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Chapter 1 	Introduction 

Printed wiring boards are used by nearly all manufacturers 

of electronic equipment in the construction of their products. The 

design of a printed wiring board is a process which takes a 

considerable amount of the designer's time and is prone to errors. 

It is therefore desirable to develop a computer program which will 

quickly and accurately design printed wiring board layouts. 

The design of a layout is a complex problem and many of 

the steps are performed intuitively by a human designer. The 

writing of a computer program to automatically design a layout is 

thus a difficult task, and many different methods have already been 

attempted. A method is described here which uses the principles of 

graph theory in designing a layout. It also enables the user to 

interact with the computer to improve the results. 

1.1 Printed Wiring Boards 

A printed wiring board is a thin board of insulating 

material upon which an electronic circuit is constructed. Each 

component of the circuit has a number of terminal wires or pins 

which pass through holes drilled in the board. The electrical 

connections required to form the circuit are printed onto the 

surface of the board as a set of copper paths or conductors. The 

board provides insulation between adjacent conductors but does not 

allow conductor. paths to intersect, except where a connection is 

intended. The arrangement of component positions and conductor 

paths on a board is termed a layout. 

Printed wiring board layouts may take a number of different 

forms. Some circuits consist of components of varying types and 

sizes such as resistors, capacitors, transistors, etc. termed 
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discrete components. Other circuits consist of integrated circuit 

components, all the same size and shape and arranged in a fixed 

matrix of positions on the board. Other circuits still, contain a 

mixture of discrete components and integrated circuits, such as an 

integrated circuit amplifier with a number of feedback components. 

The conductors of a printed wiring board may be placed on 

one side of the board, termed a single sided board, or on both sides, 

termed a double sided board. In some cases a board may be constructed 

as a set of laminations containing as many as twelve layers of 

conductors. The reason for using more than one layer of conductors 

is that on a closely packed board there may be insufficient area for 

all the required conductors on one side of the board. Also, it is 

often theoretically impossible to route all the conductors of a 

cLrcuit without intersections on one side of the board. Electrical 

connections between the two sides of a double sided board are made 

by copper lined holes through the board, called throughplated holes. 

External connections to the printed circuit board may be 

made by connecting wires to terminal pins onthe board. More 

generally, however, all the external connections of the circuit are 

brought to a set of gold-plated conductors on one edge of the board, 

termed the edge connector pins. This edge of the board then plugs 

into a multi-way socket to make connections to external signals and 

power supplies 

1.2 Objective of Board Layout Design 

The objective of this project is the development of a computer 

program to lay out printed wiring boards. The type of boards to be 

considered are single sided boards with an edge connector along one 

side of the board. The components placed on the board are to be 
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discrete components of any number of pins, including integrated 

circuits. There is considerable interest in laying out this type of 

board as the majority of electronic circuits use discrete components 

and many circuits may readily be constructed on single •sided 

boards. Single sided boards have an advantage over double sided 

in that they cost less to produce. The program is not intended 

to lay out boards containing only integrated circuits in a fixed 

matrix of positions. This problem is preferably solved by other 

methods, some of iihich are described in chapter 2. 

Ideally the program should be completely automatic in its 

oper'ation so as to produce results in a minimum of time. It has, 

however, been found virtually impossible to specify an algorithm 

which will satisfy all of the constraints and conditions required 

by a general purpose layout program. 'The program therefore 

includes facilities for human-interaction with the layout process 

by means of a graphical display and light pen.. This enables the 

experience and skill of the user to be included in the design 

process whilst relieving him of the task of having to accurately 

draw the detail of the layout. 

1.3 General Method of Layout 

Most computer methods of board layout already in use 

divide the problem into two independent parts. These are the 

placement of components on the board, followed by the routing of 

conductors. Some of these methods are reviewed in chapter 2. 

The disadvantage of this approach is that there is no form of 

feedback from the conductor routing to the component placement 

stages. There is, for example, no re-arrangement of adjacent 

components to allow an extra conductor to pass - between,such as a 
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designer would try in a practical case. This often means that the 

routing algorithm spends considerable time searching for conductor 

paths which are topologically impossible to complete. 

The method of layout described here attempts to resolve 

this difficulty by constructing a topological representation of the 

circuit first, before the layout is constructed. This means that 

during component placement, due space may be allowed for the 

conductor paths on the board. 

As the conductors are to be routed on a single side of the 

board, ailconductor crossings must be eliminated from the layout. 

A tpological model of the layout is constructed by the use of 

graph theory so as to remove all crossovers. Its method of 

constructiort is described in chapters 3 to 6. The circuit topology 

is then known so the physical layout may be constructed by a series 

of logical operations. The layout algorithmt constructs small 

sections of the layout in turn, working from one edge of the board 

across to the opposie edged Any special constraints required are 

incorporated into the layout by means of graphical interaction. 

The construction of the layout and the use of interaction are 

described in. chapters 7 to 9. The results and possible improvements-

to the method are discussed in chapters 10 and 11 respectively. 

1.4 Computer System 

The computer system on which the layout program has been 

developed is described here as it has, in several ways, influenced 

the manner in which the program has been written. A diagram of the 

system is shown inF.ig.l.l. The computer used for the major part. 

of the computation is-an ICL 4130. It - has the usual peripherals of 

paper tape readers and punches, control teletype, line printer and 
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three magnetic tape units. It is connected by a high speed data 

link to the PDP-7 computer. The link allows communication in both 

directions between the two computers at rates of up to 50,000 

characters/second. 

- The PDP-7 computer deals with the maintenance of the display 

and the servicing of light pen interrupts during interaction. The 

Type 340 display with light .pen operates asynchronously with the 

computer but shares its core store for storage of display file. 

The useful area of the display is 9 12  inches square with a resolution 

of 1024 points a-long each axis. The other peripherals of the 

computer include a paper tape reader and punch, a control teletype, 

two DECtape magnetic tape units and a 30 inch wide drum type 

Calcomp plotter. 

The ICL 4130 computer is programmed - in FORTRAN IV using the 

magnetic tape based FORTRAN system. Due to the limitations of core 

space and the maximum allowable number of subroutines, the overall 

layout program-is split into two parts and run as two consecutive 

programs. These are the topological part and the-board layout 

part. No special programming is required for the PDP-7 computer 

as previously developed display and interaction software is used 

(see Appendix B). 

- 	A note is appropriate here on the use of the words 

"topological" and "graphical". "Topological" is used to describe 

the abstract structure, or graph, of the circuit to be laid out 

before it has been given physical dimensions. "Graphical!" is 

used to describe the visual display of the board layout whilst it 

is being constructed. These two words will be used in the sense 

just given to avoid any confusion of terms. 
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Chapter 2 	Survey of Existing Methods of Layout 

This chapter presents a survey of some of the known methods 

of laying out printed wiring boards by computer. Most methods tend 

to divide the problem into two separate parts; placement of 

components followed by routing of conductors. Some topological 

methods of constructing layouts have been proposed but none of them 

appear to have been put into practice. 

2.1 Methods of Component Placement 

Most of the papers published on board layout tend to 

concentrate on circuits in which all the components are integrated 

circuits of the same size and shape. This means that the board may 

be divided into a fixed matrix of positions such that each component 

occupies one position. The component placement problem then 

resolves itself into one of deciding into which position toplace 

each component. Thecriterion of a good placement is usually taken 

to be onewhich gives a minimum total conductor length. Th desired 

result is to reduce conductor congestion on the board and to reduce 

the effects of capacitance between adjacent conductors. Conductor 

lengths are assumed to be the point - to - point distances between 

connected components as the actual conductor paths are not known 

at this stage. 

The method described by Rutman (30) uses the idea of 

"unconnected sets" of components. The components are given an 

initial placement on the board, either randomly or manually. They 

are sorted into a number of unconnecte,d sets such that none of the 

components within a set are interconnected. An unconnected set of 

components is then removed from the board and each component in the 

set is systematically placed in every vacant space on. the board in 

turn. The total length of interconnectionsbetween the component 
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and those. already on the board is calculated at each point. As the 

component belongs,to an unconnected set, its length of interconnections 

is independent of the remaining components in the set. A matrix of 

all the component positions and conductor lengths for the set is 

constructed. From the matrix, the optimum placement solution for 

the set is calculated such that the total wire length is a minimum. 

The procedure is repeated for all of the unconnected sets. The 

layout solution is further improved by interchanging the positions 

of connected components in an attempt to reduce the lengths of the 

longest wires. Themethod should result 'in a compact layout but it 

is only feasible for circuits in whichall the components are of 

the same size. Also, the method takes no account of the topology 

of conductor connections. 

The method described by Mamelak (22) is used for the 

placement of computer logic moduleE. From the logic diagram of 

the circuit to be laid out, a connection matrix of components, or 

logic modules, is constructed. The components may be divided 

into a set of ttchains ?t such that, each chain' consists of an 

interconnected group of components, two of which are connected at 

least to the remaining components of the group. A chain is, 

illustrated in Fig. 2.1(a), where'components A and B are ihe two 

"verticest" of the chain and'the remaining components C, D and E 

arethe "basepoints" of the chain. One property of a chain is 

that it maybe rearranged as shown in Fig. 2.1(b) to reduce the 

number of conductor intersections. 

A permutation procedure is used to divide the components 

into a set of chains such that each chain may be placed on one row 

of positions of the board. The row chosen for each chain depends 
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(a) 	Basic chain 	 (b) Placement in row of board 

Fig.2.1 Chain of Components 

on the total length of interconnections with other chains. Thus the 

y co-ordinate of each component is determined and the connections 

between the components of a chain may be made in the x direction on 

one layer of the board with a minimum number of intersections. A 

similar procedure is used to assign an x co-ordinate to each 

component and to reduce the number of intersections between conductors 

in the y direction on the second layer of the board. Although this 

method is only suitable for integrated circuit layouts, it does 

take some account of the wiring topology by attempting to reduce 

the number of intersections. 

The method described by Case (6) is used to assign the 

positions of small circuit cards on a large "mother board". The 

method allows an engineer to specify the positions of selected 

cards. Of the remaining cards, one is selected and tried in every 

vacant position on the board. The total length of conductors 

between the card and the already assigned cards is calculated at 

each position. The card is placed in the position that gives 

minimum conductor length, and the, procedure is then repeated with 
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each of the remaining cards. It does not give an optimum placement 

of components so a further procedure is used to improve the placement. 

The second procedure attempts to interchange the position of each 

card with every other card on the board. If an interchange results 

in a reduction of total wire length, the card positions are re-

assigned. Again )  this method produces a compact layout with lpw 

total wire length but does not consider the wiring topology. 

The method described by Dunne (7) constructs a layout in 

stages rather than attempting component interchanges as described in 

the previous methods. The algorithm selects a location on the board 

which is nearest to the components which havealready been placed. 

(Initially only the edge connector is placed.) From the list of 

components to be placed, the one which has the greatest number of 

connections to the already-placed layout is selected. The algorithm 

then attempts to route the conductors to the component, using a 

double sided board. If the routing is not successful, further 

components are tried in the given board location. If a solution 

still cannot be found, a new board location is chosen. The 

procedure is repeated for each component in turn. The'method has 

only been used for integrated circuit components but could possibly 

be modified for discrete components. It gives the first solution 

encountered and does not attempt to find the optimum solution. The 

method does, however, check that all conductor paths can be routed to 

a component before placing it. 

The one method encountered which deals specifically with 

discrete components is the ACCEL program (9). Component positions are 

assigned by a t 1force placement't method. Each conductor of a circuit 

is assumed to be an "elastic wire" such that it exerts a force of 
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attraction, proportional to its length, on the component at either 

end. The effect of this force is to group together components which 

are closely connected. In addition, forces of repulsion exist 

between adjacent components to prevent component overlap. The 

conductors also exert a ttorqueu  upon components in order to 

select the best orientation for each component. 

The components are given an initial arbitrary placement. 

Theprogram then operates in an iterative manner, summing the 

forces on each component in turn and moving it towards an equilibrium 

position. The forces of attraction are initially high and the forces 

off repulsion low so as to rapidly improve the layout. After a 

number of iterations, the components are constrained to a vertical 

or horizontal position, whichever is nearest to the current component 

orientation. The forces of repulsion are increased to prevent 

component overlap and the iterations are continued until component 

movements are negligible. The method thus gives a good placement of 

different-sized components. Although closely connected components 

are grouped together to reduce the total conductor length, no account 

is taken of conductor topology. The method of conductor routing is 

described in the next section. A similar method is used by Leevers 

(20) for the placement of integrated circuits. In the final stages 

of this method, components are forced onto the nearest allowable 

board positions. 

2.2 Methods of Conductor Routing 

Nearly all methods of conductor routing start with the 

assumption that the components have already been placed. The 

problem is thus one of connecting together pairs of terminals. 
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The connecting paths must be routed so that no paths intersect and 

it is desirable that the total conductor length is a minimum. Most 

methods assume that a double sided printedwiring board is used. 

The classic method for constructing conductor paths is Lee's 

algorithm (19). The board is divided into a grid of squares. Those 

which contain obstacles such as component terminals or conductors 

are marked as being occupied. The two squares to be connected 

together, the start and target squares, are specially marked. All 

unoccupied squares around the start square are  marked with a 1 1'. 

All the unoccupied around these are marked with a 1 2' and so on. 

A wave of marked squares thus spreads out from the start square 

until the target square is reached. It is then a simple matter to 

trace a path back to the start square. The algorithm is generally 

modified because the search wave spreads in all dirçctions from 

the start square, involving unnecessary computing time. Secondly, 

the algorithm will find all the paths of equal length between two 

points but has no way of distinguishing between the different paths. 

TheACCEL method of conductor routing (9) uses a novel 

topographical model of the layout for routing. The board is divided 

into a grid of squares, eachof which may be assigned an "altitude". 

Initially alithe squares are set to zero altitude. Any obstacles 

such as component pins or holes in the board are assigned an 

altitude so as to form a "peak". The edges of the board are 

represented by a ridge around the layout. To find a path between 

two pins, the target peak is depressed to a negative a1titude 

A modified version of Lee's algorithm is then used to find the 

most downhill path from the startto the target pin. 
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The program has several phases of operation. Firstly, all 

paths are routed simultaneously for a number of iterations. Paths 

successfully completed are inserted as ridges in the topographical 

model so as to repel conductors routed in later phases and avoid 

congestion on the board. Secondly,the procedure is repeated with 

all the remaining conductors routed simultaneously. Thirdly, the 

procedure is repeated with the renaining conductors, routing one 

conductor at a time. The method can be used for either single or 

double sided boards. In the case of a double sided board, the whole 

procedure is performed on one side of the board, then repeated for 

the remaining conductors on the second side of the board. 

Other modifications may be made to Lee's algorithm in drder 

to improve its efficiency, as illustrated by Mikami and Tabuchi 

(24). In this method a double sided board is used with all horizontal 

conductors routed on one side and all vertical conductors routed on 

the other side. This avoids the problem of crossing conductors but 

restricts the conductor paths which may beformed. The boardis 

again divided into a grid but instead of searching square-by-square, 

the search is perfornie line-by-line. From the start square four 

lines, limited in length by existing obstacles, give the possible 

directions of the search. Each of these lines may pass through the 

board at a number of 'through-plated holes. Each of the through-

plated holes may therefore be developed into two more lines on the 

opposite side of the board. The procedure is continued until the 

target square is reached. The line-by-line' method of searching is 

considerably faster and uses less storage space than Lee's algorithm. 

Two methods of conductor routing on double sided boards are 

described by Kodres and Lippmann (13). The first approach sorts sets 
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of interconnected pins, or nets, into a list of decreasing net size. 

The size of a net is defined by the perimeter of the rectangle 

surrounding all pins in the net. To route a given net, the pins 

furthest apart are connected by a path which uses the least number 

of through holes. The remaining pins of the net are then connected 

onto the path already routed. Paths are only chosen which lie 

within the rectangle of the net and which use less than a specified 

number of through holes. These constraints help to reduce board 

congestion. When all of the nets have been processed, any remaining 

conductors are routed by using Lee's algorithm to search exhaustively 

for a path. 

The second approach divides the board into a grid of squares 

and assigns a congestion cost to each square; A square is given a 

high cost if it can be used by many nets, so that conductor paths 

will tend to avoid congested parts of the board. The nets are 

connected one at a time in order of increasing conductor length. 

For each'connection the path is chosen which has the lowest 

congestion cost and which uses the least number of through holes. 

The two methods described avoid the problem of conductor crossings 

by routing conductors horizontally on one side of the board and 

vertically on the other side. 

A method of conductor routing for double sided boards, using 

graphical interaction, is described by Leevers (20). A graphical 

display and light pen are used to display and modify one side of 

the board at a time. Each conductor is initially displayed 	a 

straight line joining two end points. Near-vertical conductors are 

assigned to one side of the board and near-horizontal t the ct;' 
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to the other although the assignment may later be altered if desired. 

Low level routing facilities allow conductors to be routed around 

obstacles by the insertion of intermediate corners, and diagonal 

conductors to be replaced automatically by conductors of horizontal 

and vertical sections. Higher lever facilities attempt to automatically 

route each conductor in turn by application of the low level facilities. 

The program initially attempts automatic routing and usually succeeds 

with many of the conductors. In cases where a path cannot be found, 

the operator intervenes and uses the low level facilities, by means of 

the light pen, to re-order part'of the layout. The skill of the 

operator is thus used to assist the program in difficult parts of the 

layout. In later stages of the layout, the method relies heavily on - 

the operator to find conductor paths. 

There are a number of advantages and disadvantages of 

splitting the layout problem into the separ- 	parts of placement 

and routing. These are discussed further in Chapter 7.1. 

2.3 Topological Methods of Layout 

Theprinciple of the topological methods of layout is to 

minimise either the number of conductor crossings or the number of 

conductors removed from the layout to eliminate crossings. Several 

algorithms have been programmed but none appear to have been taken to 

the stage of actually producing a layout. 

In the method described by Bader (1), the branches of a 

graph are re-arranged, and some removed, so as to eliminate all 

crossings. An example from the paper is shown in Fig. 2.2. The 

graph is searched for a closed circuit which includes as many of 

the nodes as possible; in this caseall the nodes, as shown in 
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Fig.2.2 Construction of a Planar Graph 
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Fig. 2.2(a). The graph is redrawn with the circuit on the outside 

edge and the remaining branches within as shown in Fig. 2.2(b). An 

auxiliary graph is then drawn, Fig. 2.2(c), whose nodes correspond to 

the branches on the inside of Fig. 2.2(b). Pairs of branches which 

conflict in Fig. 2.2(b) are represented by branches joining the 

corresponding nodes in the auxiliary graph. The branches of Fig. 2.2(b) 

may be assigned to either the inside or the outside of the closed 

circuit in order to remove crossings. The assignment is made by 

starting with an arbitrary nodein Fig. 2.2(c), node 1, and assigning 

it to the inside. Adjacent nodes are then assigned to the outside 

and so on, as shown in Fig. 2.2(d). If the graph is non-planar, 

branches are removed at this stage. The graph may then be redrawn 

without crossings as shown inFig. 2.2(e). The'method has been 

further developed and programmed for computer by Fisher and Wing 

(8). A matrix method is used to process the graph So that non-

planar. branches are identified and removed from the graph. 

Thealgorithm described by Nicholson (26) minimises the 

number of crossings in a graph, rather than deleting non-planar 

branches. In this method, the fhodes of the graph represent 

components and the branches represent interconnections. The nodes 

are arranged in a straight line and the branches are drawn as 

semicircies above or below the node line as shown in Fig. 2.3. 

The graph may then be described by a permutation of the order of 

nodes andthe direction of the branch semicircles. An initial 

permutation is constructed by selecting an initial node then adding 

the node which has the most connections to the existingpart of the 

permutation. This is repeated for all nodes, inserting each one 

into a position-which gives least crossings. An iterative procedure 
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Fig.2.3 Permutation Representation of a Graph 

then changes the order of nodes in the permutation in an attempt 

to further reduce the number of crossings. 

A method of constructing a planar graph of components and 

interconnections is described by Rowley (29). The circuit is 

defined by a list of components and a list of interconnections. 

A set of branches is selected so that a "tree" of all the components 

may be constructed. Each new component added to the tree is 

connected by one branch only as shown in Fig. 2.4. A "tree list" 

of all the component pins in order around the tree is made as 

shown by the dotted path in Fig. 2.4. Any other interconnection 

in the circuit will divide the tree list into two parts at the 

points of connection. Two branches are in conflict if the two 

parts of the tree list formed by one branch each contain a node 

of the other branch. A matrix of all the branch conflicts is 

then constructed. From the matrix, a set of conductors is selected 

such that the number of non-planar branches removed from the graph 

is a minimum. The resultant graph is not necessarily the optimum 

planar graph as it is dependent on the branches selected for the 



-19- 

Fig.2.4 Formation of Tree List 

initial tree. 

The advantages and disadvantages of the topological methods 

described above are discussed further in Chapter 4.2. 
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Chapter 3 	 Topological Representation of a Circuit 

Any computer program that generates a printed wiring board 

layout must have a method of representing the layout within the 

computer. This chapter describes how the topological representation 

of a circuit is constructed from the comput .er  input data. The 

representation is later used to construct a topological model of 

the layout. •The ways in which the circuit representation is 

actually programmed are described in Chapter 6. 

3.1 Requirements of the Topological Representation 

The groups of data required for the construction of a layout 

are the circuit diagram, the physical dimensions of the components 

and the dimensions of the board. The circuit diagram basically 

describes the types of components used and the way in which they 

are interconnected. The information on the circuit diagram should 

therefore be coded into a suitable format for input to the computer. 

The first part of the layout method described here deals with 

the construction of a topological model of the layout. In developing 

this model, the circuit is investigated for planarity by examinipg 

the way in which components are connected together. The topological 

representation should therefore indicate the order in which components 

are connected, withut being concerned with the physical co-ordinates 

of components and conductors. 

There'are two widely-used methods of representing, within a 

computer, the interconnections of a graph. The first method is a 

matrix representation of the graph. Usually, the rows and columns of 

the matri represent the nodes and branches respectively. Each element 

of the matrix is then marked to indicate the incidence, or non-incidence, 



-21- 

of a given node and branch. The second method of representing a 

graph uses a ring data structure in which data blocks are used to 

represent nodes and branches. Pointers between the data blocks 

indicate the interconnections between nodes and branches. 

The method of representation chosen for the layout algorithm is 

the ring data structUre. Although an electronic circuit often has a 

large number of nodes and branches, there are generally few branches 

connected to each node. A matrix representation would therefore 

require a large matrix in-which most of the elements were empty. A 

data structure provides direct pointers from, say, a -branch to its. 

two nodes. To obtain the same information from .a matrix, the whole 

branch column of the matrix would haveto be searched. A further 

advantage of. the data structure is that additional data such as 

component name, type of branch, or display file may readily be 

associated with each data block. 

3.2 Elements of the Topological Representation 

The graph of an electronic circuit is constructed from a 

number of different types of nodes and branches. Circuit nodes 

have a corresponding node in the graph but components have a 

different representation -depending on whether they have two, or 

more, pins. The circuit- elements-and their corresponding graph 

representatiorE are described below. 

3.2.1 	Circuit Node 

A circuit node is a point of common electrical connection of two 

or more components; The corresponding node in the graph has no 

physical representation. It merely fulfils the function of listing 

all - the components connected to a common-point, or to a given 
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conductor on the board. 

3.2.2 Branch Component 

A component with two connecting wires or pins such as a 

resistor or a capacitor is termed a.branch component. It is 

represented in the graph by a component branchand is connected 

between two nodes. Each of the nodes is the abstract representation 

of a connection. A component branch is therefore physically 

equivalent to the component together with part of the conductor 

paths at each end of the component. 

3.2.3 	Sugraph Component 

In representing acomponent with more than two pins, such as 

a transistor or an integrated circuit; several problems arise. The 

first problem is due to the physical dimensions of the component and 

the fact that each component in is connected to a circuit node. 

In constructing a planar graph of a circuit it may happen that a 

number of branches, or conductors', have to pass between two particular 

nodes. If the nodes are connected to two pins of a component, it is 

quite probable that there - would be insufficient space-for the 

conductors to physically pass between the pins. To prevent such'an 

occurrence, each pin of the component is connected to its two 

adjacent'pins by a pseudo branch. Also, each pin of the component'is' 

represented by a sub,graphnodeso that every pseudo branch is connected 

between two subgraph'nodes. The'pseudo branches initially prevent'any 

conductors from passing between the component pins and they keep all 

the 'pins of the component together in a closed planar region. Because 

of these functions, pseudo branches may never be removed from the graph. 

11 
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Assuming that multi-pin components are represented by a ring 

of pseudo branches, a planar graph of the circuit could be constructed, 

containing these components as subgraphs. A second problem which is 

not resolved by some other methods is that all of the subgraph 

components must have the same orientation in the planar graph. 

The physical analogy is that all the components are mounted on the 

same side of the board. Defining a component as a ring of pseudo 

branches readily enables the orientation of a component to be 

checked during the planarity algorithm. 

The third problem in representing a multi-pin component lies 

in the deletion of non-planar branches between closely connected 

components. An example of two closely connected integrated circuits 

is shown in Fig. 3.1. A connection has to be removed to make the 

,,Non-planar connection 

Fig. 3.1 	Closely connected components 

graph planar. No pseudo branches can be removed however, because 

the planarity of the component pins would be lost. Each subgraph 

node has a link branch coniecting it to the corresponding circuit 

node. The physical representation of a link branch is a length of 

conductor connecting the component pin to the rest of the circuit 

node. In the event of a non-planarity, one or more of the component 

link branches may be removed. The circuit diagram of a transistor 
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and its corresponding topological representation are shown in 

Fig. 3.2 as an example. 

The complete set of subgraph nodes, pseudo branches and link 

branches for a component is termed a subgraph component, or subgraph. 

The nodes and branches of asubgraph are represented by a set of 

node and branch data blocks. They could be represented more 

compactly by a single data block. The graph structure would then 

no longer be compatible with circuit nodes and branch components 

however, and programming would thus be more difficult. 

3.2.4 	Edge connector 

The edge connector of a printed wiring board consists of a 

row of pins or terminals along one edge of the board. As no 

conductors can pass between the edge pins, their corresponding 

nodes in the graph must be adjacent to each other. This is ensured 

by connecting the nodes into a path by a series of pseudo branches, 

the order of nodes in the path being the same as the order of edge 

pins on the board. A further pseudo branch is connected between 

the first and last nodes of the path, thus forming it into a closed 

loop. This pseudo branch therefore represents the outside edge of 



-25- 

of the board, apart from the edge connector. The closed loop of 

pseudo branches serves as a boundary within which the topological model 

must lie. 

3.3 	Circuit Data Input 

The first step in generating alayout is to prepare the circuit 

data in a suitable format for input to the computer. Two groups of 

data are required for the construction of the topological model of a 

layout. The first is a library of component data which may be common 

to all circuits laid out. The second is a list of components and 

their interconnections for the particular circuit to be laid out. 

3.3.1 Component Library 

Whenconstructing a layout, certain' data is required for each 

component, such as its physical dimensions and its number of connecting 

pins. Most circuits contain several instances of eachdifferent type. 

of component. The most economic•way to describe the components 

therefore is to give each one a type'number then associate one full 

description of a component with each different type number. In other 

words, a library of component descriptions is generated. In a 

manufacturing organisation this information would probably be stored 

as part of a data bank which would hold a list of all the types of 

components ever used together with their electrical and physical 

characteristics.' For the purposes of the method described here, an 

elementary component library is associated with the circuit data. 

The data .  for each type of component is stored in a master 

component block. The master component blocks are held together in a 

list and each one is given a unique name. For example, the blocks 

representing watt resistors, watt resistors and transistors may 
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be called RES1, RES2 and TRAN respectively. The size of a component 

is defined by a boundary rectangle. It allows space for the component 

itself, space for connections and fixings and clearances for component 

spacing. This simplifies board layout as component rectangles may 

then be placed directhy adjacent to each other without further 

computation of clearances. A master component block stores data on 

the dimensions of the component rectangle, the number of component 

pins and the co-ordinates of each pin relative to the component 

rectangle. Several dummy master component blocks are used to 

indicate certain functions during data input. These are described in 

the next section0 

3.3.2 	Preparation of Circuit Data 

To prepare data from a circuit diagram, each electrical node 

is first labelled with a unique positive integer. A simple example 

is shown in Fig. 3.3(a). The connections of each component may 

therefore be described by listing the nodes to which it is connected. 

The correct orientation of component connections is ensured by 

:adoptahgT a convention of node numbering. Two pin 
I

components with a 

marked pin of polarity such as diodes or electrolytic capacitors are 

listed with the marked pin as the first node number. Multi-pin 	i 

components have their pins ordered in a clockwise direction, 

looking from the conductor side of the board. The first pin in the 

nodelist corresponds to the first pin co-ordinate in the master 

component block. 

To code the data from a circuit d±âgram, each component is 

described by its name and a list of its node numbers. An example of 

data coding is illustrated in Fig. 3.3(b); the component library is 

not shown. Components of the same type are listed consecutively in 
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a group. Each group is preceded by the name of its master component 

block and is terminated by a dummy component with negative node 

numbers. This method is used because of the difficulties of reading 

in data under FORTRAN FORMAT statements. Two additional dummy master 

component block names are used. The name EDGE indicates that the 

following node numbers are the nodes of the edge connector, in the 

correct order. Te list of edge nodes is terminated by a negative 

node number. The name STOP indicates that all of the circuit data 

has been specified. An example of a topological representation of 

the circuit shown in Fig. 3.3 is illustrated in Fig. 3.4. 

3.4 Data Input Subroutine 

A FORTRAN subroutine called DATAIN has been developed to read 

in the component library and circuit data and to construct the 

corresponding data structure. Theflow diagram of the subroutine is 

shown in - Fig. 3,5 and the type of data structure construc-ted is 

described in detail in Chapter 6. 

The subroutine starts by reading in the component lihtary data. 

As each component type is read in, a new block is created and added 

to the list of master component blocks. The master component name, 

the number of pins and the component dimensions are stored in the 

block. This is followed by a list of the pin co-ordinates. A 

master component with one pin is-used to indicate the edge connector. 

One with no pins is used to signify the end of the library data and 

its name, STOP, indicates the end of the circuit data. 

Following the component library, the name of the next component 

group is read in. The component library is searched to find - the 

master component block with the same name. The-block then gives the 
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Fig. 3.4 	Topological representation of circuit 
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number of pins of each component in the group. If no corresponding 

master component block can be found, an error message is printed out 

and the program stops. 

For groups of two pin components, each component name and its 

two node numbers are read in turn. A list of nodes is kept in the 

data structure and this list is searched to find the two nodes of 

each component. If either of the nodes does not yet exist in the list, 

a new hode:block'&s:ct'eated andadded to the list. Thedata blocks 

for a branch component are then created and linked to the existing 

data structure in the manner described in Chapter 6. The procedure 

is repeated with each component until the dummy component at the end 

of the group is encountered. The subroutine then reads in the name 

of the next component group. 

For groups of components with more than two pins, the subroutine 

reads in the name and appropriatenumber of nodes for each component. 

Any new nodes are added to the node list. The required data blocks 

of subgraph nodes, pseudo branches and link branches are then created 

for the component and linked into the existing data structure The 

subroutine is designed to dealwithsubgraph components of any number 

of pins. The appropriate number of pins is merely obtained from the 

component library. The procedure is repeated for each component in 

the group until the dummy end component is encountered. 

The component group name called EDGE indicates that the next 

group of numbers is a list of edge connector nodes. The node numbers 

are read into an array until the dummy end node is reached. Each node 

is then connected to the next by a pseudo branch in the data structte. 

The last node is connected to the first by a further pseudo branch. 

The subroutine then reads in thenext component group name. 
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The component group name called STOP indicates that the circuit 

data input is complete. An elementary check on the data is then 

performed. Each node in the circuit node list is checked to ensure 

that it has at least two connected branches. Any node which has only 

one connected branch causes an error messageto be printed. This 

check detects some coding and typing errors. Thedata structure now 

contains all the data related to the interconnection of circuit 

components. 
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Chapter 4 	Construction of Planar Graph 

The type of board layout considered consists of a set of 

components placed on one side of the board, a set'of conductor paths 

on the second side and a set of connection pins along one edge of the 

board. The main objective in' producing a board layout is to arrange 

the components and their interconnecting conductors so that no 

conductor paths intersect. It has already been shown that a graph 

may be developed to represent the interconnections of a circuit. 

This chapter describes an algorithm by which the branches of the 

graph are ordered;, and some removed, so as to produce a planar 

graph withno branch intersections. Chapter 5 then describes a 

method by which the non-planar branches are inserted back into the 

graph. 

I 

.l. Planar Graph'Constraints'Due to Board Layout 

A planar graph  is defined as one which maybe drawn ona plane 

in such a way that its branches intersect only.at their end points. 

Theplane'which is of interest in the board layout problem is the 

conductor side of a printed wiring board. It therefore follows that 

the graph representing a circuit must be planar to avoid the 

intersection of conductors in the physical layout. 

When using the graph of a circuit as the topological model of 

its board layout, a number of problems arise.' The first major 

problem is that the graph of a circuit is seldomplanar. A non-

planar graph can only be made planar by removing a number of 

branches although there are uua1ly many alternatives in deciding 

which branches to remove. A set of branches, preferably a minimum 

number of branches, hastherefore to be identified and removed from 
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the graph in order to make it planar. The second major problem is 

that a graph is a topological entity and that planarity is an 

internal property of the graph. This means that a graph may be given 

any number of geometrical representations by drawing it on a plane. 

Having ensured that a graph is planar therefore, the problem still 

remains in constructing a geometrical representation which has no 

branch intersections. 

The requirements of representing a board layout impose further 

constraints on the processing of the original graph and on the 

construction of a planar graph. These constraints are discussed 

below. 

Only component branches and link branches maybe removed from 

the graph in order to make it planar. Pseudo branches must 

remain in the graph to hold the pins of subgraph components 

in their correct order and spacing. 

All the subgraph components must be connected into the planar 

graph in the same orientation. This corresponds to all the 

components being placed on the same side of the printed 

wiring board. 

The nodes and pseudo branches of the edge connector represent 

the outside edge of the board. They should therefore lie on 

the outside edge of the planar graph. 

The connection pins on each component are, connected together 

..:inthè graph by either one component branch or several pseudo 

branches. This prevents conductors from passing between 

adjacent component pins in a planar graph representation of 

the layout. In the physical'layout however, it is possible 
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for a limited number of conductors to pass betweenadjacent 

pins, depending on the component and conductor dimensions. 

This limitation on conductor paths in the planar graph 

eliminates the problem of checking clearances between adjacent 

pins although it usually causes a greater number of non-planar 

branches to be removed. The constraint is later relaxed and 

the non-planar branches re-inserted into the graph by the 

method described in the next chapter. 

4.2 Methods of Constructing a Planar Graph 

Classical graph theory concentrates on finding the conditions 

necessary for a graph to be planar rather than devising methods for 

constructing such a graph. The elegant theorem due to Kuratowski 

(16) states that a graph is planar if, and only if, it contains 

neither of the two graphs shown in Fig. 4.1 as subgraphs. The 

Fig. 4.1 	Kuratowski subgraphs 

Kuratowski subgraphs may be well hidden within a graph so it is not 

practicable to search for them in a graph of many nodes and branches. 

Whitney (31) proves that a necessary and sufficient condition for a 

graph to be .planar is that it has a dual graph. Again, this offers 

no practical solution to the construction' of a planar graph. 
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A planar graph drawn on a plane without branch intersections 

divides the plane into a number of non-overlapping regions. Each 

region is bounded by a circuit, or closed path of branches. 

MacLane's theorem (21) stated that a graph is planar if, and only 

if, the graph contains a complete setof circuits such that each 

branch appears in no more than two of the circuits. This theorem is 

used in the planarity algorithm described in the next section. 

Several other methods of constructing the graph of an electronic 

circuit havebeen described in Chapter 2.3. These methods suffer 

several disadvantages, however, in the practical case of producing a 

board layout. The algorithm for constructing a planar graph 

described by Bader works satisfactorily for branch components. It 

is, however, difficult to implement with subgraph components due to 

the need to preserve correct component orientations., In addition, 

it is not possible to arrange all the nodes of the edge connector 

on the outside edge of the graph. 

Themethod due to Nicholson uses a permutation procedure to 

minimise the number of crossings in a graph'. Each component, 

however, is represented'by a node in the graph so that with multi-

pin components it is not possible to select the correct order of 

connections to each component. Rowley's algorithm is particularly 

suited to circuits containing multi-pin components although part 

of the procedure involves setting up a matrix for all conflicting 

branches. This can lead. to excessive computer storage and time 

requirements for alargecircuit. 

4 • 3 Principle of Planarity Algorithm 

The objective of the planaiity algorithm is to construct a 

planar subset of the graph representing an electronic circuit. 
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The planar graph should contain no branch intersections and should be 

subjct to the constraints described in section 4.1. Non-planar 

branches are removed from the graph as they are encountered and no 

attempt is made to minimise the number of non-planar branches 

removed. This approach simplifies the planarity algorithm and is 

justified because non-planar branches are re-inserted into the 

planar graph at a later stage. 

An important assumption upon which the planarity algorithm 

depends is that every node of the graph is of order two or more. 

This means that the planar graphrnay be described by a set of closed 

paths of branches, each path being the boundary of a planar region. 

The following circuit and topological conditions show that the 

assumption is valid for the graph representing a circuit. 

Every circuit node, except the edge connector pins, connects 

at least two components together. 

Each edge connector node is connected by two pseudo branches 

to its adjacent edge nodes. 

Similarly, un-used pins on multi-pin components are connected 

by pseudo branches to their adjacent subgraph nodes. 

Separate circuits or components on the board have the edge 

connector pseudo branches in common with the remainder of the 

circuit. 

4.3.1 Processing of Planar Graphs 

Given a planar graph, G. the planarity algorithm is required to 

re-arrange G into a second planar graph, H. The nodes and branches 

of graph H are to be ordered so that a geometrical representation 



of the graph may be drawn without branch intersections. Graphs G 

and H have a one-to--one correspondence between their nodes and 

branches. The difference is that additional information in graph 

H enables the required geometrical representation to be drawn. 

Graph H is constructed as a series of subsets of its nodes and 

branches. An initial set of nodes and branches is chosen so that a 

planar region is formed, with no branch crossings. Subsequent 

subsets of the graph are constructed by adding further planar 

regions to the previous subset such that no branch crossings are 

introduced. 

A path that is known to form a planar region with no branch 

crossings is the set of pseudo branches representing the edge 

connector and the outside edge of the board This path is termed 

P1  and is used to form the initial subset of graph H, i.e., 

H1  = P1  

When-the elements of this subset, or any subsequentsubset, are 

subtracted from graph G, the nodes and branches remaining in G 

are termed free nodes and free branches respectively. The outside 

edge of path P1 forms the boundary of the first planar region of 

graph-H. The - region on the inside edge of P 1  is termed the free 

region as it contains all of the free nodes and branches from 

graph'G which have not yet been defined as part of graph H. In the 

general case of the nth subset of graph H, 

Contents of Free Region = G - H n 

Each branch on the edge of the free region has previously 

been defined as part of a planar region which is adjacent -to the 

outside edge of the free region. Applying MacLane's theorem to the 

planar graph, there must be a second planar region, on the inside 



-39- 

edge of the free region, which is adjacent to the given branch. 

The boundary of this second region is defined by a closed path, Pnq 

which includes the given branch. This path will be comprised of a 

nunther of free branches together with part of the free region edge. 

The node at which the path leaves the edge of the free region is 

termed the start node; the corresponding node where it returns to 

the free region edge is termed the target node. -It follows that the 

start and target nodes each lie on the edge of the free region and 

each have at least one attached free branch. 

To add a planar region to the graph H, an arbitrary node on 

the edge of the free region, with -a free branch attached, is selected 

as a start node. The next node on the edge of the free region with 

a free branch attached is selected as the target node. Starting 

from the free branches on the start node, a search is made to find 

the shortest path through the free region to the target node, Pn+l• 

The shortest path is defined as the one with a minimum number of 

free branches. The path P +i,is then joined to the start and target 

nodes to form a new planar region.- The - boundary of the new region 

consists- of one side of the path .together with, the edge of the free 

region-between the two nodes. The remainder of the free region edge 

and the second side of the path are redefined as the new free region 

edge. A new subset of the graph H is thus defined by: 

= Hn  + n+1 

Repeating the procedure with each node on the edge of the free 

region in turn yields further planar regions of the graph H. The 

algorithm is terminated when there are no remaining free branches. 

The free region itself then bQcomes the final region to be added to 

the graph-. 	 . 
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4.3.2 Example of Planar Graph Construction 

A simple example of the planarity algorithm operating upon a 

planar graph is shown in Fig. 4.2. The initial geometrical 

representation of the graph shown in Fig. 4.2(a) contains a branch 

crossing. The objective of the algorithm is to produce a 

geometrical representation of the graph with no branch crossings as 

illustrated by Fig. 4.2(b). 

IV 
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\ 
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/ 

A 	 (b) 

Fig. 4.2 	Construction of planar graph 

The path of pseudo branches representing the edge connector, 

ABCA, is taken as the first planar subset of the graph. The outside 

edge of the path forms the boundary of the first planar region, 

region I. The inside edge of the path forms the boundary of the 

initial free region. Node A is arbitrarily selected as the first 

start node and node B as the target node. A search through the 

free region for the shortest path from A to B gives the path ADB. 

Region II is thus defined as the next planar region of the graph 

and the edge of the free region is redefined as the path ADBCA.I 

Node A remains the start node because it still has a free branch, 

AE, attached. Node D is then selected as the new target node 
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nearest to the start node. A search through the free region gives 

AED as the next path between start and target nodes, giving ADEA as 

region III. 

All of the branches connected to node A are now defined as 

parts of the planar graph so a new start node, E, is arbitrarily 

selected from the edge of the free region. The next node on the 

edge of the free region with any free branches, node C, is chosen as 

the new target node. The shortest path through the free region from 

nodes E to C consists of the single branch EC. The edge of the free 

region between the start and target nodes, DBC, together with branch 

EC therefore form region IV. The edge of the free region is then 

defined as CAEC. As there are no free branches remaining in the free 

region, CAEC becomes the final region V. The branches Of the planar 

graph are thus ordered so as to eliminate all branch crossings. 

4.3.3 	Processing of Non-Planar Graphs j.  

It will generally be found that the graph of a circuit contains 

a number of non-planar branches. There are several different 

strategies for removing such branches from a graph in order to make 

it planar. One strategy used both by Bader (1) and by Rowley (29) 

involves making an exhaustive search for all branch conflicts in the 

graph. From the list of conflicting branches, an optimum set of 

non-planar branches is selected such that the number of branches 

removed is a minimum. 

A second strategy, which is used here, deals with each branch. 

conflict as it is encountered. When two branches are found to 

conflict, one of them is immediately removed from the graph although 

the result will not generally give a minimum set of non-planar 
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branches. A branch may be unnecessarily removed from 'the graph if all 

the branches it conflicts with are themselves later removed. As 

another algorithm is later used to insert non-planar branches back 

into the graph, selection of an optimum set of non-planar branches is 

not critical. Themain advantages of this strategy are its speed and 

simplicity of computation. Each branch conflict is resolved as it is 

found, instead of having to process a list of many conflicts. Also, 

in searching the free region of the graph for further planar regions, 

the number of free branches to examine becomes progressively smaller 

as more regions are defined. 

Any free branch, or path of free branches,. that crosses the free 

region divides the edge of the free region into two parts, E1  and 

at the nodes of connection. A conflict of branches occurs when a 

second branch or path crossing the free region has one end connected 

to part E1  and the 'other end connected to part E 2 . In such a case it 

follows that the nodes, on the edge of the free region, adjacent to 

the start node of the first path, will belong to the second path. 

There cannot therefore be a planar path between a start node and 

either of its two adjacent target nodes. 

An example of conflicting branches is shown in Fig. 4.3. 

Branches AC and BD are in conflict as no path exists within the free 

region from the starting node A to either of its adjacent target 

nodes B and D. Neither branch may be drawn around the outside edge 

of the free region, ABCDA, as the outside has already been defined 

as part of a planar graph. One of the two' branches therefore must 

be removed in order to make the graph planar. 

The algorithm for creating a planar subset of a non-planar 

graph is an extension of that described in section 4.3.1. A search 
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Fig. 4.3 	Non-planar branches 

is made for planar paths from a start node to each of its two 

adjacent target nodes in turn. Every time a new planar region is 

defined, the free region is redefined, a new target is defined, and 

the search procedure is repeated. Any free branches remaining on 

the start node that do not yield a planar path after a search are 

either non-planar branches or bridge branches. Non-planar branches 

are immediately removed from the graph; the procedure for dealing 

with bridge branches is described below. 

A bridge branch is defined as a branch which is the only 

connection between the edge of the free region and a subset of the 

graph G which has not yet been defined in the graph H. This state 

occurs when successive connections to the subset are removed as 

non-planar until only the bridge branch connection remains. It is 

essential that no subset of graph G becomes completely disconnected 

from the remainder of the graph. If this were to happen, the search 

procedure for constructing the planar graph would never encounter 



the subset by searching from the edge of the free region. The 

subset would thus not be defined, as part of the required planar 

graph. This same reason also explains the fact, mentioned at the 

beginning of section 4.3, that every node of the graph must be of 

order two or more. A bridge branch is thus inserted into the planar 

graph to prevent a subset from being completely disconnected from 

the rest of the graph. 

An example of the detection of non-planar branches and bridge 

branches connected to a node is shown in Fig. 4.4. Node A is taken 

Fig. 4•14 
	

Detection of 

non-planar and bridge branches 

as the start node and its two adjacent target nodes on the edge of 

the free region are B and D. The first search from node A to 

target node B yields branch AB as a planar branch so it is inserted 

into the graph. Two further searches to targets B and D do not 

yield planar branches so the branches AC and AE on node A must be 

either non-planar or bridge branches. In order to determine which 

type they are a search is made from the end of each branch in turn 

to see if a path exists to any other node on the edge of the free 

region. If a path does exist, as in the case of branch AC, the 

branch must be in conflict with another so it is removed as non-

planar. If a path does not exist, as in the case of AE, the branch 

represents the only connection to a particular subset of the graph 
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so it is retained in the graph as a bridge branch. 

4.3.4 	Insertion of Subgraph Components 

Each planar region of a graph is defined by an ordered ring of 

branches around its boundary. The method of definition is described 

in detail in Chapter 6. By convention, the branch order around 

every region is described in ananticlockwise direction. A subgraph 

component consists of a planar region bounded by a ring of pseudo 

branches and by convention these are also defined in an anticlockwise 

direction. 

In searching through the free region of a graph for a planar 

path, the target node is always arranged by convention to be in an 

anticlockwise direction around the edge of the free region from the 

start node. When a subgraph node is encountered, the search proceeds 

only along the pseudo branch in a clockwise direction from the 

subgraph node. The conventions of region definition and search 

direction thus ensure that all subgraph components are inserted Into 

the graph with the sameorièntation. 

4.4 Description of Planarity Subroutine 

A subroutine, called PLANAR, has been written to implement the 

planarity algorithm; its flow diagram is shown in Fig. 4.5. The 

subroutine starts by connecting the pseudo branches of the edge 

connector into a closed path. The outside edge of this path bounds 

the first planar region of the graph and the inside edge of the path 

is the boundary of the initial free region. The method of linking the 

branches into a region is detailed in Chapter 6. An arbitrary node 

with free branches attached, on the edge of the free region, is 

selected as the first start node. The next node with free branches 
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Fig. 4.5 	Flow diagram of graph planarity program 
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in an anticlockwise direction from the start node is taken as the 

target node. A search is then made for a planar path between the 

start and target nodes. 

4.4.1 Search Procedure for Planar Paths 

The search procedure for finding a planar path is designed to 

find the shortest path from start to target node. A tree search 

method is employed, as illustrated by Fig. 4.6. The free branches 

connected to the start node enable a set of the Free nodes adjacent 

to the start node to be obtained. This set of free nodes represents 

the first level of the tree search. The nodes in the first level of 

the tree re connected by further free branches to another set of 

free nodes which go to make up the second level of the tree. The 

tree may thus be built up in successive levels until the target 

nodeis reached. All the possible nodes in one level of the tree 

are found before developing the next level. This ensures that the 

path found to the target node is of minimum length. 

Each nQde is allowed to appear in the search tree once only. 

This prevents -any part of the search from looping continually 

around a-closed ring of branches. 	Node H in Fig. 4.6(b) for 

example, is reached from node G first so it is not listed as a 

successor to node I. No planar path is allowed to cross the free 

region and thus divide it into two separate regions, .apart from a 

path between the start and target nodes. If a node on the edge of 

the free region is encountered during the - tree search, node K for 

example, that part of the search is not continued. 

When a subgraph component is encountered, CFDC for example, 

the tree search proceeds only in a clockwise direction from the 
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subgraph node, node C. The correct subgraph component orientation is 

thus preserved in the graph. Similarly, only one pseudo branch of the 

subgraph is allowed in the search path. This prevents any subgraph 

nodes with free branches attached from becoming embedded within a 

planar region. In the computer data structure representing the tree, 

each node is given a pointer back to its predecessor in the tree. 

When the target node is found, the path back to the start node may 

thus be directly traced. If the tree is constructed as far as is 

possible without reaching the target node, the branches on the start 

node are either non-planar or bridge branches. 

4.4.2 Region Construction 

When a planar path is found between the start and target nodes 

of a'graph, the branches of the path areconnected in the computer 

data structure as two segments of region boundaries, corresponding to 

the two sides of the path. The edge of the free region is divided 

at the start and target nodes into two separate parts. The two 

parts of the free region edge and two parts of the planar path are 

joined to form a new planar region and a redefined free region edge. 

If the planar path contains any subgraph nodes, the remainder of the 

subgraph components are also added to the graph as new planar regions. 

4.4.3 	Further Search Procedures 

Each time a new planar region is added to the graph, a new 

target node is found in an anticlockwise direction from the start 

node. When no further planar paths can be found, the search is 

continued by selecting target nodes in a clockwise direction from 

the start node. In this case, the search for a planar path is 

actually made from the target to the start node so as to preserve 
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the correct orientation of path search. 

Any branches remaining on the start node after the planar path 

search is exhausted are checked for non-planarity. A tree search is 

made from the node at the other end of the branch under consideration. 

If the search encounters any node on the edge of the free region, the 

branch is non-planar and is removed from the graph. If the search is 

exhausted before reaching a free region edge node, the branch is a 

bridge branch and so is inserted into the planar graph. 

The next node with free branches in an anticlockwise direction 

from the start node is taken as the new start node and the search 

for planar regions is continued. The process is terminated when 

there areno free branches left in the free region. The free region 

itself is then added to the planar graph as the final region. The 

result of the planarity subroutine is thus a set of regions describing 

a planar graph and a list of non-planar branches. The list of non-

planar branches may contain several planar branches, as the branches 

with which they conflicted have also been removed from the graph. 
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Chapter 5 	Insertion of Non-Planar Branches 

The planarity algorithm described in the previous chapter 

processes the topological representation of an electrical circuit 

into a planar graph and a list of non-planar branches. As these 

branches still represent parts of the circuit they must be included 

in the physia1 layout. An algorithm is described in this chapter 

for inserting these non-planar branches back into the graph. 

5.1 Statement of the Problem 

In the average planar graph many of its branches are either 

component or subgraph pseudo branches. Each of these branches may 

have a dimension as'sociated with it, corresponding to the distance 

between two pins of its component. It is possible for a limited 

number of conductors to pass between two such pins, depending on the 

dimensions of the component and the conductors. Correspondingly, 

each branch in the graph may be crossed by a limited number of other 

branches. The crossings represent a conductor on one side of the 

board passing under part of a component on the other side. The 

condition of planarity of the topological model may thus be partiaLLj 

relaxed in order to allow the non-planar branches to be inserted 

back into the graph. 

The aim of the algorithm described here is to insert all the 

non-planar branches of a graph into the planar subset of the graph by 

allowing certaintypes of branch crossings. The resultant graph is 

termed a pseudo planar graph as it may be drawn onto a planeto 

represent a planar set of conductor paths even though the graph 

contains some branch crossings. For some circuits it may not be 

possible to insert all of the non-planar branches into the pseudo 

planar graph. Two alternative procedures may then be used to deal 
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with these branches. The first alternative is to replace the 

branch by an insulated piece of wire, called a wire lumper, to make 

the required electrical connection. The second alternative, not 

considered in the scope of this project, is to route the branch as a 

conductor on the second side of the board. 

5.2 Principles of Branch Insertion 

A non-planar branch to be inserted into the pseido planar 

graph may be.one of two types. The first type is a component branch 

representing a two pin component. As the component is a part of the 

circuit and layout, its branch must appear in the graph. The second 

type of non-planar branch is a subgraph link branch. As this type 

represents a conductor joining a subgraph component to the rest of 

the circuit, it may be replaced by a wire jumper if an insertion path 

cannot be found.in  the graph. It is more important that component 

branches are inserted into the graph because they cannot be replaced 

by jumpers. They are therefore given precedence in the insertion 

algorithm. 

A non-planar branch is inserted into the pseudo planar graph 

by finding a path which crosses a number of branches in the graph. 

The main objective is to use a minimum number of crossings when 

inserting each branch. This results in more room under component 

and pseudo branches for inserting further non-planar branches and 

it also helps to reduce conductor lengths in the physical layout. 

The list of non-planar branches to be inserted into the graph may 

contain several planar branches. These were originally removed 

from the graph because they conflicted with other branches. Ata 

later stage all the branches with which they conflicted were also 

removed. When a planar branch is encountered in the list of 
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non-planar branches therefore, it is inserted back into the pseudo 

planar graph without branch crossings. 

A link branch is inserted into the graph by searching for a 

path under component or pseudo branches from one of the branch nodes, 

called the start node, to the other branch node, called the target 

node. An example is shown in Fig. 5.1. It is assumed that branches 

E 

Fig. 5.1 	Insertion of conductor branch 

AF and BF in the figure are component branches, DF is a link branch 

and EC is the non-planar branch to be inserted. Branch EC is inserted 

by crossing under branches AF and BF. Although a shorter path exists 

across branch DF, two link branches or conductors cannot be crossed 

on a single sided printed wiring board. In a purely topological 

problem, EC could be routed around the outside edge of the graph 

without crossing any branches. In the topological representation of 

a board layout however, all branches must lie within the outside edge 

of the graph. 
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A different procedure is adopted for inserting non-planar 

component branches into the graph. A two pin component has a 

clearance between its pins so it is able to "hop over" several 

conductors on the board. A component branch may therefore be 

inserted into the graph by crossing over several branches representing 

conductor paths. The method by which this is implemented is 

illustrated in Fig. 5.2. The non-planar branch HD may be inserted 

by crossing component branches AJ, BJ and CJ as shown in Fig. 5.2(a). 

B 
	

B 

H H 

F 	(a) 	 F 	(b) 

Fig. 5.2 	Insertion of component branch 

The number of branches over which a component branch can cross 

is li'mited by the dimensions of the component. An insertion path for 

the component is therefore more likely to be found if the number of 

crossings can be reduced. The method for reducing the number of 

crossings to a minimum is depicted by Fig. 5.2(b). The node J in 

Fig. 5.2(a) represents a point of common electrical connection of 

several components. The function of the electrical circuit is 

unchanged if the node is "split" into two separate nodes J and J' 

as in Fig. 5.2(b), and joined by a branch JJ' termed a conductor 

branch. The non-planar branch may then be inserted into the graph 

with a minimum number of crossings as shown. 
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5.3 Insertion Path Searching 

The graph produced by the planarity algorithm is defined by 

a set of planar regions. In crossing a branch of the graph, a non-

planar path passes from one region to an adjacent one. Finding an 

insertion path with a minimum number of branch crossings is thus 

equivalent to finding a path that passes through a minimum number of 

regions. A tree search through regions, similar to the method 

described in Chapter 4.4.1 is therefore used to search for an 

insertion path. 

Each non-planar branch is initially connected to its start 

and target nodes in the topolqgical representation of the circuit. 

As an alternative it may later be reconnected to any node which is 

electrically common with the start or target nodes. When starting 

the search for an insertion path, every region which includes the 

target node is marked as a target region. Similarly, regions 

containing nodes electrically common with the target node are also 

marked. 

The tree search through regions is initiated by making a 

list of all the regions around the start node and any of its 

electrically common nodes. This list forms the initial level of the 

tree. If any of its regions have already been marked as target 

regions, the branch to be inserted is planar and may be inserted 

directly into the graph without branch crossings. At all stages of 

the path search for non-planar branches, the outside region of the 

graph is ignored as no branch may cross over the perimeter of the 

board. 
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5.3.1 Component Branch Search 

To proceed with the tree search for a component branch path, 

a region from the initial level of the tree is examined. Each branch 

around the edge of the region is checked in turn. If the node at 

either end of the branch isa connection node and has not yet been 

included in the search it is further examined. A list of all the 

regions around the node, excluding those already in the tree, is 

obtained and added to the next level of the tree. These are the 

regions which may be accessed by splitting the node and crossing the 

component over the resultant conductor branch. The procedure is 

repeated for each region in the initial level of the tree in order to 

complete the list of regions in the next level. 

The search procedure is repeated for successive levels of the 

tree. Each level is fully developed before constructing the next so 

that when an insertion path is found it is of minimum length. As 

each new region is added to the tree a check is made to see if it has 

been marked as a target region. The search procedure is completed 

when a target region is encountered. As each node is examined during 

the search it is given a pointer back to the region from which it was 

found. Similarly each region is given a pointer to the node from 

which it was found. This enables the required insertion path.to  be 

traced rapidly back through the tree to the start region when a target 

region has been found. 

The number of branches that a component may cross over is 

limited by its physical dimensions. This in turn limits the number 

of levels to which the tree search may be taken. If the maximum 

allowable number of levels in the tree is reached before a target 

region is found, the component cannot be inserted into the graph by 
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crossing over conductors. A possible method of then inserting the 

component is discussed in Chapter 11.1. 

5.3.2 	Link Branch Search 

Every component and pseudo branch has a dimension associated 

with it which indicates the space available for conductors to cross 

under the component or subgraph. This dimension is initially set 

during the DATAIN subroutine and may later be decremented by one 

conductor •width each time a branch is crossed under the component. 

To proceed with the tree search for a link branch path, a region 

from the initial level of the tree is examined. Each branch 

around the edge of the region is checked in turn. If it is a 

component or pseudo branch it is further examined. If there is 

still sufficient clearanceunder the branch, the region on the 

other side is added to the next level of the tree. This assumes 

that the region is not already in the tree. The procedure is 

repeated for each region of the initial level in turn in order 

to completely develop the next level of the tree. 

The tree search is continued with successive levels until 

a target region is reached. There is no limit to the number of 

branches that a link branch may cross. During the construction of 

the tree, each region is given a pointer back to the branch from 

which it was developed. This enables the required path to be 

traced directly through the tree when a target region is found. 

If the tree search is exhausted before a target region is found, 

the link branch is truly non-planar and cannot be inserted into the 

pseudo planar graph. 
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5.'-i 	Path Construction 

Having found the required insertion path for a non-planar 

branch, the pseudo planar graph has to be modified to include the 

branch. The initial step for the insertion of a component branch 

is to split all the nodes which lie along the insertion path. By 

using the pointers set up during the tree search, each node along 

the path may be identified and split into two separate nodes in turn. 

The branches on a node which is to be split are divided 

into two groups. The groups are separated by the two regions 

through which the component branch is to pass. A new node is 

created and the branches of one group are connected to it. A 

conductor branch is constructed between the original and the new 

node and is inserted as an extra branch into the two regions.' The 

region nearest the target node is given a pointer to the conductor 

branch so that the path of the component branch may still be 

traced. Having split the required nodes, the insertion of the 

component branch proceeds as for a link branch. 

To insert a link branch into the graph, one end of the 

branch is firstly connected to the target node. The target 

region gives a pointer to the first branch which is to be crossed. 

This branch is then divided intotwo separate segments (The 

representation of branch segments irz  described in detail in 

Chapter 6.2.3.) The first segment of the link branch is also 

created. The segments of the two intersecting branches are linked 

together so that the target region is divided into two separate' 

regions. The two regions each contain the target node and have 

the first link branch segment as a common boundary. 
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The insertion procedure is repeated along the path, dividing 

each region and crossed branch into two parts and creating another 

segment of the link branch. When the start region is reached, the 

second end of the link branch is connected to the start node. The 

start region is thus divided into two and the path is completed. 

Each branch segment of the graph may later be subdivided when further 

non-planar branches are inserted. The insertion procedure for 

component branches is exactly the same as for link branches. It is 

merely the type of branch which defines which of two crossing branches 

is placed on the conductor side of the board. 

An example of link branch insertion is shown in Fig. 5.3. 

Targel 

rt 

Fig. 5.3 
	

Insertion of link branch 

The three original regions of the graph,I, II and III are ABFA, 

BCEFB and CDEC respectively. The link branch to be inserted, AD, 

is connected firstly to its target node, A. Branch BF is divided 

into the segments BK1  and K1F. The first segment of the link branch, 

AK1 , is formed and connected to the segments of BF so that region I 

is divided into regions ABK1A and AX1FA. Region II is similarly 
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divided into two and region III is also divided by.connecting the 

second end of AD to its start iiode. The path is thus completed with 

two crossings K1  and K2 . As each component or pseudo branch is 

crossed, its clearance value is decremented by one conductor width. 

5.5 Branch Insertion Subroutine 

A subroutine to perform the above described algorithm, 

called PI-IASE2, has been written and is shown in flow diagram form by 

Fig. 5.4. The list of noñ-planar branches is initially sorted so 

that all component branches are in the first part of the list. The 

first branch is taken from the non-planar list and the graph is 

searched for a suitable insertion path. If a path is found the branch 

is inserted by the previously described methods. If the branch is 

found to be planar, it is inserted into the graph by connecting it 

across the region in which its two nodes lie. The region is thus 

divided into two separate regions. 

Any branch for tqhich no path can be found is put into a 

second list of non-planar branches. These branches are truly non-

planar and cannot be inserted into the pseudo planar graph. Non-

planar link branches are later replaced by wire jumpers. Non-planar 

component branches may later be connected by one node into the graph, 

the connection to the other node being made by a wire jumper. 

Having processed one branch, the procedure is repeated with 

the remaining branches from the non-planar list in turn until the 

list is exhausted. The end result of the insertion subroutine is 

then a pseudo planar graph which is the complete topological model of 

a circuit layout. There may also be a list of non-planar connections 

that have to be replaced by wire jumpers. 
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Fig. 5.4 	Flow diagram of PHASE2 subroutine 
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Chapter 6 	Computer Implementation of Topology Algorithms 

The algorithms for constructing the topological model of a 

öircuit have been described in the previous chapters. In this chapter 

the programming methods used to implement the algorithms are described. 

The computer hardware configuration has already been outlined in 

Chapter 1. 

6.1 	Data Storage 

The representation of an electrical circuit consists of a 

large number of interconnected nodes, branches, subgraphs and planar 

regions. In addition, the branches and subgraphs representing 

components require component names and, at a later stage, physical 

co-ordinates. The problem isto devise a system to store all of 

this information ma compact and readily accessible form. 

A data storage system similar to that described by Ross (27) 

is used. A large one-dimensional array is assigned as a common area 

in which to store all the data. The area within this array is 

divided up into a large number of blocks. Each block consists of a 

number of consecutive elements of the array and may be of any length. 

A block is used to represent a node, a branch or any other element of 

the graph. Interconnections of the blocks are represented by pointers. 

A pointer to a block is merely the array index of the first element of 

the block. 

