46,108 research outputs found

    Interconnect research influenced

    Get PDF
    This article shows that Rent's rule can be viewed as a fundamental law of nature with respect to electronic circuits. As there are many interpretations of the rule, this article will shed some light on the core of Rent's rule and the research that has been built on it

    Algorithmic Layout of Gate Macros

    Get PDF
    This paper describes the basic modules of a gate-to-silicon compiler which accepts as its input a high level description of gate macros and generates a layout that satisfies particular technology (NMOS, for example) and environmental parameters (layout area or time delay, for example)

    A simple approach to distributed objects in prolog

    Full text link
    We present the design of a distributed object system for Prolog, based on adding remote execution and distribution capabilities to a previously existing object system. Remote execution brings RPC into a Prolog system, and its semantics is easy to express in terms of well-known Prolog builtins. The final distributed object design features state mobility and user-transparent network behavior. We sketch an implementation which provides distributed garbage collection and some degree of tolerance to network failures. We provide a preliminary study of the overhead of the communication mechanism for some test cases

    A fully parameterized virtual coarse grained reconfigurable array for high performance computing applications

    Get PDF
    Field Programmable Gate Arrays (FPGAs) have proven their potential in accelerating High Performance Computing (HPC) Applications. Conventionally such accelerators predominantly use, FPGAs that contain fine-grained elements such as LookUp Tables (LUTs), Switch Blocks (SB) and Connection Blocks (CB) as basic programmable logic blocks. However, the conventional implementation suffers from high reconfiguration and development costs. In order to solve this problem, programmable logic components are defined at a virtual higher abstraction level. These components are called Processing Elements (PEs) and the group of PEs along with the inter-connection network form an architecture called a Virtual Coarse-Grained Reconfigurable Array (VCGRA). The abstraction helps to reconfigure the PEs faster at the intermediate level than at the lower-level of an FPGA. Conventional VCGRA implementations (built on top of the lower levels of the FPGA) use functional resources such as LUTs to establish required connections (intra-connect) within a PE. In this paper, we propose to use the parameterized reconfiguration technique to implement the intra-connections of each PE with the aim to reduce the FPGA resource utilization (LUTs). The technique is used to parameterize the intra-connections with parameters that only change their value infrequently (whenever a new VCGRA function has to be reconfigured) and that are implemented as constants. Since the design is optimized for these constants at every moment in time, this reduces the resource utilization. Further, interconnections (network between the multiple PEs) of the VCGRA grid can also be parameterized so that both the inter- and intraconnect network of the VCGRA grid can be mapped onto the physical switch blocks of the FPGA. For every change in parameter values a specialized bitstream is generated on the fly and the FPGA is reconfigured using the parameterized run-time reconfiguration technique. Our results show a drastic reduction in FPGA LUT resource utilization in the PE by at least 30% and in the intra-network of the PE by 31% when implementing an HPC application
    • …
    corecore