1,317 research outputs found

    The decision problem for a three-sorted fragment of set theory with restricted quantification and finite enumerations

    Get PDF
    We solve the satisfiability problem for a three-sorted fragment of set theory (denoted 3LQST0R3LQST_0^R), which admits a restricted form of quantification over individual and set variables and the finite enumeration operator {-,-,…,-}\{\text{-}, \text{-}, \ldots, \text{-}\} over individual variables, by showing that it enjoys a small model property, i.e., any satisfiable formula ψ\psi of 3LQST0R3LQST_0^R has a finite model whose size depends solely on the length of ψ\psi itself. Several set-theoretic constructs are expressible by 3LQST0R3LQST_0^R-formulae, such as some variants of the power set operator and the unordered Cartesian product. In particular, concerning the unordered Cartesian product, we show that when finite enumerations are used to represent the construct, the resulting formula is exponentially shorter than the one that can be constructed without resorting to such terms

    Injecting Abstract Interpretations into Linear Cost Models

    Full text link
    We present a semantics based framework for analysing the quantitative behaviour of programs with regard to resource usage. We start from an operational semantics equipped with costs. The dioid structure of the set of costs allows for defining the quantitative semantics as a linear operator. We then present an abstraction technique inspired from abstract interpretation in order to effectively compute global cost information from the program. Abstraction has to take two distinct notions of order into account: the order on costs and the order on states. We show that our abstraction technique provides a correct approximation of the concrete cost computations

    Modular Construction of Complete Coalgebraic Logics

    Get PDF
    We present a modular approach to defining logics for a wide variety of state-based systems. The systems are modelled by coalgebras, and we use modal logics to specify their observable properties. We show that the syntax, semantics and proof systems associated to such logics can all be derived in a modular fashion. Moreover, we show that the logics thus obtained inherit soundness, completeness and expressiveness properties from their building blocks. We apply these techniques to derive sound, complete and expressive logics for a wide variety of probabilistic systems, for which no complete axiomatisation has been obtained so far

    On Tarski's fixed point theorem

    Full text link
    A concept of abstract inductive definition on a complete lattice is formulated and studied. As an application, a constructive and predicative version of Tarski's fixed point theorem is obtained.Comment: Proc. Amer. Math. Soc., to appea

    The equational theory of the natural join and inner union is decidable

    Full text link
    The natural join and the inner union operations combine relations of a database. Tropashko and Spight [24] realized that these two operations are the meet and join operations in a class of lattices, known by now as the relational lattices. They proposed then lattice theory as an algebraic approach to the theory of databases, alternative to the relational algebra. Previous works [17, 22] proved that the quasiequational theory of these lattices-that is, the set of definite Horn sentences valid in all the relational lattices-is undecidable, even when the signature is restricted to the pure lattice signature. We prove here that the equational theory of relational lattices is decidable. That, is we provide an algorithm to decide if two lattice theoretic terms t, s are made equal under all intepretations in some relational lattice. We achieve this goal by showing that if an inclusion t ≤\le s fails in any of these lattices, then it fails in a relational lattice whose size is bound by a triple exponential function of the sizes of t and s.Comment: arXiv admin note: text overlap with arXiv:1607.0298
    • …
    corecore