151 research outputs found

    Epitope profiling via mixture modeling of ranked data

    Full text link
    We propose the use of probability models for ranked data as a useful alternative to a quantitative data analysis to investigate the outcome of bioassay experiments, when the preliminary choice of an appropriate normalization method for the raw numerical responses is difficult or subject to criticism. We review standard distance-based and multistage ranking models and in this last context we propose an original generalization of the Plackett-Luce model to account for the order of the ranking elicitation process. The usefulness of the novel model is illustrated with its maximum likelihood estimation for a real data set. Specifically, we address the heterogeneous nature of experimental units via model-based clustering and detail the necessary steps for a successful likelihood maximization through a hybrid version of the Expectation-Maximization algorithm. The performance of the mixture model using the new distribution as mixture components is compared with those relative to alternative mixture models for random rankings. A discussion on the interpretation of the identified clusters and a comparison with more standard quantitative approaches are finally provided.Comment: (revised to properly include references

    A review on Estimation of Distribution Algorithms in Permutation-based Combinatorial Optimization Problems

    Get PDF
    Estimation of Distribution Algorithms (EDAs) are a set of algorithms that belong to the field of Evolutionary Computation. Characterized by the use of probabilistic models to represent the solutions and the dependencies between the variables of the problem, these algorithms have been applied to a wide set of academic and real-world optimization problems, achieving competitive results in most scenarios. Nevertheless, there are some optimization problems, whose solutions can be naturally represented as permutations, for which EDAs have not been extensively developed. Although some work has been carried out in this direction, most of the approaches are adaptations of EDAs designed for problems based on integer or real domains, and only a few algorithms have been specifically designed to deal with permutation-based problems. In order to set the basis for a development of EDAs in permutation-based problems similar to that which occurred in other optimization fields (integer and real-value problems), in this paper we carry out a thorough review of state-of-the-art EDAs applied to permutation-based problems. Furthermore, we provide some ideas on probabilistic modeling over permutation spaces that could inspire the researchers of EDAs to design new approaches for these kinds of problems

    Bayesian nonparametric Plackett-Luce models for the analysis of preferences for college degree programmes

    Full text link
    In this paper we propose a Bayesian nonparametric model for clustering partial ranking data. We start by developing a Bayesian nonparametric extension of the popular Plackett-Luce choice model that can handle an infinite number of choice items. Our framework is based on the theory of random atomic measures, with the prior specified by a completely random measure. We characterise the posterior distribution given data, and derive a simple and effective Gibbs sampler for posterior simulation. We then develop a Dirichlet process mixture extension of our model and apply it to investigate the clustering of preferences for college degree programmes amongst Irish secondary school graduates. The existence of clusters of applicants who have similar preferences for degree programmes is established and we determine that subject matter and geographical location of the third level institution characterise these clusters.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS717 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore