16,620 research outputs found

    Lower Bounds for Symbolic Computation on Graphs: Strongly Connected Components, Liveness, Safety, and Diameter

    Full text link
    A model of computation that is widely used in the formal analysis of reactive systems is symbolic algorithms. In this model the access to the input graph is restricted to consist of symbolic operations, which are expensive in comparison to the standard RAM operations. We give lower bounds on the number of symbolic operations for basic graph problems such as the computation of the strongly connected components and of the approximate diameter as well as for fundamental problems in model checking such as safety, liveness, and co-liveness. Our lower bounds are linear in the number of vertices of the graph, even for constant-diameter graphs. For none of these problems lower bounds on the number of symbolic operations were known before. The lower bounds show an interesting separation of these problems from the reachability problem, which can be solved with O(D)O(D) symbolic operations, where DD is the diameter of the graph. Additionally we present an approximation algorithm for the graph diameter which requires O~(nD)\tilde{O}(n \sqrt{D}) symbolic steps to achieve a (1+ϵ)(1+\epsilon)-approximation for any constant ϵ>0\epsilon > 0. This compares to O(n⋅D)O(n \cdot D) symbolic steps for the (naive) exact algorithm and O(D)O(D) symbolic steps for a 2-approximation. Finally we also give a refined analysis of the strongly connected components algorithms of Gentilini et al., showing that it uses an optimal number of symbolic steps that is proportional to the sum of the diameters of the strongly connected components

    Finding Top-k Dominance on Incomplete Big Data Using Map-Reduce Framework

    Full text link
    Incomplete data is one major kind of multi-dimensional dataset that has random-distributed missing nodes in its dimensions. It is very difficult to retrieve information from this type of dataset when it becomes huge. Finding top-k dominant values in this type of dataset is a challenging procedure. Some algorithms are present to enhance this process but are mostly efficient only when dealing with a small-size incomplete data. One of the algorithms that make the application of TKD query possible is the Bitmap Index Guided (BIG) algorithm. This algorithm strongly improves the performance for incomplete data, but it is not originally capable of finding top-k dominant values in incomplete big data, nor is it designed to do so. Several other algorithms have been proposed to find the TKD query, such as Skyband Based and Upper Bound Based algorithms, but their performance is also questionable. Algorithms developed previously were among the first attempts to apply TKD query on incomplete data; however, all these had weak performances or were not compatible with the incomplete data. This thesis proposes MapReduced Enhanced Bitmap Index Guided Algorithm (MRBIG) for dealing with the aforementioned issues. MRBIG uses the MapReduce framework to enhance the performance of applying top-k dominance queries on huge incomplete datasets. The proposed approach uses the MapReduce parallel computing approach using multiple computing nodes. The framework separates the tasks between several computing nodes that independently and simultaneously work to find the result. This method has achieved up to two times faster processing time in finding the TKD query result in comparison to previously presented algorithms

    Upper bounds for alpha-domination parameters

    Get PDF
    In this paper, we provide a new upper bound for the alpha-domination number. This result generalises the well-known Caro-Roditty bound for the domination number of a graph. The same probabilistic construction is used to generalise another well-known upper bound for the classical domination in graphs. We also prove similar upper bounds for the alpha-rate domination number, which combines the concepts of alpha-domination and k-tuple domination.Comment: 7 pages; Presented at the 4th East Coast Combinatorial Conference, Antigonish (Nova Scotia, Canada), May 1-2, 200

    On the uniform domination number of a finite simple group

    Get PDF
    Let GG be a finite simple group. By a theorem of Guralnick and Kantor, GG contains a conjugacy class CC such that for each non-identity element x∈Gx \in G, there exists y∈Cy \in C with G=⟨x,y⟩G = \langle x,y\rangle. Building on this deep result, we introduce a new invariant γu(G)\gamma_u(G), which we call the uniform domination number of GG. This is the minimal size of a subset SS of conjugate elements such that for each 1≠x∈G1 \ne x \in G, there exists s∈Ss \in S with G=⟨x,s⟩G = \langle x, s \rangle. (This invariant is closely related to the total domination number of the generating graph of GG, which explains our choice of terminology.) By the result of Guralnick and Kantor, we have γu(G)⩽∣C∣\gamma_u(G) \leqslant |C| for some conjugacy class CC of GG, and the aim of this paper is to determine close to best possible bounds on γu(G)\gamma_u(G) for each family of simple groups. For example, we will prove that there are infinitely many non-abelian simple groups GG with γu(G)=2\gamma_u(G) = 2. To do this, we develop a probabilistic approach, based on fixed point ratio estimates. We also establish a connection to the theory of bases for permutation groups, which allows us to apply recent results on base sizes for primitive actions of simple groups.Comment: 35 pages; to appear in Trans. Amer. Math. So

    Multiple domination models for placement of electric vehicle charging stations in road networks

    Get PDF
    Electric and hybrid vehicles play an increasing role in the road transport networks. Despite their advantages, they have a relatively limited cruising range in comparison to traditional diesel/petrol vehicles, and require significant battery charging time. We propose to model the facility location problem of the placement of charging stations in road networks as a multiple domination problem on reachability graphs. This model takes into consideration natural assumptions such as a threshold for remaining battery load, and provides some minimal choice for a travel direction to recharge the battery. Experimental evaluation and simulations for the proposed facility location model are presented in the case of real road networks corresponding to the cities of Boston and Dublin.Comment: 20 pages, 5 figures; Original version from March-April 201
    • …
    corecore