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vChaEfer 1 Introduction

’Prinfed wiring boards are used by nearly all manufacturers
- of electronic equipment in the constructionAof their products. The
design of a printed wiring board is a process which takes a
éonsiderable amount of the designer's time and is prone to errors.
It is therefore desirable to deQelop a computer program which will

quickly and accurately design printed wiring board layouts.

The design of a layout is a complex problem and many of
the steps are pefformed intuitively by a human designer. The
writing of a computer program to autbmatically design a layouf is
fhus a difficult task, and many different methods have already been
attempted. A method is described here which useé the principles of
graph theofy in designing a la&out; It also enables the ﬁser to

“interact with the computer to improve "the results.

1.1 Printed Wiring Boards

A printed wiring board is a thin board of insulating
ﬁaterial upon which an electronic circuit is constructed. Each
component of the circuit has a numbér of terminal wires or pins
which pass through holes. dfilled‘in the board. The electrical
connections required to form the circuit are printed onto the
sprface of the board as a set of copper paths or conducﬁqré. The
~ board pfovides insulation between adjacent cénductors but does not
allow conductor paths to intersect, except where a connection is

intended. The arrangement of component positions and conductor

paths on a board is termed a layout.

Printed wiring board layouts may take a number of different
forms. Some circuits consist of components of varying types and

sizes such as resistors, capacitors, transistors, etc. termed
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diécrete'components. Other circuits consist of integrated circuit

components, all the same size and shape and arranged in a fixed
matrix of positions on the board. Other circuits still, contain a
mixture of discrete components and integrated circuits, such as an

integrated circuit amplifier with a number of feedback components.

The conductors of a printed wiring board may be placed on

one side of the board, termed a single sided board, or on both sides,

termed a double sideq board. In some céses a board may be constructed
as é set of laminations containing as many as twelve layers of .
.conductors. The reason for using more than one layer of conductorg ‘
is fhat on a closely packed board there may be insufficient area for
all'fhe required conductors on one side of the board. Also, it is

. often theoretically impossible to route'ail the conductors of a°
circuit without intersedtions on one side of the board. Electrical

connections between the two sides of a double sided board are made

by cbpper.lined holes through the board, called through-plated holes.

‘External connections to the printed circuit -board may be
made by connecting wires to terminal pins on the board. More
generaliy, however, all the external connections of the circuit are
brought to a set of gold-plated conductors on one edge of the board,

termed the edge connector pins. This edge of the board then plugs

into a'multi—wéy socket to make connections to external signals and

power supplies.

.

1.2 Objective of Board Layout Design

The objective of this project is the development of a computer
program to lay out printéd wiring boards. The type of boards to be
considered are single sided boards with an edge connector along one

side of the board. The components placed on the board are to be
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discrete components of any number of pins, including integrated
circuits. There is considerable interest in laying out this t&be of
board as the majority of electronic circuits use discrete components
and many circuits may readily be constructed on single sided )
boards. Single sided boards have an advantage over double sided
in.that they cost less to produce. The program is not intended
t§ lay out boards containing only integrated circuits in a fixed
matrix of positions. This problem is preferably solved by other

methods, some of which are described in chapter 2.

Ideally the program should be completely automatic in its
operation so as to produce results in a minimum of time. It has,
however, been found virtually impossible tolspécify an algorithm
which will satisfy all of the constraints and conditions required
by a general purpose layout program. The program therefore
includes facilities for human- interaction with the layout.process
by means of a graphical display and light pen. This enables the
éxpérience and skill of the user to be included in the design
process whilst relieving him of the task of having to accurately

draw the detail of the layout.

1.3 General Method of Layout

Most computer methods of board layout already in use
divide the problem into two indpéendent parts.> These are the
placement of components on the board, followed by the routing of
conductors. Some of these methods are reviewed in chapter 2.
The disadvantage of this approach is that there is no form of
feedback érom the conductor routing to the component placement

stages. There is, for example, no ré—arrangement of adjacent

components to allow an extra conductor to pass between,such as a
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designer would try in a practical case. This often means that the
routing algorithm spends considerable time searching for‘condﬁctor

paths which are topologically impossible to complete.

The method of layout described here attempts to resolve
this difficulty by constructing a topological representation of‘the
circuit first, before the layout is constructed. This means that
during component placement, due space may be allowed for the

conductor paths on the board.

As the conductors are to be routed on a single side of the
board, all conductor crossings must be eliminated from the layout.
A tbpological model of the layout is constructed by the use of
graph*theofy so as to remove all crossovers. Its method of
construction is described in chapters 3 to 6. The circuit topology
is then known so the physical iayout may be constructed by a series
of logical opepations. The layout algorithms constructs small:
sections of the layout in turn, working from one edge of the board
across to the opposite edge. Any special constraints required are
incorporated into the layout by means of graphical interaction.

The construction of the layout and the use 'of interaction are
described in chapters 7 to 9. The results and possible improvements-

Pls}
to the method are discussed in chapters 10 and 11 respectively.

1.4 Computer System

" The computer system on which the layout program has been
developed is described here as it has, in several ways, influenced
the manner in which the program has been written. A diagram of the
system is shown in-Fig.l.l. The computer used for the major part.

. '

of the computation is-an ICL 4130. It -has the usual peripherals of

paper tape readers and punches, control teletype, line printer and-
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three magnetic tape units. It is connected by a high speed data
link to the PDP-7 computer. The link allows communication in both
directions between the two computers at rates of up to 50,000

characters/second.

The PDP-7 computer deals with the maintenance of the display
and the servicing of light pen interrupts during interaction. The
Type 340 .display with lightlpen operates asynchronously with the
computer but shares its core store for storage of display file.
T?Q.useful area of the display is 93 inches square with a resolution
g; i624 points along each axis. The other péripheralslof the
computer iﬁclude a paper tape reader and punch, a cont?ol teletype,

two DECtape magnetic tape units and a 30 inch wide drum type

Calcomp plotter.

The ICL 4130 coﬁpﬁtgr is pfogrammed’in FORTRAN IV using the
magnetic tape based FORTRAN system. Due to the_limitations of core
space and the maximum allewableAnﬁmber of subroutines, the overall
layout program-is split into twe parts and run as two consecutive
programs. These are the teopological part and the board layout
~part. No special programming is required for the ?DP—7 computer
as previoﬁsl& developed display and interaction software is used

(See Appendix B).

A nete is appropriaté'her? on the use of the wo?ds-
"topological' and Ygraphical'. "Toéological" is used te describe
the abstract structure, or graph, of the circuit to be laid out
before it has been given physical dimensions. "Graphicall is
used to describe the visual display of the board layout whilst it
is being consfructed. These twe words will be used in the sense

just given to avoid any confusion of terms.
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Chapter 2 Survey of Existing Methods of Layout

This chapter presents a survey of some of the known methods
 of laying out printed wiping boards by computer. Moét méthods tend
to divide the problem inte two separate parts; placement of
components follewed by routing of conductors. Some topologicai
methods of constructing layouts have been proposed but none of them

appear to have been put inte practice.

2.1 Methods of Component Placement

Most of the papers published on board layout tend to
concentrate on circuits in which all the components are integrated
circuits of the same size and shape. This means that the board may
be divided into a fixed matfix of positions such that each component
occupies one positien. The component placement problem then
resolves itself inte onéfof deciding into which position to-place '
each component. The criterion of a good placement is usually taken'
to be one which gives a minimum total conductoer length. The desired
résult is to reduce conductor congestion on the board and to reduce
thé éffécts of capacitancé betwéeﬁ'adjacént conductors . Conductor
lengths are assumed to be the point - to - point distances between
connected componénts as the actual conductor paths are net known

at this stage.

The ‘method &escribed by Rutman (30) uses the idea of
"unconnected sets" of compenents. The components are given an
initiél placement on the board, either randomly or manually. They
are sortedlinto‘a number of unconnectep sets such that none of the
cohponents within a set are interconnected. An uncennected set of
components is then removed from the_board and each component in the
set is systematically placed in every vacant space on.the beard in

turn. The total length of interconnectiongbetween the component
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and those. already on the‘board is calculated at each point. As the
componént belongs to an unconnected set, its length of interconnections
is independent of the remaining components in the set. A matrix of
all the component positions and conductor lengths for the set is
constructed. From the matrix, the optimum.placement solution for
the set is calculatéd such that the total wire length is a minimum.
The procedure is repeated for all of the unconnected sets. The
layout' solution is further improved by interchanging the positions
of connected components in an attempt to reduce the lengths of the
longest wires. The method should result in a compact layout but it
is only feasible for circuits in which.all the components are' of

the same size. Also, the method takes no aeccount of the topology

of conductor connections.

The mgthod described by Mamelak (22) is used for the
placemeﬁt of computer logic modules; From the logic diagram of
the circuitlto be laid out, a connection matrix of components, or
logic modules, is constructed. The components may be divided
into a set of’"chains" such that each chain-consists of an
interconnected group of components, two of which are connected at
least to the remaining components of the group.' A chain is
illustrated in Fig. 2.1(a), where components A and B are the two
"vertices" of the chain ' and:the remaining components C, D and E
are- the "base points" of the chain:. One property of a chain is
that it may be rearranged as shown in Fig. 2.1(b) to reduce-the

number of conductor intersections.

A permutation procedure is used to divide the components
into a set of chains such that each chain may be placed on one row

of positions of the board. The row chosen for each chain-depends-
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(a) Basic chain (b) Placement in row of board

Fig.2.1 Chain of Components

on the total length of interconnections with-other chains. Thus the

& co-ordinate of each component is determined and the connections
between the components of a chain may be made in the x direction on
one layer of the board with a minimum number of intersections. A
similar procedure is used to assign an x co-ordinate to each

component and.to reduce the number of intersections between conductors
in the y direction on the second layer of the board. Although this
method is only suitable for integrated circuit layouts, it does

take some account of the wiring topology by attempting to reduce

the number of intersections.

The method described by Case (6) is used to assign the
positions of small circuit cards on a large "mother board". The
method allows an engineer to specify the positions of selected
cards. Of thévremaining cards, one is selected and tried in every
vacant position on the board. The total length of conductors
between the card and the‘already assigned cards is calculated at
each position. 'The card is placed in the position that gives

minimum conductor length, and the procedure is then repeated with
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each of the remaining cards. It does not give an optimuﬁ placement
of components so a further procedure is used to improve the placement.
The second procedure attempts to interchange the position of each
card with every other card on the board. If an interchange results
in a reduction of total wire length, the card positions are re-
assigned. Again, this method produces a compact layout with low

total wire length but does not consider the wiring topology.

TheAmethod described by Dunne (7) constructs a layout in
stages rather than attempting component interchanges as described in
the previous methods. The algorithm selects a location on the board
which is nearest to the components which ha&e'already been placed.
(Initially only the edge connector is placed.) From the list of
components to be placed, the one which has the greatest number of
connections to the already-placed layout is selected. The algorithm
then attempts to route the conductors to the component, usipg a
double sided board. If the routing is not successful, further
components are tried in the given boafd location. If a solution
still cannot be found, a new board location is chosen. The
procedure is repeated for each component in turn. The method has
only beén used for integrated circuit components but could possibly
be modified for discrete components. It gives tﬁe first solution
encountered and does not attempt to find the optimum solution. The .
method does, however, check that all’ conductor paths can be routed to

a component before placing it.

The one method encountered which deals specifically with
discrete components is the ACCEL program (9). Component positions are
assigned by a '"force placement' method. Each conductor of a circuit

is assumed to be an "elastic wire'" such that it exerts a force of



~11-
attraction, proportional to its length, on the component at either
end. The effect of this force is to group together components which
are closely connected. In additien, forces of repulsion exist
between adjacent components,to prevent component overlap. "The
conductors also exert a '"torgue' upon components in order to

select the best orientation for each component.

The components are given an initial arbitrary placementi
Tﬁé'program then operates in an iterative manner, summing %he
forces on each component in turn and moving it towards an equilibrium
poesition. The forces of attraction are initially high and the forces
of repulsion low so as to rapidly improve the layout. After a’
number‘of iterations, the components are'cénstrained to a vertical
- or horizontal poesition, whichever is ﬁearest to the current component
orientation. The forces of repulsion are'increased to prevent
component overlap and the iterations are continﬁed until component
- movements are-negligible. The method thué‘gives a good placement of
different;sized components. Although closely'connected‘components
- are grouped together to reduce the total“conductor length, no account
is taken of conductor topology.‘ The method of conductor routing is
described'in the next section. A similar method is used by-LeeVeps
(20) for thé placement of integrated circuits. In the final stages
of this method, components are forced onto the nearest allowable

board positions. -

2.2 Methods of Conductor Routing
Nearly all methods of conductor routing start with the
. l
assumption that the components have already been placed. The-

problem is thus one of connecting together pairs of terminals.
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The connecting paths must be routed so that no paths intersect and
it is desirable that the total conductor length is a minimum. Most

methods assume that a double sided printed-wiring board is used.

The classic method for construc&ing conductor paths is Lee's
algorithm:(19). The board is divided into a grid of squares. Those
which confain obstacles such as componenf terminalé or conductors
are marked as being occupied. The two squares to be connected
together, the start and target squares, are specially marked. All
unoccupied squares around the start square afe marked with a 'l}.
All the unoccupied around these are marked with a '2' and so'on.

A wave of marked squares thus spreadé out from the start square
until the target square'is reached. It-is then é simple matter to
trace a path back to the start square. The-aléorithﬁ is generally
modified because the search wave spreads in all diréétions from
the start-square, involving unnecessary computing time. Secondly,
the algorithm will find all the paths of equal length between two

points but has no way of distinguishing between the different paths.

The "ACCEL méthod of conduétor routing (9) uses a novel
topographical model of the layout for routing.' The board is' divided
into a grid of squares, each of which may be assigned an:”altitudef.
Initially all the squares are set to zero altitude. - Any obstacles
such as component pins or holes in the board- are assigned an
altitude 'so as to form a "peak". ‘The edges of the board are-
represented by a ridge around thevlayout; To find a path between
two pins, the target peak is depressed to a negative altitude.

A modified version of Lee's algorithm is then used to find the

most downhill path from the start to the target pin.
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The program has several phases of operation. Firstly, all
pathé are routed simultanéously for a number of iterations.A Paths
successfully completed are inserted as ridges in the topographical
model so as to repel conductoré routed in latér phases and avoid -
congestion on the board. Secondly,the proceaure is repeated with
all the remaining conductors routed simﬁltaneously; Thirdly, the
procedure is repeated with the remaining conduqfors, routing one
conductor at a time. The method can beiused for either single:or
double sided boards. In the case of a double sided board,-the whole

procedure is performed on one side of the board, then repeated for

the remaining conductors on the second side of the board.

Other modifications may be ﬁade to Lee's algorithm in order
to improve its efficieney, as illustrated by Mikami and Tabﬁchi
(24). In this method a double sided board is used with all horizontal
conductors routed on one‘side and all verticéi conductors routed on
the other side. This aVoidé the problem of crossing,conductors but
restricts the conductor paths which may be formed. The board " is
again divided into a grid but instead of searching square-by-square,
the search is performed line-by-line. Frbm_the start square, four
lines, limited in length by existing obstacles, give the possible
directions of the search. Each of these lines may pass through the
beard at a numbér of through-plated holes. Each of the through-
plated holes'may.therefore be develoﬁed into two more lines on the -
opposite side of the board. The'pfocedure is centinued until the
target-square is reached. The line-by-line method of searching is
considerably'fasfer an@ uses less sforage’space than Lee's glgorithm.

Two, methods §f conductor rouging on double sided beards are

described by Kodres and Lippmann (13). The first approach‘sorts-sets



“14-
of interconnected pins, or nets, into a list of decreasing net size.
The size of a net is defined by the perimeter of the rectangle
surrounding all pins in the net. To route a given net, the pins
furthest apart are connected by a-path which uses the least number
of through holes. The remaining pins of the net are then connected
onto the path already routed. Paths ére only chosen which lie
within the réctangle of the net and which use less than a specified
number of throughlholes. These constraints help to reduce board
congestion. When all of the nets have been processed, any remaining
cdnductors are routed by using Lee's algorithm to search exhaustively

for a path.

The second approach divides the board into a grid of séuares
and assigns a congestion cost to each square:. A square is given a
high cost if it can be used by many nets, so that conductor paths
will tend to avoid congested parts of the board. The nets are
connected one at a time in order of increasing conductor length.
For each connection, the path is chosen which has the lowest
congestion cost andbwhich uses the least number of through holes.
The two methods described avoid the‘problem of conductor croséings
by routing conductors horizontally on one side of the board and ;

vertically on the other side.

A method of conductor routing for double sided boards, using
graphical interaction, is despriped by Leevers (20). A graphicél
idisplay and light pen are used to display and medify one side of
the board at a timé. Each conduétor is initially displayed as: a

: 7

Etraight line joining two end points. Near-vertical conductors are

assigned to one side of the board and near-horizontal %o the otlon
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to the other although the assignment may later be altered if aesired.
Low level routing facilities allow conductors to be routed around
obstacles by the insertion of intermediate:corners, and diagonal
csnductors to be replaced automatically by conductors of horizontal
and vertical sections. Higher lever facilities attempt to automatically
route each conductor in turn by application of the low level facilities.
The program initially attempts automatic routing and usually succeeds
with many of the conductors. In cases where a path cahnot be found,
the operator intervenes and uses the low level facilities, by means of
the light pen, to re-order part of the layout. The skill of the
operator is thus used to assist the program in difficult ﬁarts of the
layout. In later stages of the layout, the method relies heavily on

the operator to find conductor paths.

There are a number of advantages and disadvantages of
splitting the layout problem into the separaté: parts of placement

and routing. These are discusséd_further in Chapter 7.1.

2.3 Topological Methods of Layout

The principle of the topological methods of layouf is to
minimise either the number of conductor crossings or the number of
conductors removed from the layout to eliminate crossings. Several
algorithms have been programmed but none appear to have bees taken to

the stage of actually producing a layout.

In the method described by Bader (1), the branches of a
graph’are re—arrangsd, and some remerd, so as to eliminate all
crossings. An example from the paper.is shown in Fig. 2.2. The
graph is searched for a closed circuit which includes as mény of

the nodes as possible; in this case'all the nodes, as shown in
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Fig.2.2 Construction of a Planar Graph
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Fig. 2.2(a).: The graph is redrawn with the circuit on the outside
edge and the remaining branches within as shown in Fig. 2.2(b). An-
auxiliary graph is then drawn, Fig. é.?(c), whose nodes correspond to
the branches on the inside of Fig. 2.2(b). Pairs of branches which
conflict in Fig. 2.2(b) are represented by branches joining the
corresponding nodes in the aﬁxiliary graph. The braﬁches of Fig. 2.2(b)
may be assigned te either the inside or the outside of the closed
‘circuit in ordep to remove crossings. 'The assignment is made by
starting with an arbitrary node in Fig. 2.2(c), node 1, and assigning’
it to the inéide. Adjacent nodes are then assigned to the outside
and so on, as shown in Fig. 2.2(d). 1If thé graph- is non—planaf,
branches are removed at this stage. Thé'graph may - then be redrawn
without crossings asshown in-Pig. 2.2(e). The method has been
furthér developed and programmed for computer by Fisher and Wing

(8). A matrix methéd is used to process the graph‘éb that non-

planar. branches are identified and removed from the graph.

The algorithm described by Nichoelsen (26) minimises the
number of croSsings in a ‘graph, ra£her than delgting nen-planar
branches. In this method, the modes of the g?aph r;present
components and the branches rebresent intérconnectibns. The nodes
are arranged in a straight line gnd the branches are'drawn as
semicircles above or pelow the néde line as'shown in Fig. 2.83.

The graph may then bé.described by a permutation of the order of
nodes and the direction of the branéh semicircles. An initial
permutation is constructed by selectlng an initial node then addlng'
the node which has the most connections to the ex1st1ng part of the
permutation. This is repeated for all nedes, inserting each one

inte-a position-which gives least crossings. An iterative procedure
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Fig.2.3 Permutation Represéntation of a Graph

then changes the order of nodes in the permutation in an attempt

to further reduce the number of crossings.

A method of constructing a planar graph of components and
interconnections is described by Rowley (29). The circuit is
defined by a list of components and a list of interconnections.

A set of branches is seiected so that a '"tree'" of all the components
may be constructed. Each new component added to the tree is
connected by one branch only as shown in Fig. 2.4. A "tree list"
of all the component pins in order around the tree is made as

shown by the dotted path in Fig. 2.4. Any other interconnection

in the circuit will divide the tree list into two parts at the
points of connection. Two branches are in conflict if the two
parts of the tree list formed by one branch each contain a node

of thérother branch. A matrix of all the branch conflicts is

then constructed. From the matrix, a set of conductors is selected
such that the number of non-planar branches removed from the graph
is a minimum. The resultant graph is not necessarily the optimum

planar graph as it is dependent.on the branches selected for the
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Fig.2.4 Formation of Tree List

initial tree.
The advantages and disadvantages of the topological methods

described above are discussed further in Chapter 4.2.

LN



-20-

Chapter 3 Topological Representation of a Circuit

Any computer program that generates a printed wiring board
layout ﬁust have a method of rebresenting the layout within the
computer. This éhapter describes how the topological representation
of a circuit is constructed from the computer input data. The-
representation is later used to construct a topological model of
the layout. -The ways in which the circuit represenfation is

actually programmed are described in Chapter 6.

3.1 Requirements of the Topological Representation

The groups of data reguired for the construction of a layout
are the éircuit diagram, the physical dimensions of the components
and the dimensions of the board. The circuit diagram basically
describes the types of components used and the way in which they
are-intercénnected. The information on the circuit diagram should

therefore be coded into.a suitable format for input to the computer.

The first part of the layout method described here deals with
the construction of a topological model of the layout.  In develéping
this model, the circuit is investigated for planarity by examinipg
the way in which components are connected together. The topological

—
representation should therefore indicate the order in which components

are connected, without being concerned with the physical co-ordinates

of components and conductors.

There are: two widely-used methods of representing, withip a
computer, the interconnections of a graph. The first method is a
matrix representation of the graph. Usually,'the rows and columns of
the métrii represent the nodes and branches regpectively. Each element

of the matrix is then marked to indicate the incidence, or non-incidence,
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of a gi?en node and branch. The second method of representing a
graph uses a ring data structure in which data blocks are used to
represeht noaes and branches. Pointers between the data blocks

indicate the interconnections between nodes and branches.

The method of representation choéen for the layout algorithm is
the ring data structure. Although an electronic circuit often has a
large number of nodes and branches, there are generally few branches
connected to each node. A matrix represenfétion would therefore
require a large matrix in-which most éf the elements were empty. A
data structure provides direct pointers from, say, a branch to its.
two nodes. To obtain the saﬁe information from .a métrix, the whole
branch column of the matrix would havé'to betsearched. A further
“advantage of the data structure is that additional data égch as
component name, type of branch, or dispiay file may readily be

associated with each data block.

3.2 Elements of the Topological Representation

The graph of an electronic circuit is constructed from a
number of different types of nodes and branches. Circuit nodes
have a corresponding node in the graph but cbmponents have a
different representation-depending on whetherA%hey‘have two, or

more, pins. The circuit elements and their corresponding graph

representationsare described below.

3.2.1 Circuit Node

t

A circuit node is a point of common electrical connection of two
or more components: The corresponding node in the graph has no
physical representation. It merely fulfils the function of listing

all'thé components connected to a common point, or to a given
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conductor on the board.

3.2.2 Branch Component

A component with two connecting wires or pins such as a
resistor or a capacitor is termed a.branch component. It is

represented in the graph by a component branch:and is connected

between two nodes. Each of the nodes is the abstract representation
of a connection. A cemponent branch is therefore physically
eQuivalént to the component together with part of the conductor

paths‘at each end of the component.

3.2.3 Subgraph Component

“In representiﬁg a-component with more than two pins, such as

.a fransistor or an infegrated circuit, several problems arise. The
first problem is due to the physical dimensions of the component and
the fact'that each combonent pin is connected to a circuit node.

In constructing a planar graph of a circuit it may happen that a
number of branches, or conductors, have to pass between two particular
nodés. If the noedes are connected té two pins of a component,_it is
quite prbbabie that there would be insufficient space - for the
conductors to physically pass between the pins. To prevent such an
occurrence, each pin of the component is connecte@ to its two

adjacent ‘pins by a pseudo branch. Also, each pin of the compenent is-

represented by a éuggraph-node-so that every pseudo branch is connected
between.fwo subgraph‘nddes. The“péeudo branches initiélly-prevent‘any
conducters from passing between the component pins and they keep all

the pins of the component together in a closed planar region. Because
of these functions,‘pseudo branches may never be removed from the graph.
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Assuming that multi-pin components are represented by a ring
of pseudo branches, a planar graph of the circuit could be constructed,
containing these components as subgraphs. A second problem which is
not resolved by some other methods is that all of the subgraph
components must have the same oriéntation in the planar graph.
The physical analogy is that all the components are mounted on the
same side of the board. Defining a component as a ring of pseudo
branches readily enables the orientation of a component to be

checked during the planarity algorithm.

The third problem in representing a multi-pin component lies
in the deletion of non-planar branches between élosely connected
components. An example of two closely connected integrated circuits

is shown in Fig. 3.1. A connection has to be removed to make the

Non-planar connection
{

Fig. 3.1 Closely connected components

graph planar. ‘No pseudo branches can be removed however, because
the planarity of the component pins would be lost. Each subgraph
node has a link branch connecting it to the corresponding circuit
node. The physical representation of a link branch is a length of
conductor connecting the component pin to the rest of the cifcuit
node. In the event of a non-planarity, one or more of the component

link branches may be removed. The circuit diagram of a transistor
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-

and its corresponding topological representation are shown in

Fig. 3.2 as an example.

seudo branch

Lunk branch

Representation of a subgraph component

The complete set of subgraph nodes, pseudo branches and link

branches for a component is termed a subgraph component, or subgraph.

The nodes and branches of a subgraph are represented by a set of
node and branch data blocks. They could be represented more
compactly by a single data block. The graph structure would then
no longer be compatible with circuit nodes and branch components

however, and programming would thus be more difficult.

