double value,

double capacity)

{

if (capacity < 0) return; // if there's no room, stop

if (value >= btknapval) // if this is the greatest value so far, save it

{

btknapval = value;

btknapsizeleft = capacity;

btknapinc = included;

}

if (place >= total.size()) // if theres no more items, stop

{

return;

}

if (possval < btknapval) return;

// if we cannot do better than the maximum so far, stop

vector<Ring> wonewitem = included;

wonewitem.push_back(total[place]);

btknaprec(possval - total[place].value, total,

wonewitem, place + 1, value + total[place].value,

capacity - total[place].size); // include this item

17

vector<Ring> wnewitem = included;

btknaprec(possval - total[place].value, total,

wnewitem, place + 1, value, capacity); // don't include this item

}

// the branch-and-bound algorithm without pruning splits

void btknap(vector<Ring> r, double W)

{

start = clock(); // start timer

vector<Ring> included;

included.resize(0);

btknapinc.resize(0);

btknapval = 0;

btknapsizeleft = 0;

btknaprec(val(r), r, included, 0, 0.0, W); // calls function

ending = clock(); // end timer

bt_time_used =

((double)(ending - start)) / CLOCKS_PER_SEC;

}

vector<Ring> dpknapinc, gsplitknapinc, gknapinc;

double dpknapval, gsplitknapval, gknapval = 0;

double dpknapsizeleft, gsplitknapsizeleft,

gknapsizeleft = 0;

// the dynamic programming knapsack algorithm

void dpknap(vector<Ring> r, int W)

{

start = clock(); // start timer

dpknapinc.resize(0);

double **mat;

18

mat = new double *[r.size() + 1];

// construct 2d array that is number of items by knapsack size

for (int i = 0; i <= r.size(); i++) // initialize the 0 values

mat[i] = new double[W + 1];

for (int i = 0; i < r.size() + 1; i++)

mat[i][0] = 0;

for (int i = 0; i < W + 1; i++)

mat[0][i] = 0;

for (int item = 1; item <= r.size(); item++)

{

for (int capacity = 1; capacity <= W; capacity++)

{

double maxValWithoutCurr =

mat[item - 1][capacity];

double maxValWithCurr = 0.0;

int weightOfCurr =

r[item - 1].size + .5;

if (capacity >= weightOfCurr)

{ // if there's room for this item, add it as new max value

maxValWithCurr =

r[item - 1].value;

int remainingCapacity =

capacity - weightOfCurr;

maxValWithCurr +=

mat[item - 1][remainingCapacity];

} // put the maximum value in this spot of the array

mat[item][capacity] =

(maxValWithoutCurr < maxValWithCurr) ?

maxValWithCurr : maxValWithoutCurr;

}

}

dpknapval = mat[r.size()][W];

for (int i = 0; i <= r.size(); i++)

19

delete mat[i];

delete[] mat;

ending = clock(); // end timer

dp_time_used =

((double)(ending - start)) / CLOCKS_PER_SEC;

}

// a function to print all the data for a particular k value to one file

void print(int k, const vector<Ring> &r, int cutoff)

{

char filename[] = "xxx.txt";

filename[0] = '0' + k / 100;

filename[1] = '0' + (k / 10) % 10;

filename[2] = '0' + k % 10;

ofstream file(filename);

file << "greedy split" << endl;

for (int i = 0; i < gsplitknapinc.size(); i++)

{

file << gsplitknapinc[i].p << " ";

}

file << gsplitknapsizeleft << endl;

file << gsplitknapval << " " << g_time_used << endl;

file

<<

"bt with branch and bound and splits then unsplit after" <<

endl;

for (int i = 0; i < btknapinc.size(); i++)

{

file << btknapinc[i].p << " ";

}

20

file << btknapsizeleft << endl;

file << btknapval << " " << bt_time_used << endl;

file << "bt with pruning and splits" << endl;

for (int i = 0; i < btpknapinc.size(); i++)

file << btpknapinc[i].p << " ";

file << btpknapsizeleft << endl;

file << btpknapval << " " << btp_time_used << endl;

file << "dynamic" << endl;

for (int i = 0; i < dpknapinc.size(); i++)

{

file << dpknapinc[i].p << endl;

}

file << dpknapval << " " << dp_time_used << endl;

file.close();

}

// a function which 'unsplits' a candidate solution by removing the smaller ring

// this function is for when the candidate solution is the array of rings

void uunsplit(int &k, vector<Ring> &r)

{

for (int i = 0; i < r.size(); i++)

{

for (int j = i + 1; j < r.size(); j++)

{

if (r[j].p == r[i].p)

{

r[i].init(r[j].p, k);

r.erase(r.begin() + j);

}

21

}

}

}

// a function which 'unsplits' a candidate solution by removing the smaller ring

// this function is for when the candidate solution is a subset of the array of rings

// ordered before the cutoff value

bool unsplit(int k, vector<Ring> &r, int &cutoff)

{

bool merged = false;

for (int i = 0; i < r.size(); i++)

{

if (i < cutoff && r[i].split)

{

for (int j = i + 1; j < cutoff; j++)

if (i != j && r[j].p == r[i].p)

