2,741 research outputs found

    3D Transition Matrix Solution for a Path Dependency Problem of Markov Chains-Based Prediction in Cellular Networks

    Get PDF
    Handover (HO) management is one of the critical challenges in current and future mobile communication systems due to new technologies being deployed at a network level, such as small and femtocells. Because of the smaller sizes of cells, users are expected to perform more frequent HOs, which can increase signaling costs and also decrease user's performance, if a HO is performed poorly. In order to address this issue, predictive HO techniques, such as Markov chains (MC), have been introduced in the literature due to their simplicity and generality. This technique, however, experiences a path dependency problem, specially when a user performs a HO to the same cell, also known as a re-visit. In this paper, the path dependency problem of this kind of predictors is tackled by introducing a new 3D transition matrix, which has an additional dimension representing the orders of HOs, instead of a conventional 2D one. Results show that the proposed algorithm outperforms the classical MC based predictors both in terms of accuracy and HO cost when re-visits are considered

    Context-Aware Handover Policies in HetNets

    Get PDF
    Next generation cellular systems are expected to entail a wide variety of wireless coverage zones, with cells of different sizes and capacities that can overlap in space and share the transmission resources. In this scenario, which is referred to as Heterogeneous Networks (HetNets), a fundamental challenge is the management of the handover process between macro, femto and pico cells. To limit the number of handovers and the signaling between the cells, it will hence be crucial to manage the user's mobility considering the context parameters, such as cells size, traffic loads, and user velocity. In this paper, we propose a theoretical model to characterize the performance of a mobile user in a HetNet scenario as a function of the user's mobility, the power profile of the neighboring cells, the handover parameters, and the traffic load of the different cells. We propose a Markov-based framework to model the handover process for the mobile user, and derive an optimal context-dependent handover criterion. The mathematical model is validated by means of simulations, comparing the performance of our strategy with conventional handover optimization techniques in different scenarios. Finally, we show the impact of the handover regulation on the users performance and how it is possible to improve the users capacity exploiting context information

    Introducing a Novel Minimum Accuracy Concept for Predictive Mobility Management Schemes

    Get PDF
    In this paper, an analytical model for the minimum required accuracy for predictive methods is derived in terms of both handover (HO) delay and HO signaling cost. After that, the total HO delay and signaling costs are derived for the worst-case scenario (when the predictive process has the same performance as the conventional one), and simulations are conducted using a cellular environment to reveal the importance of the proposed minimum accuracy framework. In addition to this, three different predictors; Markov Chains, Artificial Neural Network (ANN) and an Improved ANN (IANN) are implemented and compared. The results indicate that under certain circumstances, the predictors can occasionally fall below the applicable level. Therefore, the proposed concept of minimum accuracy plays a vital role in determining this corresponding threshold

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Random neural network based cognitive-eNodeB deployment in LTE uplink

    Get PDF
    corecore