3.2.4 Edge connector

The edge connector of a printed wiring board consists of a
row of pins or terminals along one edge of the board. As no
conductors can pass between the edge pins, their correspondiﬁg
nodes in the graph must be adjacent to each other. This is ensured
by connecting the nodes into a path by a series of pseudo branches,
the order of nodes in the path being the same as the ofder of edge
pins on the board. A further pseudo branch is connected between
the first and‘last nodes of the path, thus forming it into a closed

loop. This pseudo branch therefore represents the outside edge of
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of the board, apart from the edge connector. The closed loop of
pseudo branches serves as a boundary within which the topological model

must lie.

-

3.3 Circuit Data Input

The first step in generatingia'layout is to prepare the circuit
data in a:suitable foymat for input to the computer. Two groups of
data are required for the construction of the topological model of a
layout. The first is a library of component data which may be common -
to all'cichits laid out. The second is a list of components and

their interconnections for the particular circuit to be laid out.

3.3.1 Component Library

When-coﬁstruc&ing a layout, certain-data is required for each
component; such as its physical dimensions and its number of cdnnecting.'
pins. Most circuits cont;in several instances of each-different type.
of component. The most economic-way to describe the components
therefore is to give each oneAa-type’number then associate one full:
description of a component with each different typé number. In other
words, a library of>component descriptions is'generated.'.ln a
manufacturiﬁg organisation-this information would probably be stored
as part of a data bank which would hold a list of all the types of
components e;er used together Qith their electrical and physical
characteristics. - For thé purposes of the method described here, an

eleméntary component library is associated with the circuit data.

The data for each type of component is stored in a master

component block. The master component blocks are held together in a
list and each one is given a unique name. TFor example, the blocks

. 1 ’ . a . .
representing y watt resistors, z watt resistors and transistors may



-26-
be called RES1, RES2 and TRAN respectiwely. The size of a component
is defined by a boundary rectangle. It allows space for the component
itself, space f;r connections and fixings and clearances for component
spacing. This simplifies board layout as component rectangles may
then be placed directdy adjacent to each other without further
computation of clearances. A master component block stores data on
the dimensions of the component rectangle, the number of component
pins and the co-ordinates of each pin relative to the component
rectangle. Several dummy master component blocks are used to
indicate certain functions during data input. These are described in

the next section.

3.3.2 Preparation of Circuit Data

To prepare data from a circuit diagram, each electrical node
is first-labelled with a unique positive integer. A simple example
is shown in Fig. 3.3(a). - The connections of each component may
therefore be described by listing the nodes to which it is connected.
The correct orientation of component connections is ensured by
:adbpﬁihgi a convention of node numbering.: Two pin components with a
marked pin of polarity such as~diodes or electrolytic capacitors are
listed with the marked pin as the first node number. Multi—pin' ]
components have their pins ordered in a clockwise direction,
looking from the conductor side of the board. The first pin in the
node - list corresponds to the first pin co-ordinate in the master

component block.

To code the data from a circuit diagram, each component is
described by its name and a list of its node numbers. An example of
data coding is illustrated in Fig. 3.3(b); the component library is

not shown. Components of-the same type are listed consecutively in
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(a) Circuit diagram

- NJouunwnm

(b) Data input format

Preparation of circuit data
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a group. Each group is preceded by the name of its master component
block and-is terminated by a dummy component with negative node
numbers. ‘This method is used because of the difficulties of reading
in data under FORTRAN FORMAT statements. Two additional dummy master
component block names are used. The name EDGE indicates that the
following node nuTbers are the nodes of the edge connector, in the
correct order. Tﬁe list of edge nodes is terminatéd by a negative
node number. The name STOP indicates that all of the circuit data

has been specified. An example of a topological representation of

the circuit shown in Fig. 3.3 is illustrated in Fig. 3.u4.

3.4 Data Input Subroutine

A FORTRAN subroutine called DATAIN has been developed to read
in the component library and-circuit data and to construct.the
corresponding data structure. The flow diagram of the subroutine is
shown in-Fig. 3.5 and the type of data structure constructed is

!
described in detail in Chapter 6.

The subroutine starts by reading in the component library data.
As each component type is read in, a new block is created and added
té the list of master component blocks. The master component name,
the. number of piné and the component dimensions are stored in the
block. This is followed by a list of the pin co-ordinates. A
master component with one pin is-used to indicate the edge connector.
One with no pins is used to signify the end of the library data and

its name, STOP, indicates the end of the circuit data.

Following the component library, the name of the next component
group is read in. The component library is searched to find the

master component block with the same name. The block then gives the
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Fig. 3.4 Topological representation of circuit
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( Start )

Read in component library data s create
list of master component bliocks

)

Read name of next component group

Does the master component Y Construct the group
have 2 pins ? of branch components

N

\

Does the master component
have more than 2 pins ?

Construct the group of

subgraph components

N

Does the master block indicate \Y Construct the edge| _
, the edge connector ? pseudo branches

N

\

y/ Does the master block indicate
the end of data input ? f

N

There is no master block

with the same name

Check that each node has

at least two branches

Fig. 3.5 . Flow diagram of data input subroutine




-31-
number of pins of each component in the group. If no corresponding
master component block can be found, an error message is printed out

and the program stops.

For groups of two pin components, each component name and its
two node numbers are read in turn. A list of nodes is kept in the
data structure and this list is searched to find the two nodes of
each component. If either of the nodes does not yet exist in the list,
a new hode:blockisucreated and added to the list. The data blocks
for a branch component are then created and linked to the existing
data structure in the manner described in Chapter 6. The procedure
is repeated with each component until the dummy component at the end
of the group is encountered. The subroutine thgn reads in the name

of the next component group.

For groups of componénts-with moré than two pins, the subroutine
reads in the name and appropriaté~number of nédés for éach~componént.
Any new nodes are added to the node list.- The required data blocks
of subgraph nodes, pséudo branchés and link branchés'aré’thén created
for tﬁé comﬁonént and linked int§~fﬁe éXisfing dafa sfrucfﬁfé:f Thé
subroutiné'is désigned fo déal.wifh.subgraph domponénts of any number
of pins. The appropriate number of pins is merely obtained from the

component library; The procedure is repeated for each component in

the group until the dummy end component is encountered.

‘The éomponent group name' called EDGE indicates that the next
group of nﬁmbers is a list of edge connector nodes. The node numbers
-are read into an array until the dummy end node'is.reachedx Each node-
is then connected to the next by a pseudo.branch in the data structuge.
The last node is connected to the first by a further pseudo branch.

The subroutine then reads'in the next component group. name. -
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The component group name cailed STOP indicates that the circuit
data input is complete. An elementafy check on the data is then
performed. Each node in the circuit node list is checked to ensure
that it has at least two connected branches. Any node which has only
one connected branch causés an error message to be printed. This
check detects some coding and typing errors. The data structure now
contains all the data reléted to the interconnection of circuit

components.
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Chapter 4 Construction of Planar Graph

The type of board layout considered consists of a set of
components placed on one side of fhe board, a set of conductor paths
on the second side and a set of connection pins along one edge of the
board. The main objective in producing a board layout is to arrange
the components and their interconnecting conductors so that no
conductor paths infersect; It has already been shown that a graph
may be developed fo represent'the interconnections of a circuit.
This chapter describes an algorithm by which the branches of the
graph are orderedh and some removed, so as to produce-a planar
graph with no branch intersectiens. Chapter 5 then describes a
method by which the non-planar branches are inserted back into the

graph.

4,1. Planar Graph Constraints-Due to Board Layout

A planar graph is defined as one which may be ‘drawn on-a plane
in such a way that its branches intersect only.at their end points.
vThe'plane‘wﬁich is of interest in the board layout problem is the
conductor éide‘of a printed wiring board. It therefére follows that
the graph representing a circuit must be planar to aveid the

intersection of conductors in the physical layout.

When ﬁsing the graph of a circuit as the topological model of
its board layout, a number of problems arise.- The first major
problem is that the graph of a circuit is seldom planar. A non-
planar graph can only be made planar by removing a number of
branches alﬁhbugh there are- usually manj alternatives in deciding
which branches to remove. A set of branches, preferably a minimum

number of branches, has'therefore to be identified and removed from
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‘the graph in order to make it planar. The second ﬁajor problem is
that a graph-is a topological entity and that planarity is an
internal property of the graph. This means that a graph may be given
any number of geometrical representations by drawing it on a plane.
Having ensured that a graﬁh is planar therefore, the problem still
remains in-constructing a geometrical representation which has no

branch intersections.:

The  requirements of representing a board layout impose further
constraints on the processing of the original graph and on the
construction of a planar graph. These constraints are discussed

below.

(a) Only component branches and link branches may be removed from
the graph in order to make it planar. Pseudo branches must
remain' in' the graph to hold the pins of subgraph components

in their correct order and spacing. .

(b)  All the subgraph components must be connected into the planar-
graph  in the same orientation. This corresponds to all the
components being placed on the same side of the printed

wiring board.

(c) The nodes and pseudo branches of the edge connector represent
the outside edge of the board. They should therefore lie on

‘the outside edge of the planar graph.

(d) The connection pins on each component are connected together
" .zimothe graph by either one compénent brénch or several pseudo
branches. This prevents conductors from passing between
adjacent component pins in a planar graph representation of

the layout. In the physical-layout however, it is pessible
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for a limited number of conductors to pass between-adjacent
pins, depending on the component and conductor dimensions.
This limitation on conductor paths in the planar graph
eliminates the problem of checking clearances between adjacent
pins élthough it usually causes a greater number of non—plénar
branches to be removed. The constraint is later relaxed and
the non-planar branches re-inserted into the graph by the

method described in the next chapter.

Methods of Constructing a Planar Graph

Classical graph theory concentrates on finding the conditions

necessary for a graph to be planar rather than devising methods for

constructing such a graph. The elegant theorem due to Kuratowski

(16) states that a graph is planar if, and only if, it contains

neither of the two graphs shown in Fig. 4.1 as subgraphs. The

Fig. 4.1 Kuratowski subgraphs

Kuratowski subgraphs may be well hidden within a graph so it is not

practicable to search for them in a graph of many nodes and branches.

Whitney (31) proves that a necessary and sufficient condition for a

graph to be planar is that it has a dual graph. Again, this offers

no practical solution to the construction of a planar graph.
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A planar graph drawn-on a plane without branch intersections
divides the plane into a number of non-overlapping regions. Each
région-is bounded by a circuit, or closed path of branches.
MacLane's theorem (21) states that a graph is planar if, and only
if, the graph contains a complete set.of circuits such that each
branch appears in no more than two of the circuits. This theorem is-

used in the planarity algorithm described in the next section.

Several other methods of constructing the graph of an electronic
circuit have been described in Chapter 2.3. These methods suffer
several disadvantages, however, in the practical case of producing a-
board layout. The algorithm for constructing a planar graph
described by Bader works satisfactorily for branch components. It
is, however, difficult to implement with subgraph components due to
the need to preserve correct component orientations., In addition,
it is not possible to arrange all the nodes of the edge connector

on the outside edge of the graph.

The -method due to Nicholson uses a permutation procedure to
minimise the number of crossings in a graph. Each component,
hgwever, is represented by a node in the graph so that with multi-
'biﬁ components it is not pessible to select the correct order of:
‘connections to each component. Rowley's algorithm is particularly
suited to circuits containing multi-pin components although part
of the procedure involves setting up a matrix for all conflicting

branches. This can lead to excessive computer storage and time

requirements for a large circuit.

4.3 Principle of Planarity Algorithm

The objective of the planarity algorithm is-to construct a

planar subset of the graph representing an electronic circuit.
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The planar graph should contain no branch intersections and should be
subject to the constraints described in seqtion 4.1. Non-planar |
branches are removed from the graph as they are encountered and no
attempt is made to minimise the number of non-planar branches
removed. This approach simplifies the‘planarity algorithm and is
justified because non-planar branches are re-inserted into the

planar graph at a later stage.

An impoftant assumption upon which the planarity algorithm
depends is that every node of the graph is of order two or more.
This means that the planar graph-may be described by a set of closed
paths of branches, each path being the boundary of a planar region.

 The following circuit:and topological conditions shew that the
assumpfion<is vélid for the graph répresenting a qircuit.
(a) Every circuit node, except the edge connéctor pins, connects

at least two components together.-

(b) Each edge connector node is connected by two pseudo branches

to its adjacent edge nodes.

(¢) Similarly, un-used pins on multi-pin components are- connected

by pseudo branches to their adjacent subgraph nodes.

©(d) Separate circuits or components on the board have the edge
connector pseudo branches in common with the remainder of the

circuit.

. 4.3.1 Processing of Planar Graphs.
Given a pianar graph, G, the planarity algorithm is required to
re-arrange G into a second planar graph, H. The nodes and branches

of graph H are to be ordered so that a geometrical representation::

et i o e et 5
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of the graph may be drawn without branch intersections. Graphs G
and H have a one-to-one correspondence between their nodes and
branches. The difference is that additional information in graph
H enables the required geometrical representation to be drawn.
Graph H is constructed as a series of subsets of its nodes and
branches. An initial set of nodes and branches is chosen so thét a
planar region is formed, with no branch crossings. éubseéuent
subsets of the graph are constructed by adding further planar
regions to the previous subset such that no bfanch crossings are

introduced.

A path that is known to form a planar region with no branch
crossings is the set of pseudo branches representing the edge
connector and the outside edge of the board: This path- is termed

P, and is used to form the initial subset of gfaph H, i.e.,

When- the elements of this subset, or any subsequent subset, are
subtracted from graph G, the nodes and branches remaining in G

are termed free nodes and free branches respectively. The outside

edge of path Pi forms the boundary of the first planar region of
graph' H. The'reéion on the inside edge of P, is termed the free
regionbgs it contains all of the free nodes and branches from
'géaph'G which have not yet been defined as part of graph H. 1In the
general case of the nth subset of graph H,

Contents of Free Region = G - H

Each branch on the edge of the free region has previously
been defined as part of a planar region which is adjacent.to the
outside edge of the free region. Applying MacLane's theorem. to the

L]

planar graph, there must be a second planar region, on the inside
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edge of the free region, which is adjacent fd the given branch.
The boundary of this sécqnd region is defined by a closed path, P,
- which includes the given branch. This path Qill be comprised of a
number of free branches together Qith part of the free region edge.
The node at which the path leaves the edge of the free region is
termed the start node; the corresponding node where it returns to
the free region edge is termed the target node. -It-follows that the
start-and target ﬁodes each lie on the edge of the free region and

each have at least one attached free branch.

N

To add a planar regioﬁ to the graph.Hn, an arbitrary node on
the edge of the free region, with a free branch attached, is selected
as a start node. The next node on the edge of the free region with
a free branch attached is selected as the target node. Starting
from the free branches on-the sfart node, a search is m;de to find
the shortest path through the free region to th¢ target node, Phyle
The shortest path is defined as the one with a minimum number éf
free branches. The path P, ; is then joined to the start and target
nodesito form a new planar region.- The boundary of the new region
consists-of one side‘of the path together with the edge of the free
region-between the two nodes. The remainder of the free region edge

and the second side of the path are redefined ras the new- free region
edge. A new subset of the graph H is thus defined by:
Hpy1 = Hp + Ppyy |
Repeatingvthe procedure with each node on the edge of the free
region in turn yields further planar regiona of the graph H. The
algorithm is terminated when there are no remaining free branches.
The free regioﬁ itself then begcomes the final region to be added to

~ the graph.
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4.3.2 Example of Planar Graph Construction

A simple example of the planarity algorithm operating upon a
planar graph is shown in Fig. 4.2. " The initial geometrical
representation of the graph shown in Fig. 4.2(a) contains a branch
crossing. The objective of the algorithm is to produce a
geometrical representation of the graph with no branch crossings as

illustrated by Fig. u4.2(b).

A ~ {a)

Fig. 4.2 Construction of planar graph

The path of pseudo branches representing the edge connector,
ABCA, is taken as the first planar subset of the é;aph. The outside
edge of the path formé the boundary of the first planar region,
region I. The inside edge of the path forms the boundary of the
’initial free region. Node A is arbitrarily selected as the first
.start node and node B as the target node. A search through the
free region for the shortest path from A to B gives the path ADB.
Region II is thus defined as the next planar region of the graph
.and the edge of the free region is redefined as the path ADBCA.~

Node A remains the start node because it still has a free branch,

AE, attached. Node D is then selected as the new target node
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nearest to the start node. A search through the free region gives
AED as the next path between start and target nodes, giving ADEA as

region III,

All of the branches~connected to node A are now defined as
parts of the planar graph so a new staft node, E, is arbitrarily
selected from the edge of the free region. The next node on the
edge of the free region with any free branches, node C, is chosen as
the new-tafget node. The shortest path through fhe free region from
nodes E to C consists of the single branch EC. The edge of the frée
region between the starf and target nodes, DBC, together with branch:
EC therefore form region IV. The edge of the free region is then
défined as CAEC. As there are no free branches remaining in the free’
region, CAEC becomes the final region V. The branches ¢f the planar

graph are thus ordered so as to eliminate all branch crossings.

4.,3.3 Processing of Non-Planar Graphs ,

It will genérally be found thét the graph of a circuit contains
a number of non-planar branches. There are several different
strategies for removing such branches from a graph in order to make
it planar. One strategy used both by Bader (1) and by Rowley (29)
involves making an exhaustive search for all branch conflicts in the
graph. From the list of conflicting branches, an optimum-sét of
nén-planar branches is selected such that the number of branches

removed is a minimum.

A second strategy, which is used here, deals with each branch.
conflict as it is encountered. When two branches are found to
conflict, one of them is immediately removed from the graph although

the result will not generally give a minimum set .of non-planar



49—
branches. A branch may be unnecessarily removed from the graph if all
the brancheé it conflicts with are themselves later removed. As
another algorithm is later used to insert non-planar branches back
into the graph, selection of an optimum set of non-planar branches ‘is
not critical. The-main_advantages‘of this strategy are its speed and
simplicity of cemputation. Each branch conflict is resolved as it is
found, instead of having to process a list of many conflicts. Also,
in searching the free region of the graph for further planar regions,
the number of free branches to examine becomes progressively smaller

as more regions are defined.

Any free branch, or path of free branches,. that crosses the free

and E

region divides the edge Qf the free region into two parts, E, 5

at the nodes of connection. A conflict of branches occurs when a
second branch or path crossing the free region has one end connected
In such a case it

to part E. and the other end connected to part E

1 2°
follows that the nodes on the edge of the free region, adjacent to
the start node of the first path, will belong to the second path.

There cannot therefore be a planar path between a start node and

either of its two adjacent target nodes.

An example of conflicting branches is shown in Fig. 4.3.
Branches AC and BD are in conflict as no path exists within the free
region from the starting node A to either of its adjacent target
nodes B and ﬁ. Neither branch may be drawn around the outside edge
of the free region, ABCDA, as the outside has already been defined
as part of a planar graph. One of the two branches therefore must

be removed in order to make the graph planar.

The algorithm for creating a planar subset of a.non-planar

graph is an extension of that described in section 4.3.1. A search



Fig. 4.3 Non-planar branches

is made for planar paths from a start node to each of its two
adjacent target nodes in turn. ' Every time a new planar region is
defined, the free region is redefined, a new tafget is defined, and
the search procedure is repeated. Any free branches remaining on
the start node that do not yield a planar path after a search are
either non-planar branches or bridge branches. Non-planar branches
are immediately removed from the graph; the procedure for dealing

with bridge branches is described below.

A bridge branch is defined as a branch which is the only

connection between the edge of the free region and a subset of the
graph G which has not yet been defined in the graph H. This state
occurs when successive connections to the subset are removed as
-non-planar until only the bridge branch connection remains. It is
essential that no subset of graph G becomes completely disconnected
from the remainder of the graph. If this were to happen, the search

procedure for constructing the planar graph would never encounter
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the subset by searching from the edge of the free region. The
subset would thus not be defined.as part of the required planar
graph. This same reason also explains the fact, mentioned at the
beginning of section 4.3, that every node of the graph must be of
order two Oor more. A bridge branch is thus inserted into the planar
graph to prevent a subset from being completely disconnected from

the rest of the graph.

An example of the detection of non-planar branches and bridge

branches connected to a node is shown in Fig. 4.4. Node A is taken

Fig. 4.4 Detection of

non-planar and bridge branches

as the start node and its two adjacent target nodes on the edge of
the free region are B and D. The first search from node A to
térget node B yields branch AB as a planar branch so it is inserted
into the graph. Two further searches to targets B and D do not
yield planar branches so the branches AC and AE on node A must be
either ﬁon-planar or bridge branches. In order to determine which
type they are a search is made from the end of each branch in turn
to see if a path exists to any other node on the edge of the free
region. If a path does exist, as in the case of branch AC, the
branch must be in conflict with another so it is removed as non-
planar. If a path does not exist, as in the case of AE, the branch

represents the only connection to a particular subset of the graph
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so it is retained in the graph as a bridge branch.

4.3.4 Insertion of Subgraph Components

Each planar region of a graph is defined by an ordered ring of
branches around its boundary. The method of definition is described
in'detail in Chapter 6. By convention, the branch order around
every region is described in an -anticlockwise direction. A subgraph
component consists of a planar region bounded by a ring of pseudo
. branches and by convention these are also defined in an anticlockwise

direction.

In searching through the free region of a graph for a planar
path, the target ﬁode is always arranged by convention to be in an
anticlockwise directien around the edge of the free reéion from the
start node. When a subgraph node is encountered, the search proceeds
only along the pseudo branch in 4 clockwise direction from the
subgraph node. The conventions of.region definition and search
direction ﬁhué ensure that al; subgraph éomponents are inserted into

the graph with the same oriéntation.:

L.4  Description of Planarity Subroutine

A subroutine, called PLANAR, has been written to implement the
planarity algorithm; its flow diagram is shown in Fig. 4.5. The
subroutine starts by connecting the pseudo branches of the edge
connector into a closed path. The outside edge of this path bounds
the first planar region of the graph and the inside edge of the path
is the boundary of the initial free region. The method of linking the
branches info a region is detailed in Chapter 6. An arbitrary node
with free branches attached, on the edge of the free region, is

selected as the first start node. The next node with free branches
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Fig. 4.5 Flow diagram of graph planarity program
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in an anticlockwise direction from the start node is taken as the
target node. A search is then made for a planar path between the

start and target nodes.

4.4.1 Search Proqedure for Planar Baths

The search procedure for finding a planar path is designed to
 find the shortest path from start to target node. A tree search
method is employed, as illustrated by Fig. u4.6. The free branches
connected to the start node enable-a set of the free nodes adjacent .
to the start node to be obtainéd; This set of free nodes represents
the first level of the tree search. The nodes in the first level of
the tree are connected by further free branches to another set of
free nodes which go to make up the second level of the tree. The
tree may‘fhus be built up in successive levels until the target
nodecis reached. All the possible nodes in one level of the tree
are found before developing the next level. This ensures that the.

path found to the targét node is of minimum length.

Each nQde is allowed to appear in the search tree once only.
This prevents -any part of the search from loo?ing continually
around é-closed ring of branches. Node H in Fig. 4.6(b) for
example, is reached from node G first so it is not listed as a
successor to node I. No planar path is allowed to cross the free
region and thus divide it into two separate regions, -apart from a
path between the sfart and target nodes. If a node on the edge of
the free region is encountergd during the ‘tree search, node K for

example, that part of the search is not continued.

When a subgraph component is encountered, CFDC for example,

the tree search proceeds only in a clockwise direction from the
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A Start (a) Graph

(b) Search tree

Fig. 4.6 Planar path search
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subgraph node, node C. The correct subgraph component orientation is
_<thus preserved in the graph. Similarly, only one pseudo branch of the
-.subgraph is allowed in the search p;th. This prevents any subgraph
nodes With free branches attached from becoming embedded within a
planar region. In the computer data structure representing the tree,
each node is given a pointer back to its predecassor in the tree.

When the target node ;s found, the path back to the start node may
thus be directly traced. If the tree is constructed as far as is
possible without reaching the target node, the. branches on the start |

node are either non-planar or bridge branches.

4.4.,2 Region Construction

When a planar path is found between the start and target nodes
of a .graph, the branches of the path are connected in the computer
data structure as two segments of region boundaries, corresponding to
the two sides of the path. The edge of the free region is divided
at the stért and target nodes into two separaté parts. The two
parts of the free region edge and two parts of the planar path are
joined to form a new planar region and a redefined free region edge.
If the planar path contains any subgraph nodes, the‘remainder of the

subgraph components are also added to the graph as new planar regions.

4.4.3 Further Search Procedures

Each time a new planar region is added to the graph, a new
targét node is found in an anticlockwise direction from the start
node. When no further planar paths can be found, the search is:
continued by selecting target nodes in a clock?ise direction from
the start node. In this case, the éearch for a planar path is
actually made from the target to the start node so as to preserve

3o
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the correct orientation of path search.

Any branches remaining on the start node after the planar path:
search is exhausted are checked for non-planarity. A tree search is
made from the node at the other end of the branch under consideration.
.If the search encounters any node on the edge of the free regisn, the
branch is non-planar and is removed from the graph. If the search is
exhausted before reaching a free region edge node, the branch is a

bridge branch and so is inserted into the planar graph.

The next node with free branches in an anticlockwise direction
from fhe ;tart node is taken as the new start node and the search
for planar regions is continued. The process is terminated when
there are no free branches left in the free region. The free region
itself is then added to the planar graph as the final region. The
result of the planarity subroutine is thus a set of regioné describing
a planar graph and a list of nbn-planar branches.  The list of non-
planar branches may contain several planar branches, as the branches

with which they conflicted have alse been removed from the graph.

s
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Chapter 5 Insertion of Non-Planar Branches

a

The planarity algorithm described in the previous chapter
processes the topological representation of an electrical circuit
into a planar graph and a list of non-planar branches. As these
branches still represent parts of the circuit they must be included
in the physical layout. An algorithm is described in this chapter

for inserting these non-planar branches back into the graph.

o

5.1 Statement of the Problem

In the average planar graph many of its branches are either
component.or subgraph pseudo branches. Each of these branches may
have a dimension associated with it, corresponding to the distance
between two pins of its component. It is possible for a limited
number of conductors to pass between two such pins, depending on the
dimensions of the component and the conductors. Correspéndingly,
each branch in the graph may be crossed by a limited ﬁumber of other
branches. The croséings represent a conductor on one side of the
board passing under part of a component on the other sidéﬂ The
condition of planarity of the topologica} model may thus be partigllyy
relaxed in order to allow the non-planar branchés to be inserted

back into the graph.

The aim of the algorithm described here is to insert all the
non-planar branches of a graph into the planar subset of the graph by
allowing certain types of branch crossings. The resultant graph is

termed a pseudo planar graph as it may be drawn onto a plane to

represent a planar set of conductor paths even though the graph
contains some branch crossings. For some circuits it may not be
possible to insert all of the non-planar branches into the pseudo

planar graph. Two alternative procedures may then be used to deal
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with these branches. The first alternative is to replace the
branch by an insulated piece of wire, called a wire jumEer, to make
the required electrical connection. The second alternative, not
considered in the scope of this project, is to route the branch as a

conductor on the second side of the board.

5.2 Principles of Branch Insertion

A non-planar branch to be inserted into the pseldo planar
graph may be -one of two types. The first type is a component branch
representing a two pin component. As the component is a part of the

~circuit and layout, its branch must appear in the graph. The second
type of non-planar branch is a subgraph link branch. As this type
represents a conductor joining a subgraph component to the rest of
the cifcuit, it may be replaced by a Qire jumper if an insertion path
cannot;be found.in the graph. It is more important that component
branches are inserted into the graph Beééuse'they cannot be replaced
by jumpers. They are therefore given precedence in the insertion

algorithm.

A non-planar branch is inserted into the pseudo planar graph
by finding a path which crosses é number of branches in the graph.
The main objective is to use.a minimum number of crossings when
inserting each branch. This results in more room under component
and ﬁseudo branches for inserting further non-planar branches and
it also helps to reduce conductor lengths in the physical layout.
The list of non-planar branches to be inserted into the graph may
contain several planar branches. These were originally removed
from the graph because they conflicted with other branches. At a
later stage all the Branches with which they conflicted were also

removed. When a planar branch is encountered in the list of
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non-planar branches therefore, it is inserted back into the pseudo

planar graph without branch crossings.

A link branch is inserted into the graph by searching for a
path under component or pseudo branches from one of the branch nodes,
called the start node, to the other branch node, called the target

node. An example is shown in Fig. 5.1. It 1is assumed that branches

D

Fig. 5.1 " Insertion of conductor branch

“AF and BF in the figure are component branches, DF is a link branch
and EC is the non-planar branch to be inserted. Branch EC is inserted
by crossing under branches AF and BF. Although a shorter path exists
across branch DF, two link branches or conductors cannot bé crossed

on a single sided printed wiring board. In a purely topological
problem, EC could be routed around the outside edge of the graph
without crossing any branches. In the topological representation of

a board layout however, all branches must lie within the outside edge

of the graph.



—54-

A different procedure is adopted for inserting non-planar
component branches into the graph. A two pin component has a
clearance between its pins so it is able to "hop over'" several
conductors on the board. A component branch may therefore be
inserted into the graph by crossing over several branches representing
conductor paths. The method by which this is implemented is
illustrated in Fig. 5.2. The nén—planar branch HD may be inserted

by crossing component branches AJ, BJ and CJ as shown in Fig. 5.2(a).

Fig. 5.2 Insertion of component branch

The number of branches over which a component branch can cross
is limited by the dimensioné of the component. An insertion path for
the component is therefore more likely to be found if the number of
crossings can be reduced. The method for reducing the number of
crossings to a minimum is depicted by Fig. 5.2(b). The node J in
Fig. 5.2(a) represents a point of common electrical connection of
several components. The function of the electrical circuit is
unchanged if the node is "split" into two separate nodes J and J'
as in Fig. 5.2(b), and joined by a brancﬁ JJ' termed a conductor
branch. The non-planar branch may then be insertea into the graph

with a minimum number of crossings as shown.
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5.3 Insertion Path Searching

The graph produced by the planarity algorithm is defined by
a set of planar regions. In crossing a branch of the graph, a non-
planar path passes from one region to an adjacent one. Finding an
insertion path with a minimum number of branch crossings is thus
equivalent to finding a path that passes through a minimum number of
regions. A tree search through regions, similar to the method
described in Chapter 4.4.1 is therefore used to search for an

insertion path.

Each non-planar branch is initially connected to its start
and target nodes in the topological representation of the circuit.
As an aiternative it may later be reconnected to any node which is
electrically common-ﬁith the start or target nodes. When starting
the search for an iﬁéertion path, every region which includes the
target node is marked as a target region. Similarly, regions
containing nodes electrically common with the target node are also

marked.

The trée search through régioné‘is initiated by making a-
list of all the regions around the ‘start nodé and any of its
electrically common nodes. This list forms the initial level of the
tree. If any of its regions have already been ma;ked as target
regions, the branch to be inserted is planar and may be inserted
directly into the graph without branch crossings. At all stages of
the path search for non-planar branches, the outsidé.region of the

‘graph is ignored as no branch may cross .over the perimeter of the

board. !
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5.3.1 Component Branch Search

To proceed with the tree seafch for a component Braﬁch path,
a region from £he initial level of the tree is examined. Each branch
around the edge of the region is checked in turn. If the node at
either end of the branch is a connection node and has not yet been
included in the search it is further examined. A list of all the
regionslaround the node, excluding those already in the tree, is
obtained and added to the next level of the tree.  These are the
regions which may be accessed by spiitting the node and crossing the
component over the resultant conductor bfanch. The procedure is
repeated for each region in the inifial level of the tree in order to

complete the list of regions in the next level.

The search procedure ié repeated for successive levels of the
tree. Each level is fully developed before constructing the next so
that when an insertion path is found it is of minimum length. As
each new region is added to the tree a check is. made to see if it has
been marked as a target region. The search procedure is completed
when a target region is encountefed. As'each node is examined during
the search it is given a pointer back to the region from which it waé
found. Similarly each region is given a pointer to the node from
which it was found. This enables the required insertion path:to be
traced rapidly back through thé tree to the start region when a target

region has been found.

The number of branches that a component may cross over is
limited by its phyéical dimensions.  This in turn limits the number
of levels to which the tfee search may be ta#en. If the ‘maximum
allowable number of levels in the trée is reached before a target

region is found, the component cannot be inserted into the graph by
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crossing over conductors. A possible method of then inserting the

component is discussed in Chapter 11.1.

5.3.2 Link Branch Search

Every component and pseudo branch has'a dimension associated
with it whigh indicates the space available for conductors to cross
under the component or éubgraph. This dimension is initially set
during the DATAIN subroutine and may later be decremented:by one
conductor -width each'time a branch is crossed under the component.-
To proceed with the tree search for a link branch path, a region
from the initial level of the tree is examined. Each branch
around the edge of the region is checked in turn. If it is a
component or'pseudo branch it is further examined. If there is
still sufficient‘cleérance'under the branch, the region on the
other side is added to the next level of the.tree; This assumes
that the région is not already in the tree. The procedure is
repeated for each region of the initial level in turn in order

to completely develop the next level of the.tree.

The tree search is continued wifh>successi§e levels until
a target region is reached} There is no limit to the number of
branches that a link branch may cross.‘ During the construction of
the tree, each region is-given a pointer back to the branch from
which it was developed. This enables the requiréd path to be
-traced directly through the tree when a target region is found.
If the tree search is exhausted before a target region is found,
the link branch is ﬁruly non-planar and cannot be inserted into the

pseudo planar graph.

D
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5.4 Path Construction

Having found the required insertion path for a non-planar
branch, the pseudo planar graph has to be modified to include the
branch. ‘The imitial step for the insertion of a component branch
is to split all the nodes which lie along the insertion path. By
using the pointers set up during the tree search, each node along

the path may be identified and split into two separate nodes in turn.

The branches on a node which is to be split are divided
into two groups. The groups are separated by the two regions
through which the component branch is_to pass. A new node is
created and the branches of one group are connected to it. A
conductoer branch is constructed between the originél and the new
node and is inserted as an extra branch into the two régions.' The
region nearest the target node is given a pointer to the conductor
branch so that the path of the component branch may still be
traced. Having split the required nodeé, the insertion of the

component branch proceeds as for a link branch.

To insert a link branch into the graph; one end of the
branch is firstly connected to the target node. The target
region gives a pointer to the first branch which is to be crossed.
This branch is then divided into two separate segments (The
representation of branch segments i described in detail in
Chapter 6.2.3.) The first segment of the link branch is also
created. The segments of the two intersecting branches are linked
toéether so that the target region is divided into two separate-
'regioné. The two regions each contain the target node.and have

the first link branch segment as a common boundary.
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The insertion procedure is repeated along the path, dividing
each region and crossed branch into two parts and creating another |
segment of the link branch. When the start region is reached, the
second end of the link branch is connected to the start node. The
start region is thus divided into two and the path is completed.
Each branch segment of the graph may later be subdivided when further
non-planar branches are inserted. The insertion procedure for
component branches is exactly the same as for link branches. It is
merely the type of branch which defines which of two crossing branches

is placed on the conductor side of the board.

An example of link branch insertion is shown in Fig. 5.3.

1] i
Start
.-
vi
Y
\___/‘E
Fig. 5.3 Insertion of link branch

The three original regions of the graph,I, II and III are ABFA,

BCEFB and CDEC respectively. The link branch to be inserted, AD,

is connected firstly to its target node, A. Branch BF is divided
into the segments BKl and KiF. The first segment of the link branch,
AK., i; formed and connected to the segments of BF so that region I

1

is divided into regions ABK,A and AK,FA. "Region II is similarly

1
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divided into two and region III is also divided by.connecting the
second end of AD to its start mode. The path is thus completed with
two crossings K, and K,. As each cbmponent or pseudo branch is

1 2

crossed, its clearance value is decremented by one conductor width.

5.5 Branch Insertion Subroutine

A subroutine to perform the above described algoritﬁm,
called PHASE2, has been written and is shown in flow diagram form by
Fig. 5.4. The list of non-planar branches is initially sortéd so
that all component branches are in the first part of the list. The
first branch is taken from the non-planar-list and the graph is
searched for a suitable insertion path. If a path is found the branch
is inserted by the previously described methods. If the branch is
found to be planar, it is inserted into the graph by connecting it
across the region in which *its two nodes lie. The region is thus

divided into two separate regions.

Any branch for which no path can be found is put into a
second list of non-planar branches. These branches are truly non-
planar and cannot be inserted into the pseudo planar graph. .Non—
planar link brancheé are later replaced by wire jumpers. Non-planar
component branches may later be connected by one node’ into the graph,

the connection to the other node being made by a wire jumper.

Having processed one branch, the procedure is repeated with
the remaining branches from the non-planar list in turn until the
list is exhausted. The end result of the insertion subroutine is
then a pseudo planar graph which is the complete topological model of
a circuit layout. There may also be a list of non-planar connections

that have to be replaced by wire jumpers.

T
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Fig. 5.4 Flow diagram of PHASE2 subroutine
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Chapter 6 Computer Implementation of Topology Algorithms

The algorithms for constructing the topological model of a
¢ircuit have been described in the previous chapters. In this chapter
the programming methods used to_implemenf the algorithms are described.
The computer hardware configuration has already been outlined in

Chapter 1.

6.1 Data Storage

The représeﬁtation of an éléctfical circuit consists of a
large number of intérconnected nodés, branéheé, subgraphs and planar
regions.‘ In addition; the branchés'and subéraphs peprésénfing
coﬁponén%s reéUiré comﬁoneﬁt ﬁaﬁeg'aﬁd; af a lafer sfage;”physical
co-ordinates. The problem is-to devise a system to store all of

this information in-a compact and readily accessible form.

A data storage system similar to that described by Ross (27)
is used. A large one-dimensional array is assigned as a common area
in which to store all the data. The area within this array is
divided up into a large number of blocks. Each block consists of a
number of consecutive elements of the array and may be of any length.
A block 1s used to represent a node, a branch or any other element of
the graph. Interconnections of the blocks are represented by pointers.
A pointer to a block is merely the array index of the first element of

the block.

A free storage system is used to allocate blocks from the

array for use by the various subroutines. During the topological
algorithms it so happens that no block ever becomes redundant. An

elementary free storage system is therefore used although a more

complex one is described in Chapter 9.2 for use with the layout
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algorithms. The storage system uses a pointer, set initially to the
beginning of the array, to indicate the start of the un-used part of
the array. When a new block is required, it is taken from the free
part of the array and the storage pointer is incremented by the
corresponding block length. After each block has been allocated,
the value of £he storage pointer is checked to ensure that the limit

of the array has not been exceeded.

6.2 Data Structure

The graph of a typical circuit contains many hundreds of
interconnected blocks. It is important therefore to use a data
structure which is efficient in describing the interconnections.
There are a:number of general purpose data structure packages
available, such as ASP (17, 25), which may be used with FORTRAN
programs. Being general purpose packages however, they tend to
have large overheads in storage space when defining block inter-
coﬁnections. A special purpose data structure has therefore been
designed for use withtthe planarity and layout algorithms described
here. It is organised with interrelated parts of the graph closely
connec¢ted by pointers so that one may move easily from one part of

the structure to another.

A general purpose data structure package usually contains
checks to ensure that each operation on a block is a valid one.
The disadvantages of this are that extra storage space is required
in each block to indicate its type and that the program requires
extra execution time for each operation to be checked. The data
structure de§eloped here haé no such checks and so saves on storage
space and computing time.  The disadvantage is that the program

generally fails completely if an invalid operation is performed.
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6.2.1 Interconnection of Nodes and Branches

The method of interconnecting nodes and branches in the data
structure is illustrated by Fig. 6.1. A simple graph is shown in
Fig. 6.1(a) and its resultant data structure is shown in Fig. 6.1(b).
The first element of each node block contains the name of the node,
each node having a unique name. The nodes of a circuit are all held
in a node list. The second element in each node block is thus used
to point to the next node in the.list. The list is terminated in the
final node block by a zero value pointer. Each node ﬁas a number of
branches connected to it. The third element in a node block thus
points to the first branch which is connected to it. The remainder
of each node bloék is used as a workspace in which to store various

markers and pointers during the course of computation.

The first element in a branch block is a marker describing
the type'of the branch, for example a component, or pseudo, or link
branch. The next two elements of the branch point to the two node
blocks between which the branch is connected.m The two foliowing
elements of the branch block are used to form the list of branches
connected to a node. The first of the elements corresponds to the
first node pointer and the second element to the second node pointer.
Each of the list elements points-to the next branch connected to the
hode, or has zero value for the‘last branch in the list. The
remaining elements of the 'block are used for workspace and for
connections to other parts of the data structure which are described

later.

As an example of the type of operation required on the data
structure, all the branches connected to node 2 in Fig. 6.1 are to

be found.' The branch pointer in the node-block N2 peints to branch



-65-~

NI BI N2 B2 N3

(a) Simple graph

—1—* Node list

Bi B
Node name NI Branch marker \
/——° Next node [ Node pointer
\
M ” r\
First branch °—- ya ),\
X Node list ¥
/I
X ” 4
N2
M - B2
Branch marker
\@?_—“—" k.
\
\
/:—-L[l/
- /
NG :
N3
X
— g

{b) Data structure

Fig. 6.1 Interconnection of nodes and branches
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block B2 which is thus the first connected branch. As the first node
pointer of B2 points to N2, the corresponding first node list pointer
of B2 is taken. This points to branch Bl which is thus the second
branch connected to N2. In this case node 2 is the second node of
‘the branch so the second node list pointer of Bl is taken. The
pointer is a null one which indicates the end of the list so Bl and
B2 are‘the only branches connected to the node. The pointers are
arranéed in this way so that new branches may be added to a node
without having to alter the length of its node block. The method
of interconnection enables one to readily find all the branches

connected to a node and vice versa.

6.2.2 Subgraph and Branch Components
The method of defining the constituent parts of a subgraph
component is illustrated by Fig. 6.2. Parts of the structure have
been omitted from the diagram to avoid confusion. The nodes and
branches of the subgraph are interconnected in the same manner as
described in the previous section. This ensures that the parts of
y

the subgraph are compatible with the rest of the graph when constructing

planar regions.

The overall component is déscribed by a subgraph block, Sl.
The first element of the block is a subgraph marker. The second |
element is a pointer to the first subgraph node of the component, SN1.
The subgraéh nodes are held in a list, in the same way as circuit
nodes. The difference is that the étart of the list is stored in
the subgraph block and the last node has a pointer back to the
subgraph block. The subgraph nodes are'thus joined in a ring
together with the subgraph block. In addition, the first element of

each node block has a marker plus a pointer back to the subgraph
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block. Given a subgraph node therefore, one may readily find the

subgraph component to which it belongs.

Every subgraph node has a list of the branches attached to
it; these are a link branch and two pseudo branches. The pseudo
branches each have two pointers té their appropriate subgraph
nodés. The link branch also has two node pointers. . The first
pointer identifies a circuit node and the second points to the
corresponding subgraph node. The structure of a subgraph component
is thus defined completely in a manner which is compatible with the

remainder of the graph.

At a later stage of the layout algorithm when components are
given physical co-ordinates, it‘is desirable that both the branch and
the subgraph component blocks are compatible. The form of a subgraph

block is shown in Fig. 6.3(a). This is the same block as the one

Subgraph marker Upper branch mkr. )
<« Node list " JLower branch ptrai
Component name | Component hame Lower branch
<o Master comp. ptr. <«—t-oMaster comp. ptr.
X co-ordinate X co-ordinate
Y co-ordinate Y co-ordinate N——
Orientation Orientation
Workspace ' Workspace
(@) Subgraph component block (b) Branch component block

Fig. 6.3 Component data blocks
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marked S1 in Fig. 6.§(b). The third element of the block contains
the characters of the user name of the particular component, for
example TRl or TR2. The fourth element is a pointer to a master
component block in the component library. The master block saves
repetition of information common to every component of a particular
type; its contents are discussed in Chapter 3.3.1. Further elements
in the subgraph block store the physical co-ordinates and orientation

of the component and provide working space for the layout algorithm.

The data structure for a branch component should be compatible
with the subgraph block just described. It should also be compatible
with the method of interconnecting nodes and branches described in
the previous section. These two requireménts both use the same area
of a block and so are mutually éxclusive within the same block. The
data for a branch component is therefore divided between two blocks
as shown in Fig. 6.3(b). The upper block is identical to the subgraph
blqck apart from the first two elements. The first element contains
a -marker describing the type of block; the second contains a pointer
to the lower branch block. The lower block describes the interconnections
of the branch into the graph and corresponds to either of the blocks
marked Bl or B2 in Fig. 6.1(b). It also has a pointer back to the

upper branch block.

6.2.3 Branch Segments and Planar Regions

The pseudo planar graph of a circuit is defined by a set of
planar regions. Certain branches of the graph may each be divided
into a number of branch segments by other crossing branches, in the
manner describéd in Chapter 5.4. In developing a data structure to

represent this type of graph, two problems arise. The first is to
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define the correct sequence of branch segments-around the edge of a
region. This sequence describes the order in which branches are
connected so as to avoid branch intersections in the planar graph.
The correct sequence is also necessary at the layout stage so as to
give the correct order of component connections. The second problem
is to define the correct sequence of segments from one end of a
branch to the other. This is essential in preventing the conductors

under a component from intersecting each other.

A pseudo planar graph and its method of representation are
illustrated by Fig. 6.4. In this example two of the branches, N1 to
N2 and N3 to N4, intersect and divide each other into two segments as
éhown in Fig. 6.4(a). The linking between branches and their
associated planar regions is performed by two-element blocks called
tie blocks. The interconnections between branch and tie blocks are-
shown in Fig. 6.4(b). Every branch ségment is defined by a pair of
tie blocks,; one for each region adjacent to the segment. If a branch
ié divided into several segments, it is defined by .a list of tie
block pairs. The order of tie block pairs corresponds to the order
of segments on the branch.- An element in the branch block contains
a pointer té the first tié block. The first element in the tie
block points to the next tie block and so on. The final tie block
"then points back to the branch block so that given a tie block, its

corresponding branch may be found.

All the planar regions of a graph are represented by a list

of region blocks in the data structure. The description of a planar

region is illustrated in Fig. 6.4(c). The first element of a region
block contains a region marker plus a unique name for the region.

The second element points .to the first tie block of the region.
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The tie blocks are connected in a ring together with the region
block. by the second element of each block pointing to the next tie
block. The final block thén points back to the region block. Each
tié block in the ring belongs to a different branch segment such
that the order of blocks corresponds to the order of branch segments
around the planar region. The third element of the region block
contains a pointer to the last tie block of the ring so that the two
end blocks of tﬁé ring may be readily identified. The fourth element

of the region block points to the next block in the list of regions.

The correct ordering of the segments of a branch is maintained
by adopting a convention of interconnection ordering. Referring back
to Fig. 6.4(a)?'it can be seen that all the regions are connected in
an anticlockwise ‘direction. The position of thé region block within
its ring of tie blocks is not important. If N1 is the first node of
branch N1 to N2, it can be seen that the tie b;ocks'on one side of the
branch point towards N1 whilst those on the other side point towards
N2. The tie blocks are therefore arranged on the branch ring so that
the first one of every pair points towards the first node, N1,
whilst the second points away from N1. In addition, the first tie
block in the brénch ring belongs to the branch segment nearest to
the first node. The dotted lines in Fig. 6.4<a) show the order.in
which the tie blocks are-attached to the branch. The convention of
ordering thus enables the branch segments to be kept in the correct

order.

6.3 Computer Language

The board layout program involves a great deal of data

structure processing. One requirement of the program is that it
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should be readily transferable from one computer installation to
another. There is no widely used daté structure processing language
éo it was decided to use FORTRAN IV (10) together with a general
purpose macro processor ML/1 (4), for the layout program. The ICL
4130 described in Chapter 1.4 has a magnetic tape based FORTRAN
system which enables programs to be compiled and run from magnetic
tapes. It also enables precompiled subroutines to be stored on
magnetic tape which is a useful feature when developing a large

program.

The general purpose macro processor is used for the
implementation of the data structure within the FORTRAN language.
Some of its' facilities are described in Appendix A. Statements
describing operations on the data structure are written as macro
calls. When completed, the ﬁrogram is processed by the macro.
procéssor so that all the user-defined statements, or macro calls,
are réplaced by FORTRAN statements. The program may then be compiled

and run as a normal FORTRAN program.-

An example of the use of the macro processor is described
here. It is assumed that a variable, PTR, contains the index in the
one~-dimensional data array, IRAY, of a subgraph component block.

The fifth and sixth elements of this block contain thé X and Y
co-ordinates of the component. The co-ordinates of the component
may be obtained by using the macro calls:

X = COMPX(PTR)

and Y = COMPY(PTR)

The definitions-of the macro calls describe the replacement text for
the calls so that after processing they are replaced by their

i

equivalent FORTRAN statements, i.e.
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X

IRAY(PTR+4)
and Y IRAY(PTR+5).

The above example could be implemented by the use of a
FORTRAN function statement. The reason for using the macro processor
is that data structure statements al;o need to appear on the left
hand side of an assignment, for example:
COMPX(PTR) = X
This type of statement cannot be implemented by a FORTRAN function,

hence the use of the macro processor.

It is clear that a program written with macro calls is far
easier to understand than its equivalent FORTRAN text. Changing the
order of elements in a block or changing the length of a block during
the development of the program is also facilitated. Only: the macro
definitions need to be altered -as the macro processor will automatically

apply the alterations to the program during processing.
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Chapter 7 Placement and Routing of Board Layout

The algorithms for automatically constructing a board layout
from the topological model of-a circuit are described in this chapter.
A later chapter describes the modifications necessary to allow

graphical interactioh with the layout program.

7.1 Consideration of Layout Methods

The majority of methods for generating printed wifing board
layouts split the problem into two seﬁarate stages. Component
positions are computed first and the components are fixed at their
appropriate co-ordinates. The conductor routing stage then becomes
a problem of finding paths to connect together sets of fixed-position
pins in the required order. This-approach conveniently allows one’
to divide thé layout algorithms into two leéser-independent problems.:
The main disadvantage is that components are placed with little or
no regard to the subsequent routing of conductors. If the components
could later be repositioned in congested areas of the board, some
further conductors might be routed where there.was otherwise
insufficient space between components. A further disadvantégevis

that considerable computing time may be wasted in searching for

conductor paths that are topologically impossible to route.

The advantage of constructing a topological model initially
is that the relative positions of all components and éonductors are
known before layout commences. This means that components can
always be placed so as' to allow sufficient clearance for intervening
conductors. In addition, conductor routes can be constructed in
steps from one component pin to the next rather than having to

search for a path over a large area of the board.
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7.1.1 Objectives of Board Layout Method

During the generation of a board layout, a number of objectives
have  to be considered. The following objectives are true whether the
layout is dévéloped from a topological model or by any other method:
(a) All the circuit components and conductor paths must be placed

within the available board space. This may present some’
difficulty when a board is densely populated with components.
In -addition to the boardharea required by the components
themselves, further space is required between them for routing
the conductors.

(b) Every conductor should be of minimum-length. For high frequency
circuits this reduces the effects of stray capacitance upon the
performance of. the circuits. For all layouts, minimum length
conductors reduce the amount of board space required for routing
and enable more. compact' layouts to be generated.

(c) The spacing betwéen adjacenf componénts and betwéen'adjacent
conductors must bé greater than certain-specifi;d minimum-
values, Clearances between adjacent components are necessary
in order té allow for such things as tolerances in component
positioning, insulation between the components and-heat
dissipation of some components:. A minimum value of spacing
between the centre lines of parallel conductors must be'.
specified to allow for the width of conductors, insulation
space between conductors and manufacturing tolerances in the
production of printed wiring boards. |

(d) As well as the essential conditions described above, there
are often a number of constraints which are peculiar to each

particular layout. For example, the adjustment screw of a
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potentiometer should face towards. the edge of the board, or the
input and output contiections of a high gain amplifier should be
kept apart so as to peduce the effects of inductive and

capacitive coupling.

7.1.2 Force-Field Method of Layout Construction

A method of board layout studied initially for this project
made use of a mechanical forge analogue similar to the ACCEL program
described in Chapter 2. Using the topological model of a circuit,
components and conductors were initially placed so that no conductor
paths intersected. The object was then to alter the placements so
as to give a compact layout whilst preserving planarity. Each
conductor was considered to exert a force, proportional to its

/
length, upon its two attached components. The purpose of this
force was to bring closely connected components together and reduce
conductor lengths. Each component exerted a force of repulsion,

inversely proportional to distance, on all adjacent components.

The force was used to prevent adjacent components from over-lapping.

The conductors were each divided into a number of segments.
Forces of attraction and repulsion were similarly exerted between
adjacent conductor segments so as to reduce the length of each
conductor, without allowing it to cross any other conductor. The
algorithm proceeded in an iterative manner, moving every component
and' conductor segment a distance proportional to the net force upon
it. The algorithm terminated when all the componenté'and conductors

reached stable positions within the available board space.

A program was written to make a simplified study of the

problem. The main drawback encountered was that each conductor had
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to be divided into many segments to ensure that no parts of adjacent
conductors crossed. The problems associated with the storage of
large amounts of data; together with the time required-to perform
many iterations of the program, made this approach unsuitable for
large board layouts. The results of the program were also critically
dependent on the relative values of attraction and repulsion forces.
An inductive method of constructing board layouts was therefore

developed, described in the following sections.

7.2 Principle of Layout Algorithm

The method used to construct the board layout of a circuit
from its topological ﬁodel builds up the layout in a logical series
of steps from a known starting point. The type of board considered
is a rectangular board with an edge connector along one side. A
list of all the components connected to the edge connector can be
obtained from the topological model. These components may be placed
in a strip across the width of the board, parallel and adjacent to
the edge connector. The topological model then gives a list of the
components connected to those already on the board. The layout
may thus be constructed by placing components in a series of
parallel strips across the board, working from the edge connector

to the opposite side of the board.

At any time during the layout construction, a boundary line
may be-drawn across the board separatiﬂg the part of the board
occupied by components from the unoccupied part. This is iilustrated
by the dotted line shown in Fig. 7.1. The boundary of the uneccupied
part of the board is thus divided into a number of slots. The lower
edge of each slot is coincident with the upper side of a placed

component. The two sides of each slot are  coincident with either the
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edge connector

Fig. 7.1 Board layout slots

sides-of components or the sides of the board. The width of the two

slots shown in Fig. 7.1 are indicated by the measurements A and B.

'The board layout is constructed by placing components into
successive slots of the unoccupied part-of the board. This is in
preference to using parallel strips across the whole width of the
board due to the irregular shape of the placed component boundary.
The initial slot of the layout is coincident with the lower edge
and two sides of the board. Thereafter, the next slot chosen for
‘component placement is the lowést slot (ﬁhe one nearest to the
edge connector), working from left to right across the board. As
compoﬁents are placed in a slot, the boundary of the unoccupied

part of the board is updated, thus creating new slots.

The processing of a slot is performed in two stages. The
first stage consists of node development and sorting. Around the

edges of the slot are conductors, or circuit nodes, from the
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occupied paft of the board. Reference is made back to the topological
modei to obtain a list of all the components and conductors copnected
to these nodes. The list is then sorted to determiﬁe the optimum

set of components to place in the slot. The second stage of slot
development consists of component placement and conductor routing.

The physical co-ordinates and orientations of the components are
calculated. The conductors are then routed from the edges of the

slots to the appropriate component pins.

7.2.1 Aims of Layout Algorithm

When placing components into a slot, the main objective is
to pack in as many components and conductors as possible. Beforé
constructioﬁ of the layout commences, there is little indication of
the final component and conductor density om the board. Slots are
therefbre closely packed to ensure that the layout will fit anto
the board. If the board is not densely populated ;ith components
there will be a large strip of unoccupied space across its upper
width when thé layout is completed. The ' component and conductor

co-ordinates may readily be multiplied by a scale factor in the Y

direction so as to occupy the whole board if desired.

The method of constfuctiﬁg the board layout is also aimed

at producing minimal conductor lengths. In deciding the contents of
a slot, the components chosen are those most closely connected to the
existing part of the layout. The interconnecting conductors between
components thus tend to be of minimal length. The correct clearances
betweeﬁ adjacent components and conductors are also to be maintained
by the layout .algorithm. They may readily be computed to their
correcf values because the.la§9%t is constructed in a series of

g
‘successive slots. Special constraints such as those mentioned in
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section 7.1.1(d) are difficult to program for a general purpose
layout algorithm. They are therefore dealt with by the interactive

methods described in Chapter 8.

7.3 Slot Development and Sorting

This séction describes thé processing required in order to
choose the optimum set of compoﬁents and cgnductors to'be placed in
one slot during the construction of a layout. The slot is initially
assumed to be empty and along its lower edge are the ends of a
number of uncompleted conductor paths. These paths come from

ccmponent pins or parts of conductor paths which have already been

laced on the board atZlower level. An example is shown in Fig. 7.2,
P p g

slot —>
boundary

- — =0

Fig. 7.2 Development of slot nodes

the component Cl has already been placed in the layout. The three
conductor paths from a lower level are initially routed up to the

points marked A, B and C on the lower slot boundary.
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The conductor paths in the layaut may be of two different
types and it is appropriate here to describe the difference between
them. The fipst type of path is the physical representation of a
circuit node in thé topological model; It directly connects together
two or more component pins without crossing under any other components.
Two examples are shown by conductor paths A and C in Fig. 7.2. The
second type of path corresponds to a branch segment in the topological
model. The branch‘concerned may be either a subgraph link branch or
a conductor branch. The path is one which, when routed further in the
layout, crosses under a component. An example is given by path B in
Fig. 7.2. These two types of conductor paths are termed nodes and

conductors respectively.

The data for processing the contents of a slot is stored in
blocks, similar to those described in Chapter 6.1. - The blocks are

organised into two lists called the base list and the working list.

The base list contains fnformation on all of the uncompleted
conductor paths at the lower edge of the slot. The working list is
used for storing and processing information on -all of the possible

contents of the slot.

There are four different types of block which may be used in

the base and working lists. These are:

(a) Branch block which holds data related to a branch component.

(b) Subgraph block which holds data related to a subgraph component.

(c) Node block which relates a conductor path to all or part of a
circuit node.

(d) Conductor block which relates a conductor path, to a branch

segment in the topological model. \

Each block contains a pointer back to an appropriate part of the
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topological model so as to identify the physical layout with the

topological model.

7.3.1 Development of Nodes and Conductors

The initial step in finding the optimum contents of a slot
involves the development of all the nodes and conductors along the
lower edge of the slot. These elements are stored in the correct
physical order in the base list of the slot. The development of a
node or conduc%or is defined as creating a’'list of all the possible
components and conductors which may be connected to the element.

This list then forms part of the working list of the slot. Examples
of development are shown in Fig. 7.2. Node A develops into components
C2 and C3, conductor B develops into a further conductor and node C

develops into component Ch.

~—

" One difficulty in describing a node in the physical layout
is that several parts of the same node may appear in different

parts of the layout. A part of a node is defined as a conductor

path connected to one or more components of a given circuit node.
.An example of two parts of a node in the same slot is given in

Fig. 7.3. The topological model of the node and its connected
components are shown in Fig. 7.3(a) whilst a possible physical
representation is shown in Fig. 7.3(b). It is essential to uniquely
identify each part of a node so that the parts may be developed into

the correct sequence of components and conductors.

Each part of a node is uniquely identified by pointers to
three different elements in the topological model. These are the

corresponding circuit node and tiwe bound branches which are connected

to it. The order of branches around a node is defined in the
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topological model so there is a corresponding order of components
and conductors in the physical layout. The two bound branchés are
defined as the first and the last branches connected to that part of
the node which is already placed in the layoﬁt. The remaining
branches connected to the node part, if any, are thus defined as
those which lie between the two bound branches. Two examples of
parts of nodes are shown in Fig. 7.3(b). The bound branches of

part A are both the componeﬁt Cl. The first and second bound

branches of part B are the components C5 and Ch respectively.

The development of a base node, or node in the base list
of thé slot, proceeds in a clockwise order of branches around the
node. The first branch to be developed is the one following the
first bound branch. If the developed branch is a component branch,
the corresponding block in fhe tépological model is checked. If
theAcomponent has not yét_been placed in the layout a branch block
is added to the end of the working list. Otherwise, a node block

is added to the working list. This represents a part of the node
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which will be routed as a conductor path until it connects with the
alreédy - placed component. An example of node development is
i;lustrated by node A in Fig. 7.3(b). Foilowing the first bound:
branch Cl, the components C2 and C3 are developed. The remaining
components, éu and C5, have already been placed so node C is added

to the working list.

If the developed branch is a link branch, the topological
model is checked to see whether it crosses under any other branch.
If there are branch crossings, a conductor block is added to the
working list Qith a pointer to the appropriate segmeﬁ; of the link
branch. If there are no crossings the link branch must be connected
directly té its subgraph component. The corréspoﬁding component

f .
block is therefore checked as before to decide whether to add a

subgraph block or a node block to the working list.

-

The developed branch may be a conductor branch (produced by
splitting a node during the construction of the pseudo planar graph).
In this-case there will always be a branch crossing so a conductor
block isadded to the end.of-the working list. The developed branch
may also be a pseudo branch belonging to the edge connector. This
means that the base node is‘part of an edge connector node. 1In
this case a nodé block is added to the working list. The node will
'bé foutéd as a conductor pafh until ig is joiﬁed to another part of
the same node which is already connected to the edge pin. The
dévélbpmén%.of fhe base node is confinﬁéd'wifh each branch in turn, '

in a clockwise order around the node, until the second bound branch

«

is -encountered.

A conductor block in the base list may be developed in a
similar manner to a base node. Each conductor block contains a

pointer to a tie block in the topological model. The conductor path
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in the layout may thus be identified with a particular branch segment
and the direction in which the branch is being traversed. To develop
a conductor block, the topological model is checked to find the
element which follows the current branch segment. This element may
" be either a branch crossing or a node. In the case of a branch
crossing, a duplicate conductor block is added to the end of the
working list. The block is given an additional pointer to the
component which it 1is to cross. This indicates the destination of

the conductor and is used in a later part of the algorithm.

When the current cpnductor segment is followed by a node
there are two possible results. If the node belongs to a subgraph,
the conductor block may be developéd into a subgraph block, assuming
that the component has not already been placed in the la&out.. If the
node is a circuit node, the conductor block in the base list is
replaéed by a node block which has the conductor as its two bound

branches. The node is then developed as a normal base node.

Each node or conductor block of the base list is developed
in turn. The working list then contains all the possible components,
nodes and conductors that could be pléced in the slot. These elements
are also in the correct phyéical order within the list. It is
possible that a component may appear more than once in the working
list, as shown in Fig. 7.3(b). These multiple instances of components

are removed in a later stage of the processing.

7.3.2 Orientation and Spacing of Components

All the components in a layout have the possibility of four
different orientations. These correspond to each side of the

component rectangle lying parallel to and facing the lower edge of
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the slot. Before the spacing of components in a slot can be
calculated, the component orientations must be determined. In
addition it is necessary to know the number of conductors crossing
under each component. This enables sufficient spacing to be
allowed between adjacent components for these conductors to be

routed to a higher level if necessary.

Every component in the working list is developed from a
base node or conductor. The component pin to which the base node
connects is termed the source pin. Each component is orientated so
that its source pin is on the lower edge of the component, nearest to
the base node. This reduces the length of conductors from the lower
edge of the slot. As an example, the orientation of an integrated

circuit component is illustrated by Fig. 7.4. The preferred
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Fig. 7.4 Orientatig? of a subgraph component

°

orientation is shown in Fig. 7.4{a) whilst Fig. 7.4(b) shows the

extra conductor routing required if the cémponent source pin is not
orientated towards the base node. If the source pin lies on é

corner of the component there is a choice of two possible orientations.
In such a case, the component'is orientated towards an adjacent

conductor which crosses under it, if one exists.
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When the layout algorithm is operating automatically, each
subgraph remains fixed in its orientation once this has been
determined. This.avoids the necessity of having to provide extra
conductor routing such as that shown in Fig. 7.4(b). Each branch
component is initially orientated with a shorter edge parallel with
the bottom of the slot. This enables the maximum number of components
to be placed in fhe slot. If there is space to spare in the slot,
each branch component may later be re-orientated sé that a longer

edge is parallel with the bottom of the slot.

When calculating the spacing required for conductors to pass
between adjacent components, it is assumed that conductors pass
under components only at their crossing points. For example, components

are spaced as shown in Fig. 7.5(a) as opposed to Fig. 7.5(b). This

(a)

(b)
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Fig. 7.5 Spacing of components

results in a slightly greater spacing than is necessary but avoids
having to compute the positionsof all the pins of the two adjacent

components.

An algorithm has been &eveloped to determine the orientation
of a component and the spacing required for conductors which cross
under, or are connected to it. The first operation of the algorithm

is to identify the source pin of the component. A branch component
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may then be orientated with its source pin lowermost in the slot.

For a subgraph component it is necessary to know on which of the fouf
sides the source pin lies. This is determined by examining four
pointers which are stored in the master component block. These
pointers indicate the four pins which are nearest to the corners of

component. Given the source pin therefore, the corresponding side of

the component may be determined and hence the appropriate orientation.

The spaciné required for conductors around a branch component
is calculated by counting the number cf conductors which cross under
it. This gives the left and right hand spacing required in the X
direétion. No spacing is necéssary in the Y direction below the
component. Neither is spacing required above as the top of the
component will form the lower edge of a later slot. An example of

conductor spacing is shown in Fig. 7.6.
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Fig. 7.6 Branch component conductor spacing

The spaciﬁg reéuired around a subgraph component is computed
in several stages. Fifstly, the pin at the top left hand corner of
the component is obtained. The number of nodes and pseudo branch
crossings is then counted from this pin down to the pin at the
bottom ieft hand corner. From the corner, the nhmber of nodes and
érossings is counted as-far as the source pin. The second figure

givés the left hand Y spacing required and the sum of the two

,
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figures.giveé the left hand X spacing. Continuing the count to the
bottom then the top right hand corner pins gives the corresponding
values for the right hand side of the component. An example of |

conductor spacing-is shown in Fig. 7.7.
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‘Fig. 7.7 Subgraph component conductor spacing

7.3.3 Counting of Slot Contents

Having developed the.base list of a slot, fhe working list
contains all possible components and conductors that could be placed
in the slot. The next stage is the calculation of the total width-
of all these elements so that it.may'be compared with the actual
width of the slot. In addition, some initial sorting of the working
list is pefformed. This sorting is intended to remove multiple

instances of components and unnecessary conductor paths.

The slot space occupied by a component is assumed to include
space for conductors crossing under or connected to the component as
weli as the width of the component itself. In many cases, the
conductors which are to cross under the compqnent have already been
develéped from a lower level so that the working list contains their
conductor blocks adjacent to the component block. These conductors

are termed adjacent crossing conductors. The sum of block widths in
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the working list would thus effectively include each of these
conductor widths twice in the total. To avoid this, the destinations
of conductors on either side of a component are checked before adding
the component width to the total. Any adjacent crossing conductors
are counted and each is given a special marker. The left and right
hand spacings of the component are then reduced by the appropriate.

number of conductor widths.

The widths of all components, their left and right hénd '
spacings, and all conductors are added together to give the total
width of all the slot elements. At the same timeva check is made for
multiple iﬁstances of each component in the working list. When more
than one instance of a component is found, the one with the greatest-
number of adjacent crossings is retained in order to minimise
conductor lenéths, The remaining instances are deleted from the
working list and the total width of the slot contents is reduced

accordingly.

‘When deleting a component from the working list it must be
replaced by a node block. This preserves the connection from the
base node to a further instance of the component. The bound branches
of the replacement node are obtained by reference to the base node
and any adjacent components connected to the same base node. If
the working list already contains an instance of the node, adjacent

i : .

to the component to be deleted, the bounds of the existing node

block are merely updated.

It frequently occurs that a base node develops into several
conductors. If these conductors do not cross under.any components in
the slot they are routed up towards a higher level slot. This would

result in several parallel paths from one base node. To prevent
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this, all conductors in the working list which'have been developed
from a base néde'and which have not been marked as crossing under
adjacent components are:replaced by their corresponding base node.
Whenever two adjacent instances of a node then occur in the working
list, the two node blocks are combined into one. The bound bfanches

; .

of the new node block are updated and the total width of slot contents

is decremented by one conductor width.

The working list now contains one instance only of each
component. All unnecessary parallel conductorlpaths have been

removed and the total width of the potential slot contents is known.

7.3.4 Sorting of Slot Contents

The total width of the potential slot coﬁtents is compared
with the actuai width of the slot. There are three possible results,
each with its corresponding course of action: ‘

(a) The width of potential slot contents is greater than the slot
width. Some' components must therefore be removed from the
working list.

(b) The slot is exactly filled by its contents. The algorithm may
then proceed to the placement and routing stage.

(¢) The slot width is greater than the pptential contents. The:

spare space may be filled by réorientating some of the components.

A sorfing algorithm has been developed to decrease the contents
of the working‘list.‘ The basic strategy is to kéep the larger
components in the list and to delete the smaller ones. - This\is
baéed on ‘the assumption that the smaller components may be more

easily placed in later slots, especially if the later slots have less

width than the current slot.:
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The first step is to take the value of the actual slot width
and subtract from it the width of all nodes and conductors in the
working list. fhis gives a figure for the maximum possible space
availabl; for components. In actual fact the available space is less
than this because components are feplaced by nodes when they are
deleted. The insertion of these extra nodes into the working list
gives rise to some difficulty in calculating the exact space
available in the slot. When several components are developed from
one base node there are many different combinations in which
components, and nodes from deleted components, may occur. Fig. 7.8
shows just one sequence by which three compbnents may be successively

deleted from the working list.

H Y LTA_J £ ]

(a) - (b) {c) (d)

Fig. 7.8 Deletion of components from the working list

During the sorting procedure companents may be marked to
indicate that they are to be placed in the slot. The working list
is searched for the largest component which has not yet been so
marked. If any comﬁonent is found that has gfeater width than the
available space it is immediately deleted. Having found the largest
component it is temporarily marked so as to keep it in the working
list. The total width of the slot contents is then counted,

replacing all unmarked components by the width of their base node.
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. If the total width is greater than the actual slot width, the component
is deleted frqm the list. The total width éf the slot contents has

to be counted each time a component is plaéed due to the difficulties
mentioned above. The search procedure is r?peated until all thé

components have been either marked for placement in the slot or

deleted from it.

A second sof£ing algorithm has been developed to increase
the‘width of the slot contents. ‘Tﬁe strategy in this case is to
reorientate -branch components so that their longer sides are
parallel with the bottom of the slot. This increases the space
utilisation in the current slot and leaves a greater area of free
space on the board for later slots. Preference is given first to
components with adjacent crossing conductors. By reorientating a
compohent towards its crossing conductors; the slot packing density
can be increased and conductor lengths reduced. Second preference
is given to components which have the gregtest increase in space

required when re-orientated.

- The algorithm starts by calculating the extralwidth that
each branch component would require if it were to be re-orientated.
The calculated value is stored in the corresponding component block
of the wdrking list. The list is then searched to find the branch
component with the greatest number of adjacent crossing conductors.
A component found at any stage of the search whose. increase in
width due_toAfe;orientation is greater than the spére'space évailable
in' the slot ié given~an appropriate marker. It is then ignored in
all further searches. Having completed the search, the reSultaht-
component is ré—orientated towards its crossingAconductorS and- the

t . .
spare slot space is reduced accordingly. The component is then
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marked so as to be ignored in further .searches. The procédures_ o,
is repeated until either the slot is completely filled or there are

no further branches with adjacent crossing conductors.

The algorithm continges if there is still épace'to spare in
the slot. The remaining unmarked branch components in the working
list are examined to find the one which will give the greatest
increase in width when re-orientated. .The component thus found is
re—orientated and the spare slot space is decreased accordingly.
The search procedure is then 'repeated until either all the branch
qomponeﬁts héve been re-orientated or the slot‘sﬁacetis completely

filled.

At this stage the working list is completely processed with
reference fo'its contents; The components in the list are orientated
for the most efficient use of the slot space-and all the components
and conductors in the list may-be placed within the actual &idth‘of

the slot.

7.4 Placement and Routing

. The components and conductors to be placed in the slot are:
.héld in the working list in the correct physical order. They have
resultéd from the develépment and sorting procedﬁres described in
the previous section. The next stage of the layout algorithm
involves the assignmeht of physical co-ordinates to the contents of
the slo?., Conductors may then be routed from the base nodes to the

appropriatefcomponenf'pins and to the end of conductors held in the

~working lisf°
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7.4.1 Component and Conductor Placement

The conductor blocks in the wérking list'repfesent conductors
which are to be routed from a base node at the bottom of the slot,
through the slot and up to a later slot at a higher level. Each
conductor end is assigned a physical co-ordinate so that it may be
projected upwards to a higher level without meeting an obstruction.
The conductor ends are therefore assigned co-ordinates in exactly the

same manner as components.

The X co-ordinates are‘aséigned by working across the slot
from left to right. The inifial X co-ordinate is set to the left
hand edgé of the slot. The first component or conductor is then
positioned at this co-ordinate. In the case of a component, due
allowance is made for the space fequiréd by crossing conductors.
The X co-ordinate is then increased by the total width of the
eiement just placed. This enables fhe procedure to be fepeated

with the remaining components and conductors in the slot.

when assigning the Y co-ordinates of thé slot contents,
several pointg must be taken into consideration. The fipst is
illustrated b& the example in Fig. 7.9. 1In roﬁting a conductor
path from a base node to its appropriate conductor.end, it may
have to pass over sevéral other base nodés. The conductor end
must therefore be given sufficient ¥ clearance from the bottom ofg
the slot to-enable all the conductor paths to be routed without ’
intersections.' Similarly, components require clearance from the

bottom of the slot in order to prevent unwanted conductor crossings.

i

It ﬁay be observed from Fig. 7.9 that nodes B, C, D and E
have to be routed around node F. This node is therefore the basic

obstruction to the routing of the other nodes and it causes a
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Fig. 7.9 Placement of components and conductor ends

"wave front'" of conductor corners to the left of itself. Each
corner point is one conductor width to the left and above the
previous corner. This fact is used in calculating the Y

displacement of components and conductors.

To calculate the required Y displacement of a component
or conductor, the right hand X co-ordinate of the element together
with its base node are first obtained. The next base node to the
right is then examined and its co-ordinates obtained. The position
of the '"wave front" caused by this node may thus be calculated.
The procedure is repeated with successive base nodes to the right
until either the co-ordinates of the.'wave front" lie: to the right
of the current component or the end of the base list is reached.
The number of base nodes examined indicates the required number of
conductor-width displacements of the component in the Y direction.
The whole procedure is then repeated on the left hand side of the
current component or conductor. The larger of the two figures gives

the required Y displacement.
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Before placing a component in the slot, a further Y
displacement may be necessary due to crossing conductors along the
lower edge of the component. If the component has both a left and
righf hand Y displacement for crossing conductors, the larger of the
two is taken. This is then added to the Y displacement described
above to give the total displacement of the component. An example

of such component placement is shown in Fig. 7.10. When the total

! ° c3 ,
i ° !

Ci . .

T o c2 N
| ’ |

‘————o0 o
1
.43 J
Fig. 7.10 Placement of components

displacement of each component in the slot has been calculated, it

is assigned a Y co-ordinate and added to a list of placed components.
!

During the placement of elements in a slot, it frequently
occurs that the last few elements are conductors followed by spare
space at the right hand side of the slot. Conductor ends that are
placed to the right of their respective base nodes have to be
routed around components as shown in Fig. 7.11 (a). Conductor
ends that' are placed to the left of their respective base nodes
have no such obstacles to avoid. In addition, if these conductors
have to be routed to the right in a later slot they will follow an

un-necessarily long path as shown in Fig. 7.11 (b).

When the components and conductor ends have been assigned

co~ordinates, the working list is scanned from the right hand side.
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Fig. 7.11 Placement of conductors at RH. side of slot

If.a conductor end is found which lies to the left of its base node,
it is repositioned to the same co-ordinates as its base node. This
results in shorter conductor paths as shown in Fig. 7.11 (e¢). The
scanning of the Working list is continued until a éomponent block is
encountered, or a conductor which is routed to the right from its

base node.

7.4.é _Placement of Crossing Conductors

At the stage now reached in the processing, the components
have been placed in the slot. The conductors which cross under or
are connected to these components may therefore be placed in the
layout. The routing procedure is Performed in two stages. Firstly,
a list of all the nodes and crossing conductors around a given
component is constructed by refefring to the topological model.
The actual crossing conductors are then routed. In the second stage,
the nodes and conductors ar; routed out around the component and

their list is connected into the working list.

To process a subgraph component, the first pseudo branch of
the component is obtained. By referring to the topological model,

the number of crossings of this branch, if any, may be determined.
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By further reference to the component position and its master block
in the component library, the co-ordinates of the two end points of
the pseudo branch may be calculated. The co-ordinates of the required
number of crossing points, equally spaced along the branch, may thus
be calculated. At the same time, a list of blocks is constructed,
contaiﬁing a node block for the first node of the pseudo branch and

a conductor block for each of the crossing conductors.

The procedure is repeated for each pseudo branch in turn,
adding node or conductor blocks to the end of the list as they are
encountered. The two ends of the list are then joined to form a
ring, for reasons explained below. The ring thus contains all the
nodesiand crossing points, with co-ordinates, in the same order as
wéuld be obtained by traversing the perimeter of the bomponent
rectangle. An example of component crossiﬁg points is shown in

Fig. 7.12. The pins of the component are labelled A to F and the

oC D®
Xc1 R*f
B E

Fig., 7.12 Subgraph component with crossing conductors

crossing points are labelled P to T. The order of blocks in the

ring would thus be : APBQCDRESTTF.

The next step is to route the crossing paths under the
~component, for example paths Q to R, B to S and P to T in Fig. 7.12.
Each block in the ring is examined in turn. When a conductor block

\
~
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is encountered the topological model is checked to find the node or
crossing conductor to which it is connected. The riﬁg is then
_searched to find the corresponding node or conductor block. The
co-ordinates of the two points may thus be obtained and a conductor
path routed betwéen them. The procedure is repeated for the
remaining condﬁctor blocks in the ring so that all the crossing

paths are routed under the component:u

Branch éomponents are processed in a similar manner. A
ring of nodes and crossing conductors is constructed as before.
In this case the conductor blocks may be matched in pairs, corresponding
to a crossing conductor appearing on twb sides of the compoﬁenf.
The'éo-ordinates of the two blocks in each'pair are identical so no

conductor routing is required under the component.

The conductor crossing procedure is repeated for every
component in the working list so that each has a ring of node aﬁd
conductor blocks associated with itself. The next stage of
processing involves routing the node and conductor. paths around
the component as part of the layout procedure. Also the ring of -
blocks associated with each component has to be connected iﬁto

the working list.

The conductor routing algorithm described: later is based
‘partly on the assumption that conductors may always be projected
up to a highef Y level without encountering any obstruction. When
‘a component is placea it is neéessary to route 'its connected nodes
-and crossing conductors so that this assumption is true. An example
of routiﬁg is shown in Fig. 7.13. Nodes and conductors on the sides

of the component are' routed outwards to the left or right. Those



-101-

-
[ X BRI

g ------
5 ]

!

L

,
.

b—1 o T 9 ° o—4—2b
Fig. 7.13 Routing of component nodes

A

along the bottom edge of the component are routed downwards then

outwards as shown in the diagram.

A further complication occurs when the component has

adjacent crossing conductors or nodes as illustrated in Fig. 7.14.
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Fig. 7.14 Routing of adjacent component nodes

Nodes 6n the lowef edge of the component do not need to be
projected outwards. Conductor paths are routed up téwards thém
from the base level at a later stage of the procedure. Nodes on
the side edges of the component however, have to be projected

outwards to different X co-ordinates as shown. This prevents
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intersections when the conductor paths are routed up from the base

level.

The procedure for routing the nodes and conductors outwarﬁs
from a.component starts by searching the ring of blocks for the one
cbrresponéing to the component source ﬁin. The blocks in theAring
to the left of the source pin are then examined in turn. Any
adjacent connected nodes on the lower edge of the component are
passed ovef. The remaining nodes on the lower edge, if any, are
routed downwards by the required amount so that they may later be
routed éideways without intersection. The reason for forming the
blocks into a ring is that the block corresponding to the source
pin may occur at any poipt in the list of nodes and crossing
conductors. The routing procedure has to examine blocks both to the
left and to the right of the source pin. It is thus more easily

programmed if the blocks are connected into a ring instead of a

straight list.

The nodes which have just been routed downwards, together.
with those on the left handAside of the component, are examined in
turn.. Each node is routed out to the left of the component so that
its X co-ordinate differs by one conductor width from that of the
previous node. The difference is negative if the node is to be
connected to one in the base list and positive if the node is to be
routed up to a later slot level. As each node is routed the
co-ordinate of its end point is updated. The whole progedure is

then repeated for nodes and conductors to the right of the source pin.

At this point, the blocks representing adjacent conductors
and nodes of a component have been duplicated by the various layout

algorithms. One instance of each block appears in the working list,
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&eveloped from a block in the base list. The other instance appears
in.the ring of blocks associated with the component. To remove one
instance of each block from the data structure, the co-ordinates of
the blocks in the working list are first re-assigned to the co-
ordinates of the corresponding blocké in the component ring. The

duplicate' blocks are then deleted from the component ring.

For each component in the slot, the ring of blocks is split
at the source pin block so that a straight list is formed. This
list is then‘inserted into the working list adjacent to the component
block. The working list thus contains all the nodes and crossing.
conductoré around eéch component in addition to the elements which
it previously contained. Furthermore, the order of these nodes and
conductors still corresponds to the order of those encoﬁntered in

scénning across the slot from left to right.-

{
b

7.4.3 Prpce;sing of Base List Elements

The working list of tﬁe‘slo% includes at this stage a number
of node and conductor blocks which have been developed from the base:
list. . It -also includes a source node block for each component in -
the slot. The conductor routing procedure routes paths from each
element in the base list ®o one or more of these elements in the
working lisfl Before the roufing can proceed howevgr, the

appropriate blocks to which each basé element is to be connected %o

i
i

must be identified. In addition, pairsﬂof elements in the base
- list may correspond..to two parts of the same node or conductor.

These parts must be identified so that they may be~conqecte& together.

Node and conductor blocks in the working list which are

connected to a base node are termed the target blocks of the base
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below.

The process of comparing each base biock with the next is
repeated. If however, a marked block is encountered when looking
for the_next block, it is passed over and the following block is
examined. Referring to Fig. 7.15 again as an example; it is
assumed .that blocks C and D ha&e‘already been marked. When the
next block following B is searched for, blocks C and D will be
passed over so that blocks B and E are compared and marked as part
of the same node. . During the following search, blocks C, D ana.E
will be passed over when finding‘tﬁe nextlblock aftef B.  Thus |
blbck F willlbe identified as another part of the same node. The
comparison procedure is confinually repeated, identifying another
pair of connected blécks at'each'paSS‘through'the base list. It_is
completed when a complete search is made through the base list

without finding another connected pair of blocks.

Thé pro;essing of a connectédbpair of base blocks involves

" the checking and modification-of several elements of data. Consider
first the connection of two parts of a conductor,lsuch aé blocks C
and D shown in Fig. 7.15. Each conductor block in the base list has
a corresponding block in the working list to which a path will be
routed by the conductor routing algorithm. The two conductor blocks
in the wofking list are therefore modified so that their correspond-
ing basg‘blocks will be connected. The co-ordinates of both the
blocks in the'working'list are re-assigned to the .co-ordinates of

" the left hand base block. The conductor routing algorithmé will

thus construct-a path from the right to the .left hand base block.:

The ‘connec¢tion of two parts of a node is more complex as-

not all the parts of the node may yet exist in the layout. The
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co-ordinates of the two working list blocks are updated in the same
manner as the conductor blocks described above. In addition, the
bound branches of the two working list node blocks are checked.
The left hand bound branch of the left hand part of the node is
examined first. The topological model is referenced to find the
next branch on the node in a clockwise direction. If this is the
same as the right hand bound branch of the right hand working
block the node is complete. If the node is not yet complete the
bound branches of the remaining part are stored in the left hand

working block.

An example of the connection of two parts of a base node is

shown in Fig. 7.16. Part (a) shows the topological representation
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Fig. 7.16 Connection of two parts of a node

of the node and its attached components whilst part (b) shows the
parfial layout of the node and components. It is assumed that the
base blocks A and B have been recognised as two parts of the same |
node. The lef% hand bound branch of block A is then found to be

component Cl. Referring to the topological model, the next branch
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in a clockwise direction on the node is component C5. Tﬁe'component
does not correspoﬁd to the right hand bound branch of block B, which
is component C4. This indicates that a further connection has to be
made to the.node, in this case component C5. When the connections to
a node- are thus not complete, the base blgcks are specially marked.
This prevents any further connections from being nested around these

base blocks.

7.4.4 Routing of Conductors

The blocks in the Base list‘have now been prepared fér the
actual routing of cénductors. Each base block has a list of the
working blocks to which it is to be connected and eaéh working
block has been assigned its appropriate co-ordinates. The basic
principle of the conductor routing algorithm is that each conductor
is routed towards its target X co-ordinate and then up to its
target Y co-ordinate. The conductors are constructed by operating-in
strips parallel to the bottom edge of the slot and one conductor
width wide. If a conductor meets an obstacle during routing, such.
as another conductor, it is projected up to the'negt strip level and
the routing is attempted again at the next level. |

An example of the method of conductor routing is shown in
Fig. 7.17. It can be seen that the resultant conductor pathé'are
orthogonally routed, i.e. all parts of each path'are parallel witﬁ
-either axis-of the rectangular board perimeter. - The paths so
produced-are not generally the -shortest éossible between a base-
block" and its targets.: This method of routing hoﬁever, hgs two
major advantages in .the construction of conductor paths. The first -

is that the tedious calculation of clearances between adjacent

T—
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Fig. 7.17 Routing of conductors

conductors at different angles is avoided. The second advantage is
that the components are already placed to allow sufficient clearance
for‘orthogonally routed conductors. No checking of component

positions is therefore necessary during routing.

During the routing of conductors, it is necessary to know
the current end point of each conductor path so that intersections
may be avoided. A base node may be routed both to the left and to
the right from its initial position as illustrated by node A in
Fig. 7.17. To store the current conductor end points therefore,
each base node block has two base limit elements. These store the
X co-ordinates of the end points on either side of the base node
during routing. Initially the two base limits are set to the X

co~-ordinate of the base node itself.

When a conductor path has been successfully routed to a
target block in. the working list; there are two possible ways of
dealing with the block. If it represents a specific point such as
the source pin of a component, the routing to that point is complete.

The block is therefore deleted from the working list. The other



-109-
possibility is that the target block represents the end point of a
node or conductor which is later to be routed up to a higher slot.

2

In this case the block is retained in the working list so that it

7

may be included in the base list of the later slot.

The conductor réuting a;gorithm starts by routing up to the
lower edge of the slot any base nodes which are beloﬁ thié level.
The first level of routing is then carried out, taking successive
base nodes across thé slot from left to right. The node té be
routed next is selected from the base lisf. >Its list of targets is
searched to fihd the one nearest to ‘the base node and on its left
hand side. The base block to the left of the current. block, if any,
is then examined to find its right hand base limit. This is compared

with the chosen target X co-ordinate to check for possible obstruction

of the conductor path.

If the path to-the target Slock is not obstructed;‘a
conductor is routed first horizontélly then vertically from the base
node to the target. This is illustrated by the components to the
left bf:ﬁode‘A in Fig. 7.17. Thé térget block is removed from the
list of base‘noae targets and‘is also deleted from the working list
if necessary. The left hand base limit of the base node is . then
updated to the X co-ordinate of the tafget. A différeﬁt procedure
is employed if the. path to~thé target block‘is obstructed. A
horizontal conductor is routed from the base n§de to within one
.-conductor width of the obstruction. It is then routed up one
conductor Qidth to the next strip level and the base limit is
updated to the X co-ordinate of the current conductor end. The

routing of thd path is continued later at the next sivipllewal. -
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Any further target blocks to the left of the base node are
routed in'turn, assuming there "are no ébstructions. Each new
conductor path starts at the current co-ordinate of the left hand

base limit as shown in Fig. 7.18. The routing of conductor paths to

o
b

Target
e

X

Fig. 7.18 Conductor routing to targets

successive targets continues until either an obstruction is
encountered or there are no further targets to the left of the
base nod;. The routing procedure is then performed in a similar
manner for targets on the right hand side of the base node. The
same routing process is then carried out for each base node in

turn across the slot.

At the end of one pass across the slot, some of the base
nodes may have an empty target list. All the targets have been
successfully connected to each of these nodes so they are deleted
from the base list. The remaining base nodes have all been
obstructed at some stage of their conductor path routing. Base
nodes which have been routed in one direction only, such as nodes
B, C and D in Fig. 7.17, have béth their base limits set to the X
co-ordinate of the current conductor end. The conductor routing
level is then incremented by one conductor width and the routing
procedure is repeated with each of the remaining base nodes in turnm.

N

The whole procedure is repeated at successive routing levels until

no blocks remain in the base list.
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The  processing of one slot is completed at this stage.
The components and-their crossing condgctors have been placed in
position and all conductors within the slot have been routed. The
slot base list is empty and the working list contains the component
blocks and any remaining nodes or conductors which are to beurouted
up to a later slot. The processing of the remainder of the working

list is described in the next section.

7.5 Overall Layout Algorithm

This section describes the algorithm for the overall  control
of the layout process. It deals basically with the organisation and:
selection of successive slots, each of which is processed in the

manner previously described.

7.5.1 Selection of Slots.

The width and co-ordinates of successive slots are determined
by the cbmponents which have already been placed on the board. This
principle is described earlier in section 7.2. To facilitate the
computation of theée slot dimensions and' co-ordinates,.a list of
components placéd on- the board at the current working level is
constructed. . ‘The order of components in the list corresponds to
their order across the board. The list also contains the X
co-ordinates of the two sides and Y co-ordinate of the top edge of
each component. An example of component positions is shown in
Fig. 7.19. Components Cl to C7 are placed components at the
current working level from ﬁhich the position of the current slot
has been calcuiated. Components C8 to ClO are part of the current

slot and will be added to the placed component list at a later stage.
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Fig. 7.19 Placed component list and selection of slots

The co-ordinates of the next slot to be processed are
found by'ekamining the placed component list. The list is first
searched to find the component with the lowest upper edge. This

t

determines the bottom edge, or working level, of the slot. ' The

left and right hand X co-ordinates of the slot are then coincident
with the two component sides or board edges which project above the
working level on either side of the lowést component. If there are
several possible élots at the same level, the leftmost slot is
chosen first. The choosing of slot boundaries is illustrated by
Fig. 7.19. Components C3, C4, C6 and C7 are all at the current
working level. Component C3 is taken first, being the leftmost
component. This then gives the positions of the slot sides as the

sides of components C2 and C5.

When all the components have been positioned in the current

slot, the placed component list is updated. The list is first
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searched to find the two components which lie on either side of the
slot.. The intervening components thus lie below the current working
level and so are-déleted from the list. The newly placed components
are then inserted into the same partof the list. In the example of
Fig. 7.19, components C3 and C4 lie below the c;rrent slot. When
they afe'deleted from the list, components C8, C9 and Cl0 are

inserted between components C2 and C5.

7.5.2 Description of Flow Diagram

The flow diagram for the dverall'layout algorithm is-shown in
Fig. 7.20. The algorithm starts with éeveral initialisation procedures.
These include the initialisation of the free storage system described
in Chapter 9.2 and the setting up of dummy end blocks for the base,
working and placed Eomponent lists. The board'diﬁension data is then
read in. It consists of-the board length and width together with the
X co-ordinate of each  edge connector pin aéross'the,lower edge of the
Board. The initial base list iS then constructed by referring to the
topological model of the léyout. The outside edge of the graph
gives the list of edge'connector nodes in the correct order. The

bound branches of these base nodes are given by the two pseudo

branches- connected to each node.

The boundary of the initial slot is made coincident with the
sides and lower edge of.the board. The base list isitﬁen developed
in the manner described in section 7.3;1 to form:the working list.
The contents of the working list are then prqcessed and sorted as
previously described. The components, if any, are positioned in the
slot and their crossing coﬂductors are routed under the components.
The placed component list is then updated and the corresponding

component blocks deleted from the working list.
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Fig. 7.20 Flow diagram of layout algorithm
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Before proceeding, a check is made for a set of conditions

which may occur in a similar way to those illustrated in Fig. 7.21.

Fig. 7.21 Conflict of conductors in slots

The. current slot is bounded by components Cl and C2. Component C3
is placed in the slot, -displaced upwards by a number of conductors
as shown. A later slot will then be bounded by components C2 and C3
as shown by the dotted line in the diagram. The left hand corner of
the later slot will contain some'conductors from the current slot so
that conflict of component and conductor placement may occur. To
prevent this happening, a dummy component is inserted into the
placed component list to coincide with the offending conductor at
the right hand side of the current slot. This action i§ only

necessary if the highest Y co-ordinate of the end corductor is

greater than the working level of the later slot.

The layout algorithm then proceeds to the insertion of
conductor paths. The list of targets for each base node is first
constructed then all the conductor paths of the slot are routed.
Having completed the placement of components and conductbrs in the
current slot, a display of the current board layout is generated.
The dfsplay is used for the interaction procedures to be described

later and its method of generation is described in Chapter 8.2.



-116-
At this stage a check is made for a set of conditions.

which may occur such as those illustrated in Fig. 7.22. The

Cc2

N

Fig. 7.22 Conflict of conductors in slots

current slot is bounded by components Cl aqd C2 and several of the
base nodes are connected together as shown. A later slot.will be
bounded by components Cl and C3 with its working level at the top
edge of éompoﬁent C2. The routed conductors of the current slot
will thus lie within the boundary of the later slot. As slots are
assumed to be initially empty, some conflict of conductor routing
may occur. The solution'to this problem is to update the upper
level of all component blocks between and including the current
slot limits. The upper levels in the placed component list are’
set equal to or greater than the highest level of conductor routing_

so that the later slot will lie above these conductors.

At this stage of the layout algorithm the working list of
the current slot contains only the blocks of nodes and conductors
which are to be routed up to a later slot. The base list, although
not explained previously, contains all such nodes and conductors
across the board at the current-working level. Only a section of

the list is used at any one time to form the base list of a slot.
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The working iist of the current slot is therefore inserted into the
overall base list so that the nodes may be developed in a later slot.
As the nodes are ordered from left to right across the board, the
correct point of insertion of the working list may readily be

determined.

The layout algorithmucontinues by examining the placed
component lisé té find the position of the next slot. Having found
its co-ordinates, the base list is searched to find the set of base
nodes which lie between the sides of the slot. This set then forms
the base list of the next slot so that the whole procedure of
processing a slot may be repeated. The layout algorithm is completed
when all components have been placed and all node and conductor
interconnections completed. This state is detected when the base
list of all nodes across the board is empty. The layout is then
complete and' is ready for outpﬁt by the method to be described in

Chapter 9.



-118-

Chapter 8 Interaction with Board Layout

Interaction is defined as the close communication between a
computer program and' the user, whilst the program is running. 1In-
terms of the board layout probleﬁ this means that the user can
observe and alter the course of the program during the computation
of a"layout. Interaction thus enables the layout algorithm to: be
supplemented by the skill of the user and should result in layouts
which are an improvement upon those produced by purely. automatic

methods.

The man-machine communication devices used are a graphlcal
display for computer output, and a-light pen and Teletype keyboard
for input. Interaction with the layout program is feasible only if
a graphical display is availeblelto present the necessarily large
quantiries of visual data rapidly. Other forms of output either
give insufficient detail, as in the case of a Teletype, or take an
excessive time to produce useable data, as io the cese of a

mechanical plotter.

8.1 Objectives of Interaction:

There are two aspects of the layout program in which
interaction may be most usefully employed. They are situations
in which the exact definition, and:hence programming, of the problem
is very.difficult. The user, howeVer, has the ability to examine
the overail state of the layout and to intuitively find a solution
to the particular'part,of fhe layout problem; He may- then modify

the layout accordingly by the use of interaction.

The first use for interaction is in satisfying special

requirements for particular board layouts. Some boards may. require
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certain compoﬁents to be specially positioned. For example, the
adjustment screw of a potentiometer or Qariable capacitor should be
accéssible from the front edge of the board: Other boards may
require certain critical components to be closely grouped together
so that they may be attached to a heat sink and maintained at
equal temperatures. Other boards again may require the input and
output conductors of a high gain or high frequency amplifier to be
kept as far apart as possible so as to reduce the effects of stray

capacitance.

Conditions such as those just described are difficult to
incorporate into a general purpose layout program. The obvious
approach is to use an automatic layout algorithm to do most of the
work in producing a board layout. The user then interacts with the

algorithm in the areas where special conditions have to be satisfied.

The second use for interaction is in the improvement of an
automatically-produced layout. The layout algo;ithm optimises the
placement and routing of a succession of slots, or subsets, of the
layout. The optimum placement‘for each slot howéver, may not be the-
optimum for the whole board. Interaction enables the user to assess
and modify the overall appearance of the layout. By re-positioning

a number of components it may be possible to improve the component

packing density and reduce the total conductor length.

8.2 Generation of Display

The display of the current state of a board layout is an
essential stage in the process of interaction so it is generated
after each slot has been processed. A partially completed layout

is shown in Fig. 8.1. The board outline is shown as a rectangle
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Rtz

Fig. 8.1 Qisplgy,of board layout
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with the edge connector pins across the bottom edge. Each component
is shown as a bounding rectangle labelled with the component name.
Conductor paths are shown by lines representing the centre line of
eaéh path. On the display, components and conductors are drawn at
different intensities so that they may be readily distinguished.
Across the top of the display screen are a number of characters, or

light buttons, that may be used to control the modes of interaction.

The di;play software, described in Appendix B, enables the
display file to be divided up into a number of segments. Each
segment may then be uniquely identified in the graphical display by
pointing at it with the light pen. In addition, every segment may
be assigned an integer npmber by the user, termed the user name.

Each component and light button to be displayed is therefore ::
generated as a éeparafe segment so that it may be uniquely identified.
In the case.of a component, the user name is then used to provide a

pointer back to the appropriate component block in the data structure.

The generation of display file is commenced by positioning
the seven characters for the light buttﬁné across the top of the
screen. The user names for these light buttons are set to the
integers one to seven so that they may later be identified and
processed when seen by the light pen. The remainder of the display
file to be generafed has all of its dimensions multiplied by a
display scale factor. This factor is read in as part of the board

data and is used to ensure that the layout fillls the display screen.

The next part of the display to be generated is the

rectangle represénting the board perimeter. The pins of the edge

connector are then plotted in representational form across the
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bottom edge of the board as shown in Fig. 8.1. In practice there is
usually a standard mask which surrounds the actual board layout.
This mask defines the board outline, the pins of the edge conﬁector

and any further information necessary.

Each component to be displayed is generated as a display
subroutine so as to conserve display file space. Furthermore, the
component will have one of four possible orientations. Every
master ;omponent block in the component library therefore has four
elements allocated for display. The elements contain pointers to

the display subroutines for each of the four orientations if they

have been generated; otherwise they contain-a zero pointer.

To display a component, the beam position is set to thg
appropriate co-ordinate. The orientation of the component is
obtained and the corresponding element of the master component
block is checked. If that particular orientation has not yet been
plotted, the required disﬁlay subroutine is generated and its
address stored in the master component block. The component is
then plotted as a separate display segment together with its
component name? The component name may consist of up to four
characters, evenly spaced about the centre point of the component
rectangle. This explains why namesAof less than four .characters
appear to be offset to the left. The user name of the<displa§
segment is then set as a pointer back to the component block in

the topological model.

When all the component subroutines have been generated, the
conductor paths are plotted. The conductors are held in a list and’

each one is represented by a list of change points, described in more
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detail in Chaﬁter 9.1. As there is no interaction with conductors
they are all generated in one display segment. The display of a
conductor is generated as a co-ordinate point at its start followed

by a string of vectors describing the conductor path.

When the display file has been completely generated it is
transmitted over the link to the PDP-7 computer. The display file
is then shown on the graphical display so that the user may examine

it and operate upon it with the light pen.

8.3 Interaction Faqilities Provided

The light buttons on the display provide the user with a
number of modes éf interaction, which are described bélow. The
modes of interaction are concerned with the movement of components
only as these control the overall form of the layout. The automatic
part of the algorithm then deals with the correct clearances and
routing of conductors. A state diagram of the interaction subroutine
is shown in Fig. 8.2. It illustrates the ways in which the user may:
change from one state, or mode, to another. The letters by each
state indicate the light buttons to be activated in order to change

to further states of the program.

8.3.1 DELETE Mode

The DELETE mode enables the user to delete a component from
the slot in which it is placed.__ The component is removed from the
slot and replaced by its source node. The-source node will then be
projected up to the level of later slots until there is a slot with
sufficient space to accommodate the component; The effect of
delétion therefore‘is to move components up to a higher level in

the layout. The slot from which the component is deleted will have
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spare space corresponding to the component width. The layout
algorithm will automatically attempt to fill this space by
inserting further components or re-orientating the existing

components in the slot.

To operate the DELETE mode, the user points the light pen
at the light button "D". The light button character is then
displayed at twice the scale to indicate which mode the program is
in. The user then points at the component to be deleted, which
immediately disappears from the display. The modification may then

be implemented by entering the MODIFY mode described below.

8.3.2 ORIENTATE Mode

The ORIENTATB mode enables the user to alter the orientation
of components in the layout. There are some restrictions on the
number of orientations that each component may have: and these are
described later. The ORIENTATE mode is operated by pointing the
light pen first at the light button "0" then at the component to be
moved. The display software returns a,péinter to the appropriate
segment of the display file. From this the user name may be
.obtained, which in turn gives a pointer to the component block in

the data structure.

A marker cross is displayed at one corner of the component
to indicate which one is to be re-orientated. 1In addition, a
small marker:arrow appears, pointing in the positive Y direction to
indicate the current ;prientatione By typing C or A on the Teletype:
keyboard the orientation marker is rotated through 90° in a clockwise
or anticlockwisé direction respectivelyc~ If the new orientation is

not allowable fof that component, the marker disappears until typing
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‘of further C or A characters brings the marker:into an allowable
orientation again. When the new orientation has been decided
upon, it is implemented by entering the MODIFY mode. Again, the
layout algorithm will automatically attempt to fill the current
slot to capacity with other components in addition to the

re-orientated one.

The restrictions on allowable component orientations are
due mainly to the conductor routing subroutines. These will not
deal with conductors which have to be routed down one side of the
component, across the bottom and out to the other side such as

those shown in Fig. 8.3. This is due to the method of component

é

Fig. 8.3 Non-allowable component orientation

orientation discussed in Chapter 7.3.2. Every component

therefore has a number of allowable orientations out of a possible
four. Branch components.havé three allowable orientations, the
non-allowable one being with the source pin on the upper edge of
the component. Subgraph components are only allowed an orientation
with the source pin on the lower edge of the component. This
normally allows one orientation only. Two are allowable if the
source pin is at & corner of the component. During the component

orientation subroutine a marker is automatically set to indicate
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the allowable orientations. This enables the allowable orientations

to be rapidly checked during the interaction subroutine.

8.3.3  PULL Mode

The PULL mode enables the user to pull a component down
from a slot to a lower level slot, subject to some restriction. The
component to be pulled down is identified by pointing the light pen
first at the light button "P" and then at the component. The
component is marked by a cross on the display, as shown on component
R6 in Fig. 8.1, and a tracking cross appears on the screen. As the
tracking cross is moved over the display, a set of three lines
indicate the perimeter of £he slot in which the cross is positioned.
The tracking cross is placed in the slot into which the component is
to be pulled. The modification is then implemehted by entering the
MODIFY mode. When the component is pulled down, one or more other
components will necessarily be deleted automqtically from the lower

slot in order to make room for the new component.

The restriction on pulling down a component is that the base
list of the lower slot must contain at least one of the nodes to
which the component is connected. The reason for this is that every
new component'added to the layout is connected to an éxisting part
of the layout. If a component were to be placed in a slot with no
connecting baée node, there would be no way of knowing which wayito

route the conductors around the component.

The display of slot boundaries around the tracking cross
may also serve a useful purpose prior to the re-orientation of a
component. It méy be used to check visually whether there is

sufficient room in a slot to turn the component. The slot display
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is implemented by means of a list of slot dimensions which is built
up with the layout. The list may be rapidly scanned and compared
with the tracking cross co-ordinates to find the appropriate slot

boundaries.

8,3,4; MdDI?Y Mode

The MODIFY mode is used to initiate the changes required by
any one of the above three modes. The purpose of having a separate
mode to initiate the modifications is to give the user a safeguard
against errors. If he points the light pen at the wrong component
by mistake, he can recover from the error before the modification is

actually carried out.

Modifications to a slot will alter its placed component
profile and will consequently alter the pattern of higher level
slots. -All pgrts of the layout above the modified slot'must
therefore be deleted and later reconstructed with a new set of
slots. This is also the reason why only one modification is
carried out at a time. If two modifications were to be made in
different slofs, one slot would probably be at a higher level than
the other. As all the layout above the lower slot would be deleted,

the modification to the higher slot would then no longer be valid.

Parf of the data structure contains a list of all the
modifications or changes made to the layout. Each block in the lisf
contains a pbinter to a component, the changg required and the
co—ordinafes of the modified slot. The list is ordered in increasing
slot level. Each time a change is made, a new block is constructed
and inserted into the appropriate place in the list. Any changes in

higher level slots are then deleted from the list as they are no
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longer valid. The actual implementation of the change is then

carried out, described in detail in Section 8.u4.

8.3.5 RESET, UNCHANGE and FINISH Modes

The RESET mode is the base state in which. the program waits
for further control from the user. After a slot has been produced
automatically or has been modified, the display is updated and the
program returns to RESET mode. The other use of this mode is when
the user makes an error in pointing the light pen at a component
during PULL, ORIENTATE or DELETE mode. The RESET mode restores the
program to its state before the modification was attempted. Marker
crosses, slot boundaries, etc. are removed from the display or

deleted components are displayed again.

The UNCHANGE mode cycles the layout program automatically
throﬁgh the placement and routing of the next slot. When the slot
is éompleted, the display is updated and'the program returns to
RESET mode. By fepeated entry of the UNCHANGE mode, the whole

board layout may be constructed‘automatically.

It is not always obvious to the user when a layout has been
completed. Each time that the UNCHANGE mode is entered therefore,
a check is made to see if the layout is complete. If it is, the
program enters the FINISH mode. Further modifications may be made
if required by returning to RESET mode followed by the required mode.
If, hoﬁever, the light pen is pointed at the FINISH mode light
button, the layout is completed and the program is ready for the

output of results.
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8.4  Modificationstito Layout Algorithm for Interaction

The automatic layout algorithm described in Chapter 7 must
obviously be modified in order to include interaction facilities.
The modifications take the form of four extra subroutines added to
fhe layout program, the basic subroutines remaining substantially
unchanged. Two of the interactive subroutines have already been
described. These are the aisplay-generation subroutine, described
in Section 8.2, and the light pen servicing subroutine, described
in Section 8.3. The two further subroutines to be described deal

with the cutting back of a layout to the level of the latest change

and with the actual incorporation of the change into a slot.

. 8.4.1  Reconstruction of Layout

The base and working lists of the layout algorithm hold
detailed information on the state of the layout at the current
working level. Once the éomponents have been placed and the
conductors routed at this level, the informétion becomes largely
redundant. The redundant base and working blocks are therefore
returned to free storage before moving on to the next slot, so as
to conserve storage space. It is thus extremely difficult to
recall the state of the layout at any level below the current
working level. One may find which conductor pathé exist at a
given level Put there is no way of determihing to which nodes or

8

conductors they correspond.

The problem of cutting back the layout to the level of a
modified slot is approached from a different direction. The entire
layout is deleted so that no part remains except for a list of the
changes made at the current and lower levels. ‘Thé lgyout is then,

reconstructed, incorporating the changes, up to the level of the
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latest change. The layout procedure may then continue from this
point. Reconstruction of the layout every time a change is made is
not the most economical way of using computer time. This point is

further discussed in Chapter 11.4.

The subroutine for cutting back the layout to the level of
the latest change starts by aéding a new block to thé list of
changes. The required contents of the block are described in
Section 8.3.4. The blocks in-'the base list, working list, placed
component list and other lists qf the layout algorithm are all
returned to free storage, except for the list of changes. The
layout is then reconstructed automatically‘from'the initial base-
list of edge connector nodes, as described in'Chapter 7. Any
‘changes required in the slots are incorporated by the methods to be
described below. During the reconstruction, the generation of display
file is suppressed. When the currently modified slot is reached, |
the display is regenerated and the program is ready tb proceed under

interactive control again.

8.4.2 Inseftion of Slot Modifications

The fourth subroutine required for thé interaction facilities
deals with the actual incorporation of changes into-a slot. It
operatés between the stage of counting and the étage of sorting the
contents -of thé slot, when the layout is being reconstructed. After
. the total width of all possible contents of the slot have been
counted, its co-ordinates are compared with those in the next block
of the 1list of changes. As previously menfioned, each block in the.
list of changes contains the co-ordinates of a slét to be modified.

If there are no changes to be made in the ‘current slot the algorithm
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proceeds with the sorting of slot contents as described in

Chapter 7.3.4. v ’

When the current slot co-ordinates do coincide with those of
the next change block, the component whose position is to be modified
is obtained from the change block. The working list is then searched
to find the corresponding block. If the componént is to be deleted
from the slot, its block is deleted from the working list and the
total width of slot contents is updated. If the component is to be
re-orientated, its orientation and width data are re-computed. Its
block is marked to inaicate that the orientation must rémain‘unchanged
and the total width of the slot contents is updated. If the component
is to be pulled down into the slot, its block is marked to indicate
that it must remain in the slot. In the case where the user.tries
to pull a component down into an incorrect slot, the component
block will not be found in the working list so a corfesponding

error message is printed out.

When a modification has been incorporated into the working
list, the next block in the change list is examined in case there
is more than one modification to be made in the same slot. When
dll'the modifications have been includéd, the resultant total
width of all possible slot contents is-compared with the actual
width of the slot. Depending on the resﬁlf, either one of the
two subroutines described in ‘Chapter 7.3.4 may be called in order

to increase or decrease the width of the potential slot contents.

The subroutine for increasing the width of slot contents
is modified slightly so that appropriately marked components are

not re-orientated to take up a greater width. The subroutine for
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decreasing the width of slot contents is modified so that all the
marked components remain in the slot. These measures ensure that
the user's modificatiogs are not altered by the automatic part of
the layout algorithm. It may occur that the user tries to pﬁll
down or re-orientate too many components in a slot. If the width

of the slot contents cannot be reduced to less than the actual slot

width, an appropriate error message is printed out.

When all the modifications have been made in a slot and
whén the slot contents have been adjusted to the correct slot
width, the layout algorithm proceeds to the placement and routing
stage. If then continues automatically, processing each slot in
turn and including further modifications where appropriate. The
automatic reconstruction of the iayout is completed when the
currently modified slot is reached. The progrém is then ready

to proceed under further interactive commands.
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Chapter S Computer Implementation of Layout Algorithm

This chapter describes further programming methods used to
implement the layout algorithm. It also indicates the ways in which
the programming and form of output of the. algorithm have been
affected by the available computér hardware and software. The
methods of data storage described are extensions of those outlined

in Chapter 6.

9.1 Data Structure

The layout algorithm generates and uses many items of data
during the construction of a layout. Thevform and quantity of this
data constantly changes as the layout progresses. A data structure
is therefore necessary to store the information in the correct order
and in a readily accessible form. Much of the data is obtained
from the data structure representing the topoloéical model of the

layoﬁt, described in Chapter 6.

The main additional features required for the layout
algorithm are three lists. These are the base list, the working
list and the placed component list. An example of one of these

lists is shown in Fig. 9.1. During the construction of the layout

e J e

X ———e \ \ >

————o

DUMMY NODE BRANCH DUMMY

Fig. 9.1 Two-way list used for layout program
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it is frequently necessary to know what elements lie on either
side of a given component or conductor in one of thé lists. The
blocks in each list are therefore given two-way pointers as shown
in the diagram so that the lists may readily be traversed in

either direction.

Every block in the three lists is given a marker to describe
the type of element it represents. The base and working lists may
contain four different types of element. These are node, conductor,
branch component and subgraph blocks. The placed component list
contains only placed component blocks. As blocks are constantly
being added to and deleted from the lists the problem arises of
knowing which blocks represent the ends of ‘the lists. This problem
is solved by connecting dummy blocks to the two ends of eéch list.
The same blocks thus remain at each end of the list and when the
list is émpty; one of its dummy blocks becomes connected directly

to the other.

The fourth element of every block in the base and working
lisﬁs contains a pointer to part of the data structure of the
topological model. This enables each block to be uniquely i
identified. Node, branch and'sgbgraph blocks contain pointers to
their corresponding blocks in the ‘topological model. Each conductor
block'contains a pointer to the tie block in the fopological model
that represents the corresponding segment of the conductor. The
remainder of every block contains data that is obtained and used
during the layout algorithm. This includes such itemé as the total
width of a component aﬁd its crossing conductors, thé source node

of a component, the bound branches of a node and so on.
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A further type of data structure is required to describe
the conductor paths of the physical layout. The structure is

illustrated by Fig. 9.2. Each conductor path consists of a

| conductor list |

~— ® Lo > X
x [y x [ v xﬂv/.xl
N /
/Llnc start blocks ine point blocks
.~ - X
X [ ] AT

//’

Fig. 9.2 Representation of two conductor paths

line start block together with a number of line point blocks.

The line start block contains the starting co-ordinate of the path
and a pointer to the list of line point blocks. The line point
blocks hold the co-ordinates of the path at each point where it
changes direction, including the end point. They also each hold

a pointer to the next block of the path.

All the conductor paths of a layout aré held in one 1list.
Each line start block therefore contains a pointer to the next
block in the list. 1In addition, each block contains a pointer
to the last line point of its cénductor path. This enables an

extra point to be added to the end of the path without having to
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to search through the whole list of line points. It should be
noted from the diagram that the two co-ordinates of every block are
packed into one word. This saves a considerable amount of storage
space in the data structure as a typical l;yout contains a large

number of line point blocks.
|

If often occurs that a conductor p?th has to be routed ép
through several sﬁccessive slot levels befbre ifs destination i;
reached. It is preferable that one céntinﬁous path Be defined;
rather than have a new line start forteachipart of_the path in
successive slots. In order to obtain a continuous path the node
or conductor block in the base list which'pepresents the*path'ig
given a pointer to the line start block. When the path is routed
from the base to the working block, the line start pointer is also
passed on to thé working block. As this block is later inserted
into the base list of a higher slot, the.;ine start is effectively
passed up to the next slot level. A further measure is faken to
conserve storage space when extending a copductor path. If the
path is to be extended in the vertical diréction, the Y co-ordinate'
of the final point is updated rather than create a new lihe poiét.

block.

In programming the layout algorithm, the data structure
manipulations are described extensively by use of the ML/l macro
generator. A further set of macro calls are defined and used in

the same way as outlined in Chapter 6.3.

9.2 Free Storage System §
The data storage system used for the layout algorithm is an

extension of that used for the topological algorithm.. The data is
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stored in a number of blocks which are allocated from one‘large
array, as described in Chapter 6.1. During the WOrking of the
layout algorifhm however, a large number of data blocks are created
and used. When part of the layout has been constructed many of
these blocks become redundant. Furthermore, when interaction is
used and the layodt is modified, moét of the layout data structure
becomes redundant.. A free storage system is therefore added to the

basic data storage system so that redundant blocks may be used again

By the layout algorithm.

There are a number of ways of arranging a free storage
system. Some systems allocate data blocks by dividing ﬁp the ﬂéxt
largest block. If any blbcks returned to free store are adjacent,
they are merged into one larger block. Other systems move up all
allocated blocks below a returned block so that-all the free store
is at one end of the data array. Further systems may use a
combination of these techniques. The particular system used here
is simplified by‘the‘fact that the layout algorithm uses only eight
different types of bléck. Every instance of a particular type of
blodk is always of the same length so-that there are never moreithan

eight different block lengths in the storage’ system.

The free storage system is shown in diagrammatic form by
Fig. 9.3. The basic part of the'system is a étore block which
contains eight elements, corresponding to the eiéht different types
of data block réquired. Every data block contains-a marker which
described its type. These markers are-actually the integers from
one to eight, so that each type of block may be associated with
one element in the store block. All the free ﬁlocks of a particular

type are thus held in a list. ' The corresponding element of the
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) Fig. 9.3 Free storage system

store block then contains a pointer to the start of this list as

shown in the diagram.

When a data block of a‘particular type is required from
free store, the corresponding element of the store block is examined.
If the element contains a pointep to a list of freé blocks the
.first block is removed from the list and made available to the
program. If the element contains a zero-value pointer the blocks
of that type have either all been allécated or have not yet been
created. In either case a new block is created from the un-used
part of the data array in the manner described in Chapter 6.1.

To return a block to free storage, its type marker is first obtained.’
The corresponding element of the store block then indicates the list

fo which the data block should be added.

9.3 Measurement System of Layout

The system of describing co-ordinates. for the layout
algorithm is partly influenced by the FORTRAN compiler available

for the ICL 4130 computer. One feature of the compiler is that
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an array of integer numbers requires one store word per number
whereas an array of real numbers requires two words per number.
The data array for the layout algorithm is of considerable length
so that there is insufficient store space to allow a real array .
As tﬁe layout co—ordinétes are stored in the data array, they must

be held in integer form.

Before commencing the layout, a basic unit of measurement
is defined by the user. A typical unit could be 0.025", All
dimensions and co-ordinates of the layout are then expressed in
terms of an integral number of these units. The computer word
. iength is 24 bits which allows the maximum value of an integer to
be approximately 8 x 106. ‘This gives more than sufficient resolution
for a small basic -measurement unit together with a.large board size.
The reference poinf of thé board from which éll co-ordinates are
measured is the bottom left hand corner of the board. This assumes

that the edge connector lies along the positive X axis.

Every master component in the component library has a
reference point and a reference orientation so that its pin co-
ordinates may be defined. The reference orientation is such that
the longest axis of the component lies parallel to the Y axis, with
the reference point at the bottom.left hand corner of the component.
The pin co-ordinates may then be defined relative to this referénce

v ,
point. When a component is placed in the layout its position is
defined by its orientation and the co-ordinates of its reference

point. The relative pin positions are then found by rotation about

the component reference point.
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The co-ordinates of the conductor paths define the position
of the centre line of each path. The minimum disténce.befween centre
lines is specified.by the user. This distance allows for the width
of conductors gnd the spacing between them. The pfesent version of
the~layout algorithm permits only one value of conductor width and

spacing for the whole layout.

9.4 Output of Board Layout

The basic data describing a board layout is held as a set of
integer co-ordinates within the data structure of the computer
program. The user generally requires the description of a layout in
the form of one or more diagrams showing the placement o% compénents
and the routing of conductor paths. The methods of output used at

present are described below and some further possibilities of data

presentation are discussed in Chapter 11.6.

The dispiay of a board layout is used as the basis of data
output for the layout algorithm. The generation of the display file
has already been described in Chapter 8.2. The various ways of
obéerving and storing this information are illustrated by Fig. 9.u4.
The display software (11) also enables the display file to be either
ﬁunched out on paper tape or transmitted over the high speed link to
the PDP-7 computer. Corresponding software in the PDP—7 enables the
display file to be read in from paper tape or from the link and then

displayed on the Type 340 display.-

The display file may be stored from the PDP—7.core onto
magnetic tape for subsequent display or plotting. A plotter
software package (12) is available to drive the Calcomp plotter from

the display file data so as to produce a hard copy of the display.
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4130 produces display
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Magnetic tape Plotter Display

Fig. 9.4 Outputs of board layout program

For present applications the component positions and conductor paths
are drawn on the same diagram as shown, for example, in Fig. 8.1.
The program may readily be modified so as to produce two separate

diagrams of component placement and conductor routing if required.

On completion of a board layout further data is output for
the purpose of comparing several different layouts of the same
circuit. The total length of all conductors on the board is
computed and printed out, together with the overall height of the

board actually used by the layout algorithm.
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Chapter 10 Results of Layout Procedures

This chépter describes the results of the planarity and
la&out algorithms. Three circuits are given and their layout
diagrams shown. These are then compared with the results obtained
by interaction. All the layout diagramé are grouped together at

the end of the chapter so that they may readily be compared.

10.1 Description of Circuits

Three different circuits are used to illustrate the results
of the layouf procedures. Thej are label;ed A, B and C and are shown
in Figs. lO.l; 10.2, and 10.3 respectively. They are typical of the
smaller fype of industgial circuits that are laid out on single sided

boards.

Circuit A has been used fof most of the development and ‘
testing of the algorithms so detailed data is-available for all
stages of its layout construction. The circuit is used to show the
results of the planar graph and pseudo-planar graph algorithms..
The circuit layouts also illustrate the improvements that may be

made by the use of interaction.

Circuit B, of similar size to A, is again used to illustrate:
the layouts obtainable'by automatic and interactive means. In
addition, a manually-designed layout of this circuit is given. The
compﬁter and the manually generated layouts are compared and the

different techniques discussed.

Circuit C has approximately twice the number of components
of the previous two circuits. It is used to illustrate the effects
on-computer time and storage space of larger circuits. It alsasshows

the improvements that are possible by the use of interaction.
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10.2 Construction of Pseudo-Planar Qraph

The construction of the pseudo-planar graph of a circuit is
an essential part of the layout procedure. As the planarity!
algorithm is completely automatic, and the results are' then used in
the generation of the physical layout, the graph is not normally
output from the computer. When output of the graph is required, it
is printed out in the form<of'a list of regions. Each region is
itself a list of the branch segments which form the boundary of the
region. Although this form of data is ideally suited to the
planarify algorithm, it results in a difficult task when constructing
a diagram of the graph. The comparison of planar énd pseudo-planar

graphs has therefore been made for one circuit only. ;

.10.2.1 Construct;on of.Planar Graph

The initial planar graph of circuit A is shown in Fig. 10.4.
The circled nﬁmbers are the circuit ﬁodes, corresponding to those
labélled in Fig. 10.1. Subgraph'nddes aré labelied by their
transistor number followed by a letter A, B or C denoting the
collector, base or e;itter of the transistor respectively. Component
branches- are labelled with their appropriate component name. The
branches shown dotted are thosé which have been removed from the
total graph in order to make it planar. The outside edge of the
graph' is composed of the edgé pseudo branches- and the edge connector
nodes, labelled from 1 to-6. The first region of the graph is then

that which lies' outside the boundéry of the graph.

The first starting node taken in the construction of the
planar graph is node 1 and the first target is node 2. The search
for-a planar path between these two nodes yields the components Rl,

Cl and TR2. These components, together with the edge pseudo- branch
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1-2 therefore form the boundary of the second planar region. The-
remaining two pseudo branches of éubgraph component TR2 are then
added to the graph as a furthef planar region. The hext target
in an anticlockwise direction from the>start node is thus node 2B.
Another planar path is then found, adding component R4 to the graph.
The following target is node 9. As no planar path exists between
this node and the starting node 1, the search direction is changed

to a clockwise direction from the start node.

Two- further planar regions are added to the graph by
searching for planar paths from node 1 to node 6. The following
target is then node.lS. No patﬁ exists from node 1 to node 13,
however, without toﬁching the edge of the free region at some other
point and hence dividing the free region into two parts. The
remaining branch on the start node, branch R9, is thus deemed to be
non—planar.as it conflicts with component branch R1l and link branch
4C. The algorithm continues by taking further nodes in turn as

starting nodes. These.nodes are 9, 8, 7, 1A, 11, 3, 4 and 5 in that

order. The planar graph is then complete as shown in the .diagram.

It can be seen from the planar graph that the two branches
with which R9 conflicted, R1ll and link 4C, have also been removed
from the graph at a later stage. Branch R9 could thus be included
in the planar graph. Similarly there are two other branches which
could be included. These are link branch 3C and either compénent
branch R5 or R6. The planarity algorithm thus does not necessarily-
select the optimum planar subset of a graph. This is not critical
however as the planar branches removed from the graph are recognised

and re-inserted during the next stage of the algorithm.

3
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Fig. 10.4 Planar graph of circuit A
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The insertion of component branch R12 into the graph
illustrates a difficulty in the construction of a physical layout
from a topological model. The branch constitutes the shoftest
possible path, or path of minimum number of branches, between nodes
1 and 6. The edge pseudo branch 1-6 however, represents the outside
edge of the board. To connect component R12 into the layout
therefore, its conneéting conductors must be routed around three
sides of the board. This illustrates the problem that the shortest
distance in the graph does not neceésarily represent the shortest

distance in the layout.

10.2.2 Insertion of Non-Planar Brancheé

The completed pseudo planar graph of circuit A is shown in
Fig. 10.5. It is subsfantially the same as Fig. 10.4 except that
the non-planar branches have now been assigned fixed paths in the
graph. These branches are still shown as dotted lines so that they
may readily be recognised. The nodes labelled with numbers greater
than 1000 are new nodes formed by the '"node splitting" process of

inserting non-planar component branches.

The effects of the "node splitting" algorithm can clearly

be seen in the diagram. Part of node 1, for example, is split into
node 1001 so that component branch R6 ﬁay be inserted into the graph.
Part  of node 3 is split into node 1002 for the insertion of branch
R8. It is then split again into node 1003 for the insertion of R2.
The number of parts into which a node may be split is limited only
by the number of branches connected to it. If may also be observed
that the three p;anar'branches mentioned above have been recogniéed

and inserted into the graph.
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’A further point to note from the diagram is that non-planar
branches R6 and link 4C are crossed. Branch R6, being a component
branch, is inserted into the graph first. Although it crosses one
branch in splitting node 1 there is still space for further crossings
under the component. When the link branch is later inserted, the
insertion algorithm is concerned only with the amount of space under
component and pseudo branches already in the graph. Hence a non-
planar component branch may later be crossed by several non-planar

P

link branches.

10.2.3 Comparison of Circuits

The relative sizes, storage requirements and computing times
of the three circuits used are compared in Table 1 below. The
computing time given is the approximate time required to read in the
data, set up the data structure and construct the pseudo-planar
graph of the circuit. The storage pequirement is the number of
words of the data array used in the construétion of the pseudo-

planar graph.

Circuit , A B C
No. of components 21 26 - 38
No. of circuit nodes 14 16 32
Storage (words) 1345 1731 3157
Computing time (secs.) 5 5 11
Table 1 Comparison of Circuit Sizes and Computing Times

A further point arises from the construction of a pseudo-
planar graph. If the algorithm is started from another node on the

edge connector it generally pfoduces a different graph of the same
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circuit. This occurs naturally as no attempt is made to search for
the optimum planar graph of the circuit. The computing time required
to generate a pseudo-planar graph is short, as can be seen from
Table 1. It is therefore feasible to start at a different node and
generate a different graph of the circuit if, for any reason, the

first graph is unsatisfactory.

10.3 Comnstruction of Layouts
The layouts constructed automatically by the layout algorithm,
with no alterations by the user; are discussed here. The results of.

interaction are described in the next section.

10.3.1  Layout of Circuit A

The layout of circuit A is shown in Fig. 10.6 and clearly
illustrates a number of features of the layout algorithm. The
packing density of components on the lower paft of the board is
good and'conduétor lengths are short. AThis is dué to the fact that
the first components selected for placement are those closely
connected to the edge connector. The next components selected_are
then those most closely connected to the existing part of the

layout. This strategy produces a compact layout as intended.

The upper part of the board has a lower component density
and contains a number of lbng parallel conductor paths. This-is
mainly dué to connecting up ends of node and conductor paths which
have alreédy been started at lower levels of thé layout. When
pbocéésing base nodes in the highér slots, théy fréquentlj develop
into components whicﬁ have  already béen placédvon thé board or iﬁto
conductors which have to cross under these components. The upper

part of the board therefore contains a higher ratio of conductors
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to components in order to preserve the circuit topology. This
weakness of the algorithm can,,hbﬁever, be improved by the use of

interaction.

The circuit contains one extremely long conductor. This is
the link branch which connects component TRY to TR3 and R7 and which
crosses under R10, RS and R6. This length of conductor path is
undesirable in a practical layout because it increases the board
space required for routing and may introduce excessive stray
capacitance between adjacent conductors. It illustrates the fact
that a short path in the graph does not necessarily represent a
short path in the layout. The path is necessary in. the layout;
however, in orde; to preserve the circuit topology. - A draughtsman
laying out the circuit would either re-arrange the component

positions or insert a wire jumper in order to réduce the conductor

length.

Paft Qf the board space is uﬁ—used in‘the slot bounded by
the board edge and component Cl, and above componeﬁts R10, R9 and
R1. Develoﬁment of the base nodes of this slot yields either ;
components which have already been placed ér coniductors which aré
to cross undeg other components. No éomponents can therefore be
placed in thejslot so the availéble space is wasted. It is obvious
~ from the diagfam though, that component TR?vcouLd be placed in this-
slot even though its source node lies outside the slot boundary.
An<exténsion of the principle of the PULL mode of interaction could
thus be- used to automatically pﬁil components down into empfy slots

and hence improve the component packing density.

~

The crossing conductor between components R10 and R9 is the

cause of frequent. comment. The actual component-crossing parts of
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" the conductor are inserted at the same time as the components. At
@ later slot level (across the tops of the components) the conductors
are routed up to that level before they are recognised as two parts
of the same conductor and joined. The same procedure is absolutely
necessary however in the case of the conductor connecting R1l and
TRQ. If the two parts of this conductor are not routed to a level
above TR4, the conductor will clash with the crossing under TR4.
Unnecessary bends in conductors such as that between R10 and R9
could be avoided by further programming. This would check for the
absence of components between the two parté of the conductor before

routing the conductor path.

10.3.2 Layout of Circuit B

The aufomatically produced layout of circuif B is shown in
Fig. 10.8. Most of thé obsérvations on circuit A also apply to this
circuit. One point that is immediately obvious is that the layout
has "fallen off" the top edge of the board. Although such a layout
could not be built it shows a useful property of the layout algorithm.
The algofithm will continue over the edge of the board and s%ill show
the state of the layout. It will not, as some layout programs do,
go into an error state when there are too many components to fit

onto the board.