{

r[i].init(r[j].p, k);

for (int m = j; m + 1 < r.size(); m++)

r[m] = r[m + 1];

r.resize(r.size() - 1);

cutoff--;

merged = true;

}

}

else if (i >= cutoff && r[i].split)

{

for (int j = i + 1; j < r.size(); j++)

if (i != j && r[j].p == r[i].p)

{

r[i].init(r[j].p, k);

for (int m = j; m + 1 < r.size(); m++)

22

r[m] = r[m + 1];

r.resize(r.size() - 1);

merged = true;

}

}

}

return merged;

}

// this is the main function

int main()

{

int k;

char filename[] = "ESF.data";

ofstream file(filename);

for (k = 10; k <= 300; k++)

{

file << k << " ";

// begin writing the file in which the data will be stored

double target;

target = estimateg(k);

// get our estimate of the final answer with an extra factor of k

makesmallprimes(k); // get the primes less than or equal to k

vector<Ring> r;

r.resize(primelen);

for (int i = 0; i < primelen; i++)

{

23

r[i].init(prime[i], k); // initialize the rings

}

dpknap(r, log(target)); // before splitting rings, do dynamic program

for (int i = 0; i < primelen; i++) // split rings

{

Ring x;

if (r[i].asplit_simple() < r[i].A)

{

x.init(r[i].p, k, r[i].asplit_simple());

r[i].split = x.split = true;

r[i].babya = x.a;

r[i].makeknap();

r.push_back(r[i]);

r[i] = x;

}

}

btpknap(r, log(target)); // branch and bound knapsack with pruning

btknap(r, log(target)); // branch and bound knapsack without pruning

uunsplit(k, btknapinc);

start = clock(); // start timer for greedy solution

sortbyratio(r); // sort rings

double totalsize = 0;

double totalvalue = 0;

gsplitknapinc.resize(0);

double modulus = 1;

double residues = 1;

int cutoff = 0;

24

for (int i = 0; i < r.size(); i++) // find cutoff point

{

if (totalsize + r[i].size <= log(target))

{

totalsize += r[i].size;

totalvalue += r[i].value;

}

else

{

cutoff = i;

break;

}

}

while (unsplit(k, r, cutoff));

ending = clock(); // end timer

for (int i = 0; i < cutoff; i++)

{

gsplitknapinc.push_back(r[i]);

}

gsplitknapval = val(gsplitknapinc);

gsplitknapsizeleft = log(target) - siz(gsplitknapinc);

g_time_used = ((double)(ending - start)) / CLOCKS_PER_SEC;

print(k, r, cutoff); // print file with information for this k

cout << k << endl;

file << gsplitknapval << " " << g_time_used << " " <<

btknapval << " " << bt_time_used << " " <<

btpknapval << " " << btp_time_used << " " <<

dpknapval << " " << dp_time_used << endl;

// collect data in file

}

25

return 0;

}

26

6 Bibliography

References

[1] Jonathan P. Sorenson. “The Pseudosquares Prime Sieve”. In: Proceedings of the 7th Interna-

tional Symposium on Algorithmic Number Theory (ANTS-VII). Ed. by Florian Hess, Sebastian

Pauli, and Michael Pohst. LNCS 4076, ISBN 3-540-36075-1. Berlin, Germany: Springer, July

2006, pp. 193–207.

[2] Jonathan P. Sorenson. “Sieving for pseudosquares and pseudocubes in parallel using doubly-

focused enumeration and wheel datastructures”. In: Proceedings of the 9th International Sympo-

sium on Algorithmic Number Theory (ANTS-IX). Ed. by Guillaume Hanrot, Francois Morain,

and Emmanuel Thomé. LNCS 6197, ISBN 978-3-642-14517-9. Nancy, France: Springer, July

2010, pp. 331–339.

[3] P. Erdős, C. B. Lacampagne, and J. L. Selfridge. “Estimates of the least prime factor of a

binomial coefficient”. In: Math. Comp. 61.203 (1993), pp. 215–224. issn: 0025-5718. doi: 10.

2307/2152948. url: https://doi.org/10.2307/2152948.

[4] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, 1979.

[5] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Berlin Heidelberg, 2013.

isbn: 9783540247777. url: https://books.google.com/books?id=wmL2BwAAQBAJ.

[6] Oscar Levin. Discrete Mathematics: An Open Introduction. 2019. url: http://discrete.

openmathbooks.org/dmoi3.html.

[7] Renate Scheidler and Hugh C. Williams. “A method of tabulating the number-theoretic function

g(k)”. In: Math. Comp. 59.199 (1992), pp. 251–257. issn: 0025-5718. url: https://doi.org/

10.2307/2152995.

[8] Brianna Sorenson, Jonathan P Sorenson, and Jonathan Webster. “An Algorithm and Esti-

mates for the Erdős-Selfridge Function (work in progress)”. In: arXiv preprint arXiv:1907.08559

(2019).

27

	The Knapsack Subproblem of the Algorithm to Compute the Erdos-Selfridge Function
	Recommended Citation

	tmp.1600193163.pdf.A37yw

