3,425 research outputs found

    Intermediate problems in modular circuits satisfiability

    Full text link
    In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite algebras had been introduced and applied to sketch P versus NP-complete borderline for circuits satisfiability over algebras from congruence modular varieties. However the problem for nilpotent (which had not been shown to be NP-hard) but not supernilpotent algebras (which had been shown to be polynomial time) remained open. In this paper we provide a broad class of examples, lying in this grey area, and show that, under the Exponential Time Hypothesis and Strong Exponential Size Hypothesis (saying that Boolean circuits need exponentially many modular counting gates to produce boolean conjunctions of any arity), satisfiability over these algebras have intermediate complexity between Ω(2clogh1n)\Omega(2^{c\log^{h-1} n}) and O(2cloghn)O(2^{c\log^h n}), where hh measures how much a nilpotent algebra fails to be supernilpotent. We also sketch how these examples could be used as paradigms to fill the nilpotent versus supernilpotent gap in general. Our examples are striking in view of the natural strong connections between circuits satisfiability and Constraint Satisfaction Problem for which the dichotomy had been shown by Bulatov and Zhuk

    Algebraic Independence and Blackbox Identity Testing

    Full text link
    Algebraic independence is an advanced notion in commutative algebra that generalizes independence of linear polynomials to higher degree. Polynomials {f_1, ..., f_m} \subset \F[x_1, ..., x_n] are called algebraically independent if there is no non-zero polynomial F such that F(f_1, ..., f_m) = 0. The transcendence degree, trdeg{f_1, ..., f_m}, is the maximal number r of algebraically independent polynomials in the set. In this paper we design blackbox and efficient linear maps \phi that reduce the number of variables from n to r but maintain trdeg{\phi(f_i)}_i = r, assuming f_i's sparse and small r. We apply these fundamental maps to solve several cases of blackbox identity testing: (1) Given a polynomial-degree circuit C and sparse polynomials f_1, ..., f_m with trdeg r, we can test blackbox D := C(f_1, ..., f_m) for zeroness in poly(size(D))^r time. (2) Define a spsp_\delta(k,s,n) circuit C to be of the form \sum_{i=1}^k \prod_{j=1}^s f_{i,j}, where f_{i,j} are sparse n-variate polynomials of degree at most \delta. For k = 2 we give a poly(sn\delta)^{\delta^2} time blackbox identity test. (3) For a general depth-4 circuit we define a notion of rank. Assuming there is a rank bound R for minimal simple spsp_\delta(k,s,n) identities, we give a poly(snR\delta)^{Rk\delta^2} time blackbox identity test for spsp_\delta(k,s,n) circuits. This partially generalizes the state of the art of depth-3 to depth-4 circuits. The notion of trdeg works best with large or zero characteristic, but we also give versions of our results for arbitrary fields.Comment: 32 pages, preliminary versio

    A Sound and Complete Axiomatization of Majority-n Logic

    Get PDF
    Manipulating logic functions via majority operators recently drew the attention of researchers in computer science. For example, circuit optimization based on majority operators enables superior results as compared to traditional logic systems. Also, the Boolean satisfiability problem finds new solving approaches when described in terms of majority decisions. To support computer logic applications based on majority a sound and complete set of axioms is required. Most of the recent advances in majority logic deal only with ternary majority (MAJ- 3) operators because the axiomatization with solely MAJ-3 and complementation operators is well understood. However, it is of interest extending such axiomatization to n-ary majority operators (MAJ-n) from both the theoretical and practical perspective. In this work, we address this issue by introducing a sound and complete axiomatization of MAJ-n logic. Our axiomatization naturally includes existing majority logic systems. Based on this general set of axioms, computer applications can now fully exploit the expressive power of majority logic.Comment: Accepted by the IEEE Transactions on Computer
    corecore