There are two possible courses of action when the layout
exceeds the board size. If thé layout is mostly on the board it
may probably be arranged wholly on the board by the use of interaction.
If a large proportioﬁ of the layout is off the board, the required
component density is too high. The circuit must therefore be

placed on a larger board or partitioned onto two separate boards.
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Unlike the previous iayout, circuit B is laid out on a
board whose width is less than its length. A considerable area of
the board space is thus taken up by conductors routed up to
components at- higher slot levels. In the limiting case the board
width would be almost entirely taken up by conductors and there
would be no room for further components to be placed. This
situation can be partially remedied by interaction and can be

eliminated by using & wider board.

The layout algorithm optimises the contents of each slot
in turn. This may not however give the optimum overall layout as
is illusfrated by component R2 at the top of the layout. R2 is
placed in the slot across the top of Rl4 and bounded by the edge
of the boérd and component R16. There is only sufficient room in
this' slot to place R2 in a vertical orientation. If placement had
been delayed to the later slot across the top of R16, the component
could have Been horizontally ofientated. This would then have
reduced the overall height of the layout.: This is a typical case

where interaction can be used to improve a layout.

10.3.3 Layout of Circuit C

The-autbmatically produced layout;of circuit C is shown in
Fig. 10.11 and illustrates the layout 'of a larger circuit. It can
be seen that the component packing density on the left hand side of
the board is good. The  components-are closely interconnected with
few crossing conductors. In comparison the right hand side of thé

board is largely taken up by a number of parallel conductor paths.

Closer examination of the layout reveals_that there are
three or four conductors which follow parallel paths under components

VR1, R14, R19, R22, R26, R23 and R25 in that order. These are the
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conductors which occupy most of the right hand side of the board.
The paths are necessary in order to preserve the circuit topology
and they once again demonstrate the problem involved in translating
a topological model into a physical layout. The excessive space
requirements may be reduced by the use of interaction. In the

|
case of a ménually produced layout, the conductor paths would

1
probably be avoided by the use of wire jumpers.

The diagram shows that the spacing between adjacent
components with crossing conductors is greater than necessary.
' Examples of this are components Rl, R2 and R3 on the left and
components'ﬁ25 and R23 on the right hand side of the bottom slot.
The reason for the unnecessarily long crossing conductor paths
has already been explained for circuit A.- If the lengths of these
paths are réduced by further programmed checks as suggested, the
same information-can be used to reduce the spacing between the
adjacent components. This would then improve the component packing

density of the layout.

The diagram shows that the orthogonal routing of conductors
could be improved in some cases. For example, the conductor patﬁs
from the top and right hand sides of R14 could each have several
change poiﬁgs removed by routiﬁg the conductors vertically as far
as possibleithen horizontally. Storage space for the conductor
paths would.be réducéd also. Conversély, thé samé'treatment could
not be applied to the conductors below components R8, R17, R13 and
R1y, Thé cénductor routing can fhus be'improvéd at thé cost of

further computational checks during routing or by allowing interaction

with the conductor paths.



-157-

10.3.4 Comparison of Computer Requirements

The computing times andistorage requirements for the three
layouts are compared in Table 2 below. To obtain the computing
times, the generation of display and the interaction éubroutines
have been suppressed. This has been done té eliminate the user
in&eraction time and the time taken to completely regenerate and
transmit the display file for every slot. The time given is thus
that required to automatically generate the complete layout from an
existing topological data structure. It does not include the time
vtaken for the output of results as this is dependent on the form

of output used.

The storage requirement for each circuit is the number of
words of the data array used by the layout algorithm. This comprises
storage for the topological model, the layout, its conductor paths

and the data blocks used for the base, working and other lists.

Circuit A B C

Computing time (secs.) 8 13 26

Storage space (words) 2995 4258 8243
Table 2 Comparison of computing times and storage space

10.4 Results of Interaction

.

In this section the resul?s of interaction with the three
board layouts aré discussed and compared with the automaticaliy
pfoducéﬁ layouts. It should be emphasised that the modified layouts
are not unique. A completely d%fferent, possibly better, layout may

be obtained for each circuit by carrying out different modifications.
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10.4.1  Interaction With Circuit A

‘The modified layout of circuit A is shown in Fig. 10.7.

" Comparing it with the automatic layout of Fig. 10.6, it can be seen
that the component packing density has been improved. A number of
long parallel conductor paths have also been elimihated from the

layout.

The basic strategy of interaction in this case is the
observation that six of the parallel conductors across the top of
the automatic layout are developed from the edge pin 1 and components
R9 and R10. The two components are themselves developed from edge
pin 1. If the components were on the right hand side of the board,
only one conductor from edge pin 1 would have to be routed across
the top of the layout. The other five conductor paths would then

be drastically reduced in length.

To produce the modified layout, components R9 and R10 are
deletéd from the first slot. The layout algorithm compensates for
the change in slot contents by automatically re-orientating the
components in the botfom slot as shown. Continuing with the layout
algorithm, the next slot to be processed is that across the top of
R12 and bounded by TR4 and the edge of the board. It so happens
that R9 is placed in this slot by the program. The user then
continues to use the automatiq facility of the algorithm to produce

)

the remainder of the layout.

From the layout of Fig. 10.6 it can be seen that some
conductor paths could be shortened by rotating component TR4 through
90° anticlockwise. The automatic algorithm has not done this
because TR4 has' a choice of two possible orientations. The

information available at the time of assigning the orientations is
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not sufficient to choose the better of the two. The modification
has therefore been made by the use of interaction as shown in

Fig. 10.7.

Although this circuit gives a simplified example of
interaction, it illustrates how significant improvements can be made
to a layout by a few modifications in conjunction with the automatic
algorithm. The user's ability to look éhead from a slot to later
parts of the layout enables the overall layout to be optimised, rather:
than the contents of each slot. Actual figures on the improvements

to the layout are given in Table 3 below.

Due to the increased packing density of the layoht after
intefactioh3la large blank séace is left at the top of the board.
Theve are 5 number of ways of dealing with this, depending on the
user's réqqi;ements. 'The layout may readily be expanded in the Y
direction so'as'to fill the whole board space. Alternatively it

may be left as it ié, or re-laid out on a smaller board.

10.4.2. Interaction With Circuit B

The modified layout of circuit B is shown in Fig. 10.9 and
may be cdmparéd with the automatic layout of Fig. 10.8. It can be
seen that interaction has reduced the layout size to bring it well
within the bounds of thé board. Two basic interaction strategies
are used for this layout. The first, as for circuit A, involves
_ recognising that some components developed from a base node produce
2 number ofnqonductors which are routed up to higher slot levels.
These components, such as TRY4 in the bottom slot of Fig. 10.8, are
thus movéd‘up to a higher level so as to reduce their connected

conductor lengths.
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Removal of TR4 from the bottom slot leaves room for further
~ components in the slot (D3, Cl and R1) and consequently gives a
greater packing density. The layout is continued and components
such as TR4 are moved upwards to higher levels until most of their
nodes can be connected to adjacent conductors. The moving of a
component up to a higher level consists of deleting it from all the
slots it appears-in until the required level is reached. This ié
sometimes tedious and could possibly be improved by ha&ing a further

mode of interaction to pull components upwards.

The second interaction strategy involves arranging the
desired oriéntations of components. An exampie is given by components
R13 and R15 in Fig. 10.9. Previously'the components were orientated
vertically in‘the slot across the top of R8 and TR2, and bounded by
C3 .and R2.. This géve a-greatép height to the layout and left spare '
spéce in higher slots to the left of the componénts. The two
components are re-arranged by deleting R13 from the slot. This
leaves sufficient space for R15 to be orientated horizontally. R13
is then orientated horizontally in a higher slot. The same technique
is élso used to move component C2 from the right hand side of the

board to the top of the layout.

One important point noted during interaction is that
modifications to a layout should be made at lower levels first. If
this is not done, a later modification at a low level will delete
the layout and modifications above that level. In some cases, such
as bulling a component down to a lower level, this is unavoidable

and means that the higher level changes will have to be made again.
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10.4.3 Interaction With Circuit C

The modified layoﬁt'of circuit C is shown in Fig. 10.12.
Comparing it with the automatic layout of Fig. 10.11 it can be seen
that interaction hés made a considerable improvement to the layout.
The techniques used to improve the layout are-similar to those
described for the previous two circuits. An additional strategy has
also been uséd, based on the observation mentioned in section 10.3.3
that a number of components are crossed by the same three or four
cbnductdrs. The lengths of these conductors can be considerably
reduced by arranging that the crossed comﬁonents are édjacent to
each other; The results of this strategy can be seen in the centre

and right hand side of the layout.

At Higher levels of working on the iayout, the time taken to
make a modification becomes quite notiéeable. This is due to the
fact that the layout and the ‘display are completely regenerated up
to the level of thé modification. Possible improvements to this
situation are discussed in Chapter 11.4. - The modified layout still
contains a numbér of long parallel conduétor paths. It is possible-
that with further interaction some of these paths may be reduced in
length. It is a general point, however, that the improvéments»to a

layout are ultimately limited by the circuit topology..

10.4.4 Comparison of Interaction Results

The "goodness" of a layout is difficult to specify. It
depends partly on the overall appearance of the layout and partly on.
the user's special requirements. Often, two éompletely-different
layouts of the same circuit may be equaliy‘satisfactory. For this

reason two simple criteria are used for comparing layouts generated
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with and without interaction. These are the total conductor length
of the layout and the overall height of the board used by the

layout algorithm. The comparison of circuits is made in Table 3

below.
Circuit | A B C
Conductor length without interaction 2446 5548 11802
Conductor length with interaction 1185 3714 6972
Percentage reduction in length 51% 33% 41%
Layout height without interaction ‘ 82 174 152
Layout height with interaction 62 130 11y
Percentage reduction in height _ 24%‘ 25% 25%

Table 3 Improvement of layouts with interaction

The storage requirement of each of the three circuits is

approximately the same as that given in Table 2. The storage space
iy
used cannot be measured accurately as it is dependent on the amount

of interaction carried out to generate the layout.

10.5 Comparison With Manually-Generated Layout

- The modified layout of circuit B shown in Fig. 10.9 is
compared with a manually-generated layout of the same circuit,
shown in Fig. lb.lO- The main difference between the two is that the
manual layout makes far more use of the space under components for
conductor routing. This is in contrast to the topological method
which uses component crossings only as a last resort when inserting
branches into the graph. The consequént résults are that the computer
layout requires a larger board area with a greater proportion of the

space taken up by conductor paths.
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A further difference is that the manual layout has all the
components placed in the same orientation. This is usually done to

assist the manufacture of the board and to give it a more pleasing

appearance. Thé computer layout:tehds to pack thevcomponents in a
number of different orientatiéns so as fo make better use of the
available board épace. A similarity between the two layouts is the
number of parallel conductors across the top 6f the board. Both

approaches have similar problems of préserving the planarity of

conductor paths on a single-sided board.

The overwhelming advantage.of the computer methoins the
time taken td produce the layout. ‘A draughtsman would t%ke several
hours to produce the completed‘layout diagram. The computer method
takes minute;x%roduce an'initial layout with perhaps half an hour of
interaction time to improve the layout; In addition, the output of
the program may be used to drive a mechanical plotter to produce the

finished drawings of the required accuracy. For a large layout the

corresponding saving in time can be several weeks.
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Chapter 11 Discussion of Method and Improvements

It‘is clear from the previous chapters that a feasible
method has been developed for the deoign of printed wiring:boards.
Therg are a number of improvemonts and alterations that should be
made to the method to make it more useful to the industrial user,
for whom it is intended. These includezchanges both to the basic
algorithms and to the ways in- which they are organised in the
computer system. Many of the alterations.: are dependent on the
type of hardware available to the user and the type of board layouts

which he wishes to design,-

11.1 Improvements to Topological Algoritnm

The layouts illustrated in Chapter 10 show that the present
ﬁopological algorithm produces grapns which are quite adequate for
the type of board layoufs considered. One possible improvement lies
in the method of searching for paths to insert non-planar link
branches into the pseudo-planar graohn. At present a search is made
from the regions around theAstart node of the branch to a region
containing the target node. When several non-planar branches have
a common start or target node, the search method can result in
conductors following parallel paths under components as shown in
Fig. 11.1(a). Examples of this can beuseen in the crossing conductors

of components R19 and R25 in Fig. 10.12.

The suggested improwement to the algorithm is that the
search tree should also include regions which contain link branches
that are already connected to the start or target node. The branch
to be: inserted may then be connected to one of these link branches

so as to avoid parallel conductor paths under components to the
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(a) ‘ (b)

Fig., 11.1 Improvement to conductor routing

L
start or target nodé. The method is illustrated by Fig. 11.1(b).
Link branch PQ is already in the graph and a search for path RQ
yields a target region containing the branch PQ. 1In this target
region PQ may be divided in two by the insertion cof an extra node,
N. The conductor path RN is then inserted as shown. This reduces

the board area required for conductor routing and leaves more space

under components for the insertion of further non~planar branches.

- Non-planar component branches are inserted into the graph
by splitting nodes and "hopping over'" the cohdpctors joining the
two parts of each node. The number of nodes that can be split is
limited by the physical dimensions of the component. At present,
if the limit of nodes split is reached before a path to the target
node has béen foﬁnd, the componeﬁt is removed from the graph as
non-planar. A possible improvement is to add a conductor branch
to one end of the component at this stage. The path seafch may

then be continued by crossing this conductor under other components.
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Some components such as p;tentiometers, indicator lamps or
test points may have to be mounted adjacent to one edge of the board
for accessibility. At present the user can move such components
towards fhe edge of the layout by interaction¢ He cannot guarantee
to place them on the very edge of the layout due to the existing
circuit topology. One way of solving this problem is to define a
special pseudo branch in the graph which connects the component in
question to one of the two end edge.connector nodes. . If the pseudo
branch cannot be-deleted as non-planar and cannot be crossed by
conductors; the component will automatically be placed in the graph

adjacent to the outside edge. The pseudo branch may later be

removed when the pseudo planar graph ‘is complete.

A limitation of the present program'is'that the connections
of components té the edge connector pins have to be completely
specified'béfope the layout is started. If often occurs that a
circuit may have several input or output nodes whose order of
connection~to the edge connector is not critical. In such cases -
the layout can frequently be- improved and some non-planarities
eliminated by re-arranging the order of nodes connected to the

edge pins.

A possible solution to the edge connector problem is
illgstrated in Fig. 11.2.- Three components, Cl, C2 and C3 which
form part of a éircuit aré to be connected to three edge connector
pins, 1, 2. and 3. An-arbitrary assignment of component-to~edge
pin connections may produce non-planarities as shown in Fig. 11.2(a).
This can be prevented by temporarily conneéting the components and

edge pins to a common node, ‘N, as shown in Fig. 11.2(b). The:
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{a)

Fig. 11.2 Connection of components to edge connector

circuit data structure is then operated upon by the planarity

algorithm.

The components and edge pins are connected to the same
temporary node so their order of connection to it will be
determined by the planarity algorithm. There will also be no
non-planarity for that part of the circuit. When the planar
graph is completed, the component-to-edge pin connections can\be
re-assigned and the temporary node removed as'shown in Fig. 11.2(c).

The same technique can also be used for integrated circuit components

with multiple inputs.

The present planar grapH algorithm is initialised with the
assumption that the board to be'laid out has an edge connector.
It can be modified if neceséary to deal with béards which have no
edge connector. In this case, a search is made through the totalv
graph to find a closed path of branches. This path is taken as the

outside edge of the graph and all its branches  are marked so that

they cannot be crossed by conductors. The plapérity algorithm then
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proceeds as before. The laying out of such a graph is discussed in

the next section.

11.2 Improvements to Layout Algorithm

Examination of the layouts in Chapter 10 shows that a number
of improvements to the layout algorithm are possible. One of the
more obvious imprcvements is to conductor paths such as those
shown in Fig. 11.3(a). The reason for such paths has already been

®

(a) (b) (c)

Fig. 11.3 Improvement to conductor paths

explained in Chapter 10.3.1 and the shortening of them is a
straightforward task. The list of placed components is searched
to ensure that none lie in the space between the two compénents.
If the space is clear, the croséing conductors may theg be routed
as shown in Fig. 11.3(b). Ideally the two components should also
be placed adjacent to each other so as to conserve board space.
This involves further checking to ensure that the comporents are
not at different levels or of different sizes such as those shown

in Fig. 11.3(c).

A further improvement involves the routing of conductors
under components. At present conductors are allowed under components
only at crossing points. All other conductors are routed around the

components as shown in Fig. 11.4(a). The proposed improvement is to
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(a) | (b)

.

Fig. 11.4 Improvement to component spacing

allow conductor routing under components as shown in Fig. 11.4(b).
This would enable the closer spacing of components and hence
improve the board packing density. To implement this change it is
necessary to compute the pin positions of all adjacent components
so as to ensure that there is sufficient space for conductors
between the pins. The user must decide in this case whether the

saving in board space justifies the extra computation time required.

At present the layout program uses a standard conductor
width for the whole layout. This is generally the way in which
béards are designed but occasionally some conductors need to be
of greater width to carry increased current. There are several
possible solutions to this problem. One is to assign a cénductor
width to each circuit node at the data input stage. AThe corresponding.
width is then used during the layout construction. A second method
is to define two or more parallel conductors between the appropriate
points. During the layout stage the parallel ﬁéths are merged to

form one conductor. of the required width.

Many of the orthogonally routed conductor paths produced by
the layout algorithm could be considerably reduced in length if

diagonal routing were allowed. This has not been done at present
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due to the problem of having to rigorously check the: clearances’
between diagonally routed conductors whilst constructing a layout.
One possible way of reducing conductor lengths is to allow interactions
with conductor paths; this is discussed in the next section. Another
possibility is to complete the layout then operate upon the data;f
<

structure with a further program. This program would merely "round

off" and shorten the existing conductor paths.

The problem of laying out boards with no edge connector has
already been-mentioned in the previous section. It may be dealt with
" in a straightforward mannare Instead of developing the initial
working list of the layout from the edge connector nodes, the list
is filled with components from the outside‘edge of the graph.

These components are posirioned in- the first slot along the lower
edge of rhe board. The layout algorithm may'then proceed in the

normal way to complete the layout.

A further extension to the‘layout algorithm would be to
allow for obstacles in the layout. .The obstacles could be such
things as handles or fixing holes on the board. The program would
require some form of "look ahead" capability when positioning
components; It would ensure that conductors from the completed
part of the layout could be routed around the obstacle and up to.

a higher level as shown in Fig. 11.5. If this feature were
implemented it could also be used to deal with irregular shaped
boards; The board shape would be defined as a rectangle with parts

masked off by obstacles as shown in the example of Fig. 11.6.
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Fig. 11.6 Definition of irregular shaped board
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Further imprcvements to the basic layout algorithm-lie in
' the experience gained from using the interactive display. It is
hoped that the insight gained from some of the interaction
techniques can be incorporated into the automatic algorithm to

. improve its performance. One such-technique already prdppsed is
tﬁat components with many nodes and crossing conductors rcuted up
to higher levels shquld themselves be movéd up to higher siot
levels. _Thig wcdld reduce the lengths of conductors attached to

these components and improve the component packing density.
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A further facili}y that could be ;dded to the layout
algorithm concerns the non-planar branches removed from the pseudo
planar graph. At present a list of these branches, if any, is
printed out when the pseudo planar graph is completed. The user
later has to find the appropriate conductor paths in the layout to
which wire jumpers ma} be connécted. It would be a useful facility
if the la&out algorithm were to find the shortest distance between

each pairof nodes to be connected and indicatethe required paths

for the wire jumpers.

11.3 Improvements to Interaction

There "‘are a number of improvements. that can be made to the
interactive facilities available, some fairly simple and others of
a more fundamental nature. One improvement immediately obvious to
the user is the reduction in time needed to make a modification to
the layout. Modifications.near the top éf circuit C in C in
Fig. 10.22, for exémple, take from lb to 15 second$ to be implemented.
This is because the whole current layout has to be deleted then
reconstructed up to the modification. This method has been used
for the ease of programming although it ié obviously not the most
efficient way of using computer time. Methods for improving the

interaction time are discussed in the next section.

It has been found from experience that a user may spend,
say, half an hour interacting Qith a layout to obfain a satisfactory
solution. On examining a hard copy of'the display, a number of
‘further improvements to the layout often become appafgnt. Béfore
these improvements can be made in a later interaction session the

whole procedure of modifying the layout has to be repeated. One
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_solution fo this difficulfy is to store the list of changes made to
the layout on magnetic or paper tape. At the start of the next
session, the 1list of changes can be read in and the whole modified

layout built up automatically.

For large layouts there will be problems in displaying the
whole board with sufficient detail to allow interaction. The most
obvious solution is to '"scissor" the display so that only a portion
of the layout is éeen, magnified to fill the whole screen. The
display may then be considered as a "window" which can be moved by :
interaction over a much larger diagram of the whole layout. Thi§

facility should be ‘implemented in the display software as it does

not affect the basic layout algorithm.

The question of display software leads on to the problem of
allowing interaction with the conductor paths of a layout. 1In a. |
large layout there are many hundreds of conduﬁtor path change points.
If every one is to be identifiable by the light pen it muét be
represented by a separate segment of display file.. The storagé
requirement for. the display file will then be considerably increased.
A way out of this difficﬁlty, again, is to scissor the display so
that only a small portion of the layout is seen at any one time.

This will result in a corresbonding decrease in the length of the
display filé.'. |

At present the user can alter the orientation of any
component and put it into a particular slot by means of interaction.
From then on the layout algorithm automatically positions the
compoenent in the slot, with clearances for adjacent conductors.

All elements are placed in order from the left so that any spare
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space is always on the right hand side of the slot.

A useful additional mode of interaction would be the
ability to provide manual blacement of components and conduétors
within a slot. This would allow the user to Qverride the automatic |
algorithm. He éould then pléce-components towards the right hand
side of the slot if desired, or pack thém more closely by allowing

overlap with conductors as shown in Fig. 11.u4(b).

Experience of using interaction has shown that however much
a layout is modified there are’usualiy some long conductor paths
that cannot be shortened. Component R12 in Figs. 10.6 and 10.7 is
é good example; its connections must always be routed around the
outside edge of the layout. The reason for this is that the circuit
topoiogy remains unchanged by interactive modificationslto the
layout. -Again, it.has already been noted that a short conductor
pafh in the'topologicai model doés not necessarily give a short

path in the layout. -

Thé two points just noted could be improved b} having a

. deeper level of interaction which would allow the user to modify

the topology of the layout. Conductor paths could then be redefined
\

so that although they crossed under more components their physical

‘lengths were shorter. The modifications to the topology would have

to be made by indicating which components in the layout were to be

crossed by each new conductor path. Although it is possible to

in%eract directly with the graph, it is difficult to visualise>the

layout from a aiagram of the topological model. It would also be

necessary to generate a display of the graph which is'a considerable

task in itself.
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11.4  Improvements to Computer Organisation

There are a number of ways in which the layout program may
be improved to make better use of the computer time and storage.
These have not been implemented at present because of insufficient
programming effort available and the fact that some of the computer
facilities have been improved since the program was written. Several
of the improvements discussed are intended for the present 4130 -
PDP-7 system and might not be applicable to a different computer

system.

An important improvement that could be made is in the time
taken to make a modification to the layout by interaction. The
4130 computer now has a disc-based FORTRAN system which was not
previously available. The disc systeﬁ enables data to be stored

and later retrieved at a high rate whilst the program is in operation.

The proposed modification is that the current state of the
layout is recorded at the completion of each slot processing. When
the contents of a slot are modifiéd, the layout can be cut back to
the previous slot level instead of having to rebuild the whole
layout as at present. The problem still exists fér PULL mode where
a component can be pulled down below the previous slot level. In
this case the reconstruction time could still be reduced by saving

the state of thellayout at selected lower levels.

When adding the contents of the latest slot to the layout,
‘the current program completely regenerates the display file in order
to show the latest slot; This means that as the working level of -
the layout increases and the display file becomes longer, the

algorithm will take correspondingly more time to progress from one:
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slot to the next. The reason for using this method is that conductors
are routed upwards through successive slots as continuous paths. With
the present program there is no way of telling which part of a path
has already been displayed. The whole display file is therefore

deleted and then regenerated.

The display software allowé the user to build up a display
file as a series of segments. Later additions can be generated as
separate segments and added onto the end of the existing display
file. The use of markérs or extra elements in the conductor path
data structuré could be uséd to indicate which parts of each
conductor havé alréady beén displayed. Only additions to the
display need then bé génératéd and transmitted over the link,

" thus speeding up the layout program.

With the layout of very large circuits the program will
run into problems of storage. space for the data structure and
display filé. Théré are several possible solutions depénding on
the amount of storage space required. A number of elements in the
data structure such as branch typé markers and orientation markers
are small integers so that several of tﬂ;m could be packed into one
24 bit computér word. This would decrease the storage requirements

of the data structure and has already been done in the case of

conductor path change points.

A moré drastic approach would be to divide either the
program or the data structuré into sevéral sections. The sections
would befswapped between the disc and the core_sto?e during the
running of the program. Only the reguired sections of program and

data would then be held in the core store at any one time. Whichever
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method is used, the program will take longer to run due to the extra
unpacking of integers or the swapping of sections. The storage
requirements of the display file can be alleviated by displaying

only part of the layout at a time. This should be fairly easy to

do if scissoring is available as parf of the display software.

11.5 Extension to Double Sided Boards

Thé present version of the program deals with single sided
bqards as thesé have been most widely used up to now . Industry is
making increasing use of doublé sided boards so it would be
advantageous to extend the program to deal with sucb boards. Major
changés would bé nécéssary both to thé topological and to th‘

layout algorithms.

To exténd the program to doublé sidéd boards, thé fopologicgl
data structure has to bé modified so that conductors can be assigned
to oné or othér sidé of thé board. Componenf and pseudo branches
have to be duplicated for the two sides of the board because every
component pin hole appears on both sides of the board, at a defined
. distance from thé remaining pins of its component. -The suggested
approach is that the graph of the circuit is operated on by the
plaﬁérify algorithm to produce a planar graph for one side of the
board. The resultant non-planar branches togefher with the components
already in %he first planar graph-are then operated ubon to produce

a second planar graph for the other side of the board.

When the first planar graph is subtracted from the total
graph some parts of the remaining graph may become disconnected from
‘one another. The second pass of the planarity algorithm must

therefore be able to deal with a graph which is composed of several
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isolated subgraphs. Following the two passes of the planarity
algorithm there may still be a’few non-planar branches. These can
be inserted into either of the two planar graphs by the methods

described in Chapter 5.

