23 research outputs found

    Semantic Domains for Combining Probability and Non-Determinism

    Get PDF
    AbstractWe present domain-theoretic models that support both probabilistic and nondeterministic choice. In [A. McIver and C. Morgan. Partial correctness for probablistic demonic programs. Theoretical Computer Science, 266:513–541, 2001], Morgan and McIver developed an ad hoc semantics for a simple imperative language with both probabilistic and nondeterministic choice operators over a discrete state space, using domain-theoretic tools. We present a model also using domain theory in the sense of D.S. Scott (see e.g. [G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2003]), but built over quite general continuous domains instead of discrete state spaces.Our construction combines the well-known domains modelling nondeterminism – the lower, upper and convex powerdomains, with the probabilistic powerdomain of Jones and Plotkin [C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Proceedings of the Fourth Annual Symposium on Logic in Computer Science, pages 186–195. IEEE Computer Society Press, 1989] modelling probabilistic choice. The results are variants of the upper, lower and convex powerdomains over the probabilistic powerdomain (see Chapter 4). In order to prove the desired universal equational properties of these combined powerdomains, we develop sandwich and separation theorems of Hahn-Banach type for Scott-continuous linear, sub- and superlinear functionals on continuous directed complete partially ordered cones, endowed with their Scott topologies, in analogy to the corresponding theorems for topological vector spaces in functional analysis (see Chapter 3). In the end, we show that our semantic domains work well for the language used by Morgan and McIver

    Meet-continuity and locally compact sober dcpos

    Get PDF
    In this thesis, we investigate meet-continuity over dcpos. We give different equivalent descriptions of meet-continuous dcpos, among which an important characterisation is given via forbidden substructures. By checking the function space of such substructures we prove, as a central contribution, that any dcpo with a core-compact function space must be meet-continuous. As an application , this result entails that any cartesian closed full subcategory of quasicontinuous domains consists of continuous domains entirely. That is to say , both the category of continuous domains and that of quasicontinuous domains share the same cartesian closed full subcategories. Our new characterisation of meet-continuous dcpos also allows us to say more about full subcategories of locally compact sober dcpos which are generalisations of quasicontinuous domains. After developing some theory of characterising coherence and bicompleteness of dcpos, we conclude that any cartesian closed full subcategory of pointed locally compact sober dcpos is entirely contained in the category of stably compact dcpos or that of L-dcpos. As a by-product, our study of coherence of dcpos enables us to characterise Lawson-compactness over arbitrary dcpos

    A Domain-Theoretic Banach-Alaoglu Theorem

    Get PDF

    Topological Domain Theory

    Get PDF
    This thesis presents Topological Domain Theory as a powerful and flexible framework for denotational semantics. Topological Domain Theory models a wide range of type constructions and can interpret many computational features. Furthermore, it has close connections to established frameworks for denotational semantics, as well as to well-studied mathematical theories, such as topology and computable analysis.We begin by describing the categories of Topological Domain Theory, and their categorical structure. In particular, we recover the basic constructions of domain theory, such as products, function spaces, fixed points and recursive types, in the context of Topological Domain Theory.As a central contribution, we give a detailed account of how computational effects can be modelled in Topological Domain Theory. Following recent work of Plotkin and Power, who proposed to construct effect monads via free algebra functors, this is done by showing that free algebras for a large class of parametrised equational theories exist in Topological Domain Theory. These parametrised equational theories are expressive enough to generate most of the standard examples of effect monads. Moreover, the free algebras in Topological Domain Theory are obtained by an explicit inductive construction, using only basic topological and set-theoretical principles.We also give a comparison of Topological and Classical Domain Theory. The category of omega-continuous dcpos embeds into Topological Domain Theory, and we prove that this embedding preserves the basic domain-theoretic constructions in most cases. We show that the classical powerdomain constructions on omega-continuous dcpos, including the probabilistic powerdomain, can be recovered in Topological Domain Theory.Finally, we give a synthetic account of Topological Domain Theory. We show that Topological Domain Theory is a specific model of Synthetic Domain Theory in the realizability topos over Scott's graph model. We give internal characterisations of the categories of Topological Domain Theory in this realizability topos, and prove the corresponding categories to be internally complete and weakly small. This enables us to show that Topological Domain Theory can model the polymorphic lambda-calculus, and to obtain a richer collection of free algebras than those constructed earlier.In summary, this thesis shows that Topological Domain Theory supports a wide range of semantic constructions, including the standard domain-theoretic constructions, computational effects and polymorphism, all within a single setting
    corecore