The layout part of the algorithm also requires modification
for double sided boards. Two base and two working lists are required
forvthe two sides of the board. Only one slot profile list is
required as components are placgd on.one side of the board only.

The sizes and positions of successive slots are calculated from the
slot profile list as before but in each slot, two base lists are
developed simultanéously. Components and conductor paths‘are then
placéd in thé slot in a similar manner to the present program. The
display génération subroutiné also requires modification so that the
conductor paths on éithér side of thé board can be distinguished.

The modifications éuggested will require considerable re-organisation

of the program but should be rewarded by its increased usefulness.

11.6 Integration With an Industrial Environment

The current program has been developed to a state where it
is possible to design a layout for a given circuit and set of
components. The program output is in the form of one diagram which
Eontains the essential information needed to cénstruct a érinted

hl
wiring boérd. There are a number of ways in which the program can
be modified, mainly at the input and output stages, to provide more
detailed and accurate data for the actual manufacfure of boards.

These modifications have not been implemented because they are

dependent upon the individual user's requirements and.computer system.

'
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The first such modification that could be made to the program
is the form of data input. At present there are possible sources of
error in labelling the nodes on a circuit diagram, in extracting the
component connéction data from thé diagram and in punching the data
onto papér tapé. A possiblé solution is to use thé light pen and
graphical display to draw the circuit diagram directly as input (32).
At the same time the program can build up the corresponding
topological data structure. This method has the advantage that any
errors in the circuit description are far more easily detected from

.a graphical display than from a written table of data.

. In some cases the user may initially employ a circuit
analysis program to predict the performance of a circuit. The
intérconnéction data of thé circuit may then be fed directly into
the layout program. This removes the possibility of errors at the
input stage of thé layout program. The user can be confident that
,thé layout producéd corresponds to the original circuit analysed.
Thé présént program also réquirés a component library to be read in
for éach board layouf. Whéré thé usér has a data bank of standard

components, this may replace the function of the component library.

On the output side of the layout program there are a number
of possible improvéments, dépénding on the equipment available to
the usér. The layout diagrams shown in Chapter 10 may be divided
into two separate diagrams. One diagram would show the conductor
paths so that a mask could be produced for etching the conductor
pattern onto the printed wiring board. The second diagram would
show the placémént of components on the board and would be used when

assembling the board.
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The data structure representing the layout is flexible in
use and may be processed by other programs to produce the type of
output aata required. One possibility is to produce a data tape
for driving a mechanical plotter fitted with a light source and
light sensitive paper. This would enable etching masks to be
produced directly. A further possibility is to produce a data
tape to operate a numerically-controlled machine for drilling the

component::;pin holes in the board.

11.7 Discussion of General Points

As can be seen from the results in Chapter 10, the program
produces a layout in which components are packed onto the board so
as to make the best use of the availéble board space. The method
is ideally suitéd to circuits which contain a number of different
types of component such as resistors, capacitors, transistors and
integrated circuits. The program in its bresent form is not suitable
for circuits which contain mostly integrated circuits in a fixed
matrix of positions on the board. Such boards place considerable
constraints upon the algorithm and so are more appropriately laid

out by one of the methods described in Chapter 2.

The data structures described in Chapters 6 and 9 use a

&

variety of configuratibns, such as one-way lists, two-way lists and
rings. These different types of structure are easily implemented
by the use of the macro generator (Appendix A). It has been found
that by matching a typé of structure to the particular problem being
solved, the programming is simplified and the storage space is
efficiently used. This dontrasts with other data structure systems

in which only one configuration and hierarchy of elements is allowed.
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The main disadvantage of using a mixed type of data structure is
that programming errors, such as obtaining a pointer to a non-
existent block, can be difficult to trace unless comprehensive

checking procedures are used.

The current program has been developed for the design of
printed wiring boards. Some of the algorithms used may be applied
to other design problems. An obvious application is the design of
integrated circuits where similar problems are encountered, although
on a different physical scale. The relevant problems are those of
.arranging a number of components of varying sizes and shapes upon a
plane surface and routing interconnections between them. Although
it is not strictly nécéssary, it is preferable that the interconnection
pattern is planar. The algorithms may also be used in other
applications where it is necessary to design a set of paths befween
interconnected objects. One such possibility (14, 155 is the

optimum layout of the rooms and corridors of a building.
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Chapter 12 Conclusion

The results shown in earlier chapters indicate that a
feasible method has been developed for the layout of printed wiring
boards by computer. The-layouts considered are of single sided
boards containing discrete components of various sizes. The initial
topological approach to the layout problem - comparés favourably with
the more conventional method of component placement followed by
conductor routing. As placement and routing are performed
simultaneously, congestion of parts of the board by conductor paths
is avoided. Thé automatic part of the layout algorithm produces
uséablé layouts although it ténds to form some long parallel

conductor paths.

I3

The results also show that significant improvements to a
layout can be obtained by the usé of interaction. The graphical
display and light pen ensure close communication between the user and
the layout program. Man-machine interaction thus enables the skill
of the user to be combined with the épeed and accuracy of the layout
algorithm so as to rapid;y pfoduce a suitable layout. As the user
only interacts with the highest level of the program, he is relieved
of the detail of inserting conductor paths and checking componént and
conductor clearances. In addition, the algorithm éﬁsures that the

resultant layout corresponds exactly to the input data.

The algorithm produces results comparable with a manual
laydut,method and in very much less time. It is thus suitable for use
within an industrial énvironment. At present the results produced
indicate the positions of components and the paths of conductors.
Further improvéménts and modifications are required before production

quality drawings may be output directly by computer.
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Appendix A Use of Macro Processor

The ML/1 macro processor has been used for the programming
of data structure operations within the FORTRAN language.‘ It enables
programs to be more easily written and understood and allows data
structure definitions to be readily altered during program develop-
mént. Only thé facilities of ML/1 which have actually been used
are described here. For a more detailed description of these and

other facilities, the ML/l Users Manual (4) should be consulted.

The ML/1 macro language provides general purpose macro
procéssing.facilities which can be used to process any piece of
téxt. Thé processor réquirés an énvironmént which defines the
macro calls that are to be uséd. fhe input and procéssing of a
piecé of téxt is terméd thé evaluation of the téxt and thé resultant

oﬁ%ﬁué ié térﬁed’%ﬁe’éﬁ%éﬁ%ugegé. ’Thé ﬁrocééSor allows macro calls
%o épbeér énywﬁeré in %ﬁé'téxé aﬁd éllows én§ nﬁmber of paraméférs
to bé.associatéd with each call. Thé macro calls are of two types.

Operation macros are defined as part of the system and are used to

set up the environment. The three operation macros which have been

used are MCSKIP, MCINS and MCDEF. Substitution macros are those

defined by the user for specifying the way in which the text is to

be evaluated.

MCSKIP

The operation macro MCSKIP allows parts of the source text
to be skipped over during the evaluation of text. The macro defines
a pair of delimiters, or skip names, which may appear in any number
of places in the source text. The piece of text between each pair

of delimiters may be copied over to the output text. Any macro
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calls within this piece of text, however, will also be copied over

and will not be evaluated.

The parameters of the MCSKIP macro are three optional
characters followed by the skip names. The optional characters are:-
M - indicates that the two skip names are to be matched in
pairs.
T - indicates that the text within the skip is to be copied
to the output.

D - indicates that the skip names are also to be copied.

The MCSKIP macro has been used in this application as part
of the definition of substitution macros, described later7 The
macro call used is:

MCSKIP NT, < >;

¢
The skip names are < and > and the final semicolon is the delimiter
of the macro call itself. This call defines a matched pair of skip

names such that the text between each pair will be copied over to

the output text but the skip names themselves will not be copied.

MCINS

When‘defining a substitution macro, it is necessary to
indicate wheréabouts in the replacement text the parameters of the
macro call are to go. This is done by using an insert to indicate
the relevant place for each parameter. The insert call itself has
one associatéd parametér to définé which parameter of the substitution

macro call is to be inserted.

An insert is defined by use of the MCINS operation macro.
The definition consists of an insert name followed by a delimiter

which indicates the end of the insert parameter. As the insert -
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is associated with the definition of substitution macros, its

insert name must be a string of characters which will not appear

anywhere else in the source text.

As an example, the insert used for this particular application
is described here. The insert is defined by:
MCINS XX . .;
where XX is the insert namé and . is its delimiter. An example of
an insert call is then:
XX A2.
where thé paraméter of thé call is A2. The 2 indicates that the
sécond parameter of a substitution macro call is to bé inserted
into the output text. The A indicates that.al; leading and trailing

spaces around the parameter are to be suppressed.

MCDEF
The operation macro MCDEF enables the user to set up a

substitution macro. The definition of a macro consists of three

parts, a macro namé, a delimitér structuré and a replacement text.
Thé macro name is thé string of characters by which the macro call
is idéntifiéd. Thé delimitér structure définés the ordéf and type
of délimiters whicﬁ séparaté tﬁé parametérs of thé macro call. Tﬁé
replacémént téxt définés tﬁé output téxt and'paraméters which aré

to replace the original macro call.

An example of a typical macro definition is shown below.
This particular macro is used to refer to the contents of the head
of a data block. It is called with one parameter which is a pointer

to the first word, or head, of the block. The data array to which

- the block belongs is called IRAY. The macro definition is thus:
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MCDEF HEAD( ) AS <IRAY(XX A2.)>;
When the macro is called with one parameter, for example POINTER,'it
produces the following substitution: |
HEAD(POINTER) + TIRAY(POINTER)

Reférring again to thé définition above, the macro name of
this définition is HEAD. Thé first and sécond delimiters of the
definition are ( and ) respectivély. The word AS then acts as a
separator between the delimiter structure and the replacement text.
By convention, eachAparamétér of a macro call precedes its
relevant delimiter so in thé above ekample it is the sécond

parameter which is to be inserted into the replacement text.

Whén thé procéssor is actually évaluating a macrovcall, it
first évaluétes the arguménts of.thé macro‘définition. This allows
for thé caéé in whicﬁ ‘the macro définition contains a call to
another macro. For this reason, the replacemént téxt of a macro
is énciosed by a matchéd skip so that it is not eyaluated during

the definition of the macro.

[

Use of a Maéro Procéssor

) To use tﬁé_macro processor, a paper tape is first pfepared
containing all thé macro definitions which will be required. The
procéssor program tapé is thén read into the PDP-7 computer,
followed by the macro définition tape. This sets up the enviroﬁment
so that thé processor is ready to evaluate any number of source
tapes. As?éach source tape is read in and evaluated, the source
text is coéiéd ovér fo an output paper tapé until a macro name is
idéntifiéd. The appropriaté réplacément text ié output thén thé

evaluation of source text continues.
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Three examples of the use of macros are shown below. The
first example is a macro that refers to the first node.to which a
branch is connected. The macro definition is:
MCDEF BNODE1( ) AS <IRAY(XX A2.+1)>;
Thé resultant substitution is:
BNODEL (BPTR) =  IRAY(BPTR+1)
The secondﬁéxample is a macro which refers to the X co-ordinate of
the Nth pin of a master component block in the component library.
Its definition is:
MCDEF MCORDX( , ) AS <IRAY(XX A2.+114XX A3.+XX A3.)>;
and its resultant substitution is:

MCORDX(MPTR,N) > IRAY(MPTR+11+N+N)

Thé third éxamplé shows how the markér in thé héad of a
componént branch block may bé définéd as an intéger number. Thé
définition is:

MCDEF MARKCB AS <1000000>;
A statément containing two macro calls:
HEAD (BRANCH) = MARKCB
will result in the following FORTRAN statement:
IRAY(BRANCH) = 1000000
All thé operations on thé déta structufé for thé layout algorithm

are defined in a similar manner by the use of macro calls.
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Appendix B Display Software

The interactive display software enables the user to generate
a graphical display and to use it for interaction with his program.
The software is organised into two parts, one part residing in the
ICL 4130 computer and the other part in the PDP-7 computer. The set
of subroutines in the 4130 méy be called from the user;s FORTRAN
program. These subroutines generate and operate upon a display file
which is held in a large array. When a new display file is generated,
or modifications are made to an existing display file; the relevant
parts of the file are transmitted over the high speed link to the

PDP-7 computer.

The software in the PDP-7 includes a Link Executive program
which controls the data transfers in both directions over the link.
Whenever a display file or modification is received from the 4130,
the display file in the PDP-7 is immediately updated so that the
change is seen on the Type 340 display. The software also services
the display tracking cross and handles interrupts from the light pen
and Teletype keyboard. When an interrupt occurs, thelrelevant data

is assembled into a four-word attention block. This block may then

be transmitted back over the link to the 4130 when requested by a

call from the user's FORTRAN program.

The FORTRAN display and interaction subroutines associated
with the user's program are described below. Only those facilities
which have actually been used for thé layout algorithm are described.
"For a more détailed description of thesé and other facilities, the

system description (11) should be consulted.
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1. Generation of Display File

The first subroutine that must be called before generating a

display file has the calling sequence:
CALL DEFPIC(IFILE, LIMIT)
The subroutine passes over to the display softwafe the name of the
array which is to hold the display file, IFILE. The maximum
allowable size of this array is defined by the value of LIMIT.
The seéond subroutine which must be called has the calling séquence:
~ CALL SENTER

This subroutine initialiseé all the display subroutines and causes a
set of character definitions to be read in from magnetic tape. The
characters are defined as Aisplay subroutines because no character

generator is, available.

The basic subroutine for plotting points on the display has
thé calling sequénce:
CALL MOVETO(IX,IY,VIS,ISCALE,INfENS)
where IX and IY are the feQuired co-ordinates of the point. VIS is
a logical variable which determines whether or not.the point is
visible. The value of ISCALE sets the scale of-thg following display

file and the value of INTENS sets the display intensity.

The basic subroutine, for drawing straight lines has the
calling sequence:
CALL LINE(IDELX,IDELY,VIS)
where IDELX and IDELY are the required X and Y displacements from
the éurrent beam position. The logical variable VIS determines

whether or not the line is visible.
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The software has facilities fér generating and calling display
subroutines. A display subroutine may be generated at any .point in
fthe display file but its definition must be complete before a call
is made to the subroutine. Every display subroutine is-assigned a
unique szstem name by the software. The system name is, in faet,
the index of the display file array at the first element of the

subroutine.

A display subroutine definition is commenced by the calling

séquence:

CALL DEFSUB(NAMSUB)
The value of the variable NAMSUB is set to the system name of the
subroutine by the display software. The lines and chéractefs
défining thé subroutiné are thén generated by calls to thé appropriate
routinés. The definition of thé display subroutine is concluded
by the calling séquencé:

CALL ENDSUB(NAMSUB)
Whénever an instance of the display subroutine is then required, it
isiobtained by célling: ‘

| 'CALL CALSUB(NAMSUB)

Two functions are available for generating alphanumeric
characters. The first one displays a single character and is
called by:

NAME = CHAR4L(NCODE)
where. NCODE is an integer code for the character to be plotted.
The character is defined as a display subroutine so its system name
is assigned to the variable NAME. fhis means that copies of the

character can then be displayed by calling it as a display subroutine

with the parameter NAME. The second function enables a string of
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characters to be plotted. It is called by:
NAME = TEXT(IARR,N)
where NAME serves the same purpose as before. IARR is the name of
an array whiéh contains the codes for the characters to be plotted,

packed four to a word. N is the number of characters to be plotted.

Whéen the whole display file has been generated it is
terminated by the calling sequence: |
CALL DEFPIC(IFILE,MEDIUM)
where IFILE .is the display file array. MEDIUM is an integer variable,
the value of which determines whether the display file is transmitted

over the link to the PDP-7 or is punched out on paper tape.

2. Display File Editing

The display'éoftware énables thevdisplay file to be divided
into a number of ségments. Thésé ségments are linked togéthér in a
simple list so that each segment may be displayed in turn. When
extra segments are added to the list, or existing segments deleted,
vonly the differences in the display file are transmitted to the

PDP-7. This, considerably reduces the amount of data sent over the

link when making small changes to a'large display file.

Eyéry ségmént ﬁas a fﬁréé word Héadér block followéd by a
sécfion of display filé. Tﬁé héader block confains a pointér to
the nexf segment in the list, a system name and a user name. The
system name - is merely the array index of the first word of the
segment. The user name is an integer value which the‘user may

associate with the segment.

The display software automatically creates the first segment

at the start of the display file. When another segment is required,
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it is obtained by calling:
ISEG = NEWSEG(LABEL)
ISEG is assigned the system nameé of the new segment and LABEL is its
user name. Whenever a new‘segment is opened, the previous segment

"is automatically terminated.

An alternative method of creating a segment is by calling
. the function:
ISEG ; INSTAT(IX,IY,NAMSUB,LABEL)
This function is used to create an instance of the display subroutine
NAMSUB at the co-ordinates IX and IY. ISEG is assigned the system

name of the segment and LABEL is its user name.

After any‘segment has béén défined, its display scale or its
intensity or both may be altgred by calling:
CALL CHINTS(ISEG,ISCALE,INTENS)
ISEG is the system name of the segment and ISCALE and INTENS are the

new values of scale and intensity respectively.

Segments can be deleted from the display in a number’ of
ways. A segment may be temporarily dele?ed by‘the calling sequencé:
CALLlREMOVE(iSBG)
where ISEG is the system name of the segment. The segment disappears
from the visible display although it remains in the display sequence.
'

The segment may be restored by calling:

CALL RESTOR(ISEG)

The second method of deleting a segment removes the segment
permanently from the display file so that the corresponding array
space may be used again. Any display subroutines in the segment are

thus deleted as well. All calls to these subroutines are therefore
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removed from the remainder of the display file by the display

software. The required calling sequence is:

CALL CANCEL(ISEG) ¢

The third method of deleting a segment is by the calling
sequence: -
CALL DELETE(ISEG)
This removes the segmént from the display sequence although it
remains in the display file array. The method is used for segments
whiéh contain only subroutine or character definifions that are not

to appear in the display until called from later segments.

3. Light Pen and Keyboard Interaction

When using interactive computer graphics, the light pen and
Teletype keyboard on the PDP-7 computer are the means by which the
usér communicatés with his program. The light pen enables parts of
thé Aisplay file to be idéntifiéd and the keyboard énables single
characters to be sént to a FbRTRAN program in the 4130 computer.

\

As the PDP-7 computer cannot directly interrupt the FORTRAN program

in the 4130, it stores an attention block. This block may then be

read from the FORTRAN program to determine which device in the

PDP-7 caused an interrupt.

Before the light pen or Teletype can cause an interrupt
they have to be enabled. This is done by the following call from
the usef's FORTRAN program:

| CALL ENABLE(I)
The parameter I is an integer whose value determines whether the
light pen or the Teletype keyboard is to‘be enabled. A similar
subroutine call allows the user to disablé either device at any

stage of the interactive program.
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Every segment of the display may be made either sensitive or
non—seﬁsitive to the light pen. This allows the user to organise the
display file so that light pen interrupts are obtained only from the
relevant parts of the display. A segment is made sensitive to the
light pen by the call:

CALL MSSLP(ISEG)
Pointing the light pen at a display segment will thus cause an
interrupt only if the segmént is made sensitive and the light pen

is enabled.

The user's FORTRAN program can be made to wait for an

interactive operation by the call:
CALL ACTION(IRAY)

The program waits in a loop until an attention block is fgady in
the PDP-7 computer. The contents of the block are then read into
fhé four-word array IRAY. Thé first word of this array indicatés
whether the attention was caused by the light pen or the Teletype
keyboard. The second word gives the system name of the segment in
which the light pen hit occurred, or the six bit code for the
character entered on the keyboard. The following twé words give

the X and Y co-ordinates of the light pen hit if appropriate.

At some stages of the user's interactive program it may be
desirable to remove any redundant light pen hits before proceeding
to the next stage. This is effected by the call:

CALL ATKILL
The call causes the atfention mechanism to be reset so that all

attentiop blocks waiting in the PDP-7 are cancelled.
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4., Tracking Cross Routines

The display software allows a tracking cross to be used and
its co-ordinates to be read to the user's FORTRAN program. The
tracking cross is made to appear on the display by calling:

CALL TRgET(IX,IY)
The parameters IX and IY are the co—érdinates of the position at
which the cross is to appear. The tracking cross may then be
tracked by the light pen without further attention from the 4130

computer.

The current co-ordinates of the tracking cross may be read
at any time by the call:
| 'CALL -TRACK(IX,IY,ISTOP)
The parameter ISTOP is an integer variable which indicates whether
the PDP-7 has an atteqtion'block waiting. When the tracking cross
is no longer required, it can be removed from the display by calling:

CALL TRKILIL

The subroutines described here provide.the user with fairly
sophisticated facilities for interactive programming. A display
file can readily be constructed and ﬁodified by interaction. The
segmentation and naming system then. enables the user program to
rapidly determine which pért of the display was seen by the light

pen.



Glossary of Terms

Base limits

Base list

Block

Board

Bound branches

Branch

Branch component

Branch segment
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Two variables associated with a base node. They
store the extreme X co-ordinates of the node
during conductor routing.

A list of the nodes and conductors along the
bottom edgé of a slot, used during the
construction of a layout.

A group of consecutive words of the data storage
array, used to store informétion on an element
of thé graph or layout.

A thin board of insulating material which
supports the components of a layout. A pattern
of copper conductors is etched onto one or both
sides of the board to interconnect the components.
Two braﬁches associated with each part of a node
during the construction of the layout. They
indicate those parts of the node which have
already beenlplaced~in the layout.

An element of a graph which interconnects a pair
of nodes, sometimes termed an "edge" of the graph}
A component with two connecting wires or pins.
It is represented in the graph by a component
branch.

A component, pseudo or link-branch is divided
into two branch segments when crossed by another
branch. The division of brancﬁes is caused by
thé insertion of non-planar branchés into the

pseudo-planar graph.



Bridge branch.

Circuit (electrical)

Circuit (graphical)
Circuit node.
Component
éomponent branch
Component pin

Conductor

Conductor branch

Data structure
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A branch which provides the only connection
between a subset of the planar graph and the
remainder of the graph.

A specified set of components and their
interconnections which performs an electrical
function on the signals applied to it.

A set of branches which form a closed path in
thé graph.
A point of common electrical connection of two
or more components.

An element of fhé electrical circuit, such as a
resistor or a transistor.

See Branch component.
A terminal wire or connection point of a component
which passes through a hole in the printed wiring
board and connects with a conductor.

A copper track formed onto the printed wiring
board which connects one part of the circuit to
another. ,

A branch repregenting a conductor which connects
two circuit nodes. It is formed when splitting

a nodé into two parts during the insertion of a
non-planar branch.

Thé system of data blocks and pointers which is
uséd to réprésent thé graph and layout within the
computér storé and which holds details of the

component library.
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Development Duriﬁg the construction of the layout, a node in
the base list is developed by creating a list of
all the components and conductors which could be
directly connected to it.

Discrete component A component which performs a single electrical
function, such as a resistor or a capacitor. A
number of these components must be interconnected
in order to construct a circuit, as opposed to an
integrated circuit component in which a complete
circuit is included within one package.

Double sided board A board whichAhas a conductor pattern.on both sides.

Edge connectér A set of gold plated conductors along one.edge of
the board, perpendicular to that edge, to which
the externai connections of the layout are brought.
The edge connector plugs into a multiway socket to
make contact with éxternal signals and power supplies.

Edge pin One of the conductors of the edge connector.

Free region Used during the construction of the planar graph.

It contains all those nodes and branches which

have not yet been defined as part of the graph.

o

Graphical display The visual display of a layout, pioffzawgﬁﬁa
cathodé ray tube.

Intéraction Thé close communication between a computer program
and the user, whilst the program is running.

Layout The arrangement of cqmponentcpositions ;nd conductor

paths on a printed wiring board.



Link branch

Master component

Node splitting

Orthégonal routing

Part of a node

Planar graph

Pointer

-207-
A branch which connects a subgraph node to ‘its
corresponding circuit node. It is represented
physically by a length of conductor connected to
one pin of a subgraph component. -
An item in the component library which describes
all the common characteristics of a particular
group of components.
Tﬁe process by which a node is divided into two
parts, connected by a conductor branch, so that
a non-planar component branch can be inserted
into the graph.
The method of routing condﬁctors in which all
parts of every conductor lie parallel with either
axis of a réctangular'board.
A conductor path which is connected to one or
more componénts of a givén circuit node. The
node may exist in several parts during the
construction of a layout. -
A graph which ﬁay;be drawn -on a plane in such a
way that its branches intersect only at their end
points. Planarity is an intrinsic property of a
graph and so is independent of any geometrical
representation of the graph.
Used to indicate the interconnections between
blocks in the data structure. A pointer to a
block is a variable containing the array-index

of the first -element of that block.
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Pseudo branch . A branch connected between two pins of a
subgraph component or between two edge connector
nodes. It is used to represent the physical
distance between two nodes so as to limit the
number of conductors passing between the nodes.

Pseudo planar graph A graph which represents all-the components and
interconnections of a layout. It represents a
planar set of.conductor paths even though there
are a number of component/conductor branch
crossings.

Region An area within a-planar graph bounded by a

| closed path of branches.

Routing The procéss of constructing a conductor path
between two points in the layout.

Single sided board A board which has a conductor pattern on one
side only. The components are mounted on the
opposite side of the board.

Slot "An area of the board, bounded on‘three sides by
placed components or board edges. It is used as
a working area for constructing a further part
of the layout.

Source pin The component pin which connects a component to
the base node from which it was developed.

Subgraph component A component with more than two connecting wires
or pins. It is represented in the graph by a set
Qf subgfaph nodes, psgudézbranches and link |

branches.



~209-

Subgraph node A node representing one pin of a subéraph
component.

Through plated hole A copper-lined hole through a board which
makes a connection between conductors on the
two sides of a double sided board.

Tie block A two-element block which associates a branch
segment with its two adjacent regions.

Topological model The pseudo-planar graph which represents the
order of connection of all the components and
conductor paths in a layout.

Tree An ordered hierarchy of nodes and branches, used
to record the progress of a search through the
graph. |

Wire jumper An insulated piece ‘of wire connected into a
single sided board layout. It enables two
conductor paths to bé crosséd without inter-
connection.

Working list A list used during the construction of a layout.
It holds data which is processed to determine
thé conténts»of‘a sleot and the physical

co~-ordinates of these contents.
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