A free storage system is used to allocate blocks from the 

array for use by the various subroutines. During the topological 

algorithms it so happens that no block ever becomes redundant. An 

elementary free storage system is therefore used although a more 

complex one is described in Chapter 9.2 for use with the layout 
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algorithms. The storage system uses a pointer, set initially to the 

beginning of the array, to indicate the start of the un-used part of 

the array. When a new block is required, it is taken from the free 

part of the array and the storage pointer is incremented by the 

corresponding block length. After each block has been allocated, 

the value of the storage pointer is checked to ensurethat the limit 

of the array has not been exceeded. 

6.2 	Data Structure 

The graph of a typical circuit contains many hundreds of 

interconnected blocks. It is important therefore to usea data 

structure which is efficient in describing the interconnections. 

There are a:number of general purpose data structure packages 

available, such as ASP (17, 25), which may be used with FORTRAN 

programs. Being general purpose packages however, they tend to 

have large overheads in storage space when defining, block inter-

connections. A special purpose data structure has therefore been 

designed for use withtthe planarity and layout algorithms described 

here. It is organised with interrelated parts of the graph closely 

conneôted by pointers so that one may move easily from one part of 

the structure to another. 

A general purpose data structure package usually contains 

checks to ensure that each operation on a, block is a valid one. 

The disadvantages of this are that extra storagespace is required 

in each block to indicate its type and that the program requires 

extra execution time for each operation to be checked. The data 

structure developed here has no such checks and so saves on storage 

space and computing time. The disadvantage is that the program 

generally fails completely if an invalid operation is performed. 
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6.2.1 Interconnection of Nodes and Branches 

The method of interconnecting nodes and branches in the data 

structure is illustrated by Fig. 6.1. A simple graph is shown In 

Fig. 6.1(a) and its resultant data structure is shown in Fig. 6.1(b). 

The first element of each node block contains the name of the node, 

each node having a unique name. The nodes of a circuit are allheld 

in a node list. The second element in each node block is thus used 

to point to the next node in the list. The list is terminated in the 

final node block by a zero value pointer. Each node has a number of 

branches connected to it. The third element in a node block thus 

points to the first branch which is connected to it. The remainder 

of each node block is used as a workspace in which to store various 

markers and pointers during the course of computation. 

The first element in a branch block is a marker describing 

the type of the branch, for example a component, or pseudo, or link 

branch. The next two elements of the branch point to the two node 

blocks between which the branch is connected. The two following 

elements of the branch block are used to form the list of branches 

connected to a node. The first of the elements corresponds to the 

first node pointer and the second element to the second node pointer. 

Each of the list elements points to the next branch connected to the 

node, or has zero value for the last branch in the list. The 

remaining elements of the'block are used for workspace and for 

connections to other parts of the data structure which are described 

later. 

As an example of the type of operation required on the data 

structure, all the branches connected to node 2 in Fig. 6.1 are to 

be found.' The branch pointer in the node'block N2 points to branch 
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. 	 (c) Simple graph 

Fig. 6.1 	Interconnection of nodes and branches 
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block B2 which is thus the first connected branch. As the first node 

pointer of B2 points to N2, the corresponding first node list pointer 

of B2 is taken. This points to branch Bl which is thus the second 

branch connected to N2. In this case node 2 is the second node of 

the branch so the second node list pointer of Bi is taken. The 

pointer is a null one which indicates the end of the list so Bl and 

B2 are the only branches connected to the node. The pointers are 

arranged in this way so that new branches may be added to a node 

without having to alter the length of its node block. The method 

of interconnection enables one to readily find all the branches 

connected to a node and vice versa. 

6.2.2 	Subgraph and Branch Components 

The method of defining the constituent parts of a subgraph 

component is illustrated by Fig. 6.2. Parts of the structure have 

been omitted from the diagram to avoid confusion. The nodes and 

branches of the subgraph are interconnected in the same manner as 

described in the previous section. This ensures that the parts of 
/ 

the subgraph are compatible with the rest of the graph when constructing 

planar regions. 

The overall component is described by a subgraph block, Sl. 

The first element of the block is a subgraph marker. The second 

element is a pointer to the first subgraph node of the component, SN1. 

The subgraph nodes are held in a list, in the same way as circuit 

nodes. The difference is that the start of the list is stored in 

the si.thgraph block and the last node has a pointer back to the 

subgraph block. The subgraph nodes are thus joined in a ring 

together with the subgraph block. In addition, the first element of 

each node block has a marker plus a pointer back to the subgraph 
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(a) Subgraph component 

N3 	PB2 	N2 

 

Fig. 6.2 	Interconnection of subgraph nodes and branches 
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block. Given a subgraph node therefore, one may readily find the 

subgraph component to which it belongs. 

Every subgraph node has a list of the branches attached to 

it; these are a link branch and two pseudo branches. The pseudo 

branches each have two pointers to their appropriate subgraph 

nodes. The link branch also has two node pointers. The first 

pointer identifies a circuit node and the second points to the 

corresponding subgraph node. The structure of a subgraph component 

is thus defined completely in a manner which is compatible with the 

remainder of the graph. 

At. a later stage of the layout algorithm when components are 

given physical co-ordinates, itis desirable that both the branch and 

the subgraph component blocks are compatible. The form of a subgraph 

block is shown in Fig. 6.3(a). This is the same block as the one 

Subgraph marker 

-. Node list 

Component name 

•Master comp. ptr. 

X co-ordinate 

V co-ordinate 

Orientation 

Workspace 

Upper branch mkr. 

Lower branch ptr. 

Component name 

,Master comp. ptr. 

X co-ordinate 

V co-ordinate 

Orientation 

Workspace 

(a) Subgraph component block (b) Branch component block 

Fig. •6.3 	Component data blocks 
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marked Si in Fig. 6.2(b). The third element of the block contains 

the characters of the user name of the particular component, for 

example TR1 or TR2. The fourth element is a pointer to a master 

component block in the component library. The master block saves 

repetition of information common to every component of a particular 

type; its contents are discussed in Chapter 3.3.1. Further elements 

in the subgraph block store the physical co-ordinates and orientation 

of the component and provide working space for the layout algorithm. 

The data structure for a branch component should be compatible 

with the subgraph block just described. It should also be compatible 

with the method of interconnecting nodes and branches described in 

the previous section. These two requirements both use the same area 

of a block and so aremutually exclusive within the same block. The 

data for a branch component is therefore divided between two blocks 

as shown in Fig. 6.3(b). The upper block is identical to the subgraph 

block apart from the first two elements. The first element contains 

amarker describing the type of block; the second contains a pointer 

to the lower branch block. The lower block describes the interconnections 

of the branch into the graph and corresponds to either of the blocks 

marked Bi or B2 in Fig. 6.1(b). It also has a pointer back to the 

upper branch block. 

6.2.3 	Branch Segments and Planar Regions 

The pseudo planar graph of a circuit is defined by a set of 

planar regions. Certain branches of the graph may each be d.ivided 

into a number of branch segments by other crossing branches, in the 

manner described in Chapter 5.4. In developing a data structure to 

represent this type of graph, two problems arise. The first is to 
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define the correct sequence of branch segments-around the edge of a 

region. This sequence'escribes the order in which branches are 

connected so as to avoid branch intersections in the planar graph. 

The correct sequence is also necessary at the layout stage so as to 

give the correct order of component connections. The second problem 

is to define the correct sequence of segments from one end of a 

branch to the other. This is essential in preventing the conductors 

under a component from intersecting each other. 

A pseudo planar graph and its method of representation are 

illustrated by Fig. 6.4. In this example two of the branches, Nl to 

N2 and N3 to N4, intersect and divide each other into two segments as 

shown in Fig. 6.4(a). The linking between branches and their 

associated planar regions is performed by two-element blocks called 

tie blocks. The interconnections between branch and tie blocks are 

shown in Fig. 6.4(b). Every branch segment is defined, by a pair of 

tie blocks; one for each region adjacent to the segment. If a branch 

is divided into several segments, it is defined byalist of tie 

block pairs. The order of tie block pairs corresponds to the order 

of segments on the branch. An element in the branch block contains 

a pointer to the first ti& block The first element in the tie 

block points to the next tie blok and so on. The final tie block 

'then points back to the branch block so that given a tie block, its 

corresponding branch may be found. 

All the planar regions of a graph are represented by a list 

of region blocks in the data structure. The description of a planar 

region is illustrated in Fig. 6.4(c). The first element of a region 

block contains a region marker plus a unique name for the region. 

The second element points to the first tie block of the region. 
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The tie blocks are connected in a ring together with the region 

block, by the second element of each block pointing to the next tie 

block. The final block then points back to the region block. Each 

tdé block in the ring belongs to a different branch segment such 

that the order of blocks corresponds to the order of branch segments 

around the planar region. The third element of the region block 

contains a pointer to the last tie block of the ring so that the two 

end blocks of the ring may be readily identified. The fourth element 

of the region block points to the next block in the list of regions. 

The correct ordering of the segments of a branch is maintained 

by adopting a convention of interconnection ordering. Referring back 

to Fig. 6.4(a), it can be seen that all the regions are connected in 

an anticiockwise direction. The position of the region block within 

its ring of tie blocks is not important. If Ni is the first node of 

branch Ni to N2, it can be seen that the tie biockson one side of the 

branch point towards Ni whilst those on the other side point towards 

N2. The tie blocks are therefore arranged on the. branch ring so that 

the first one of every pair points towards the first node, Nl, 

whilst the second points away from Ni. In addition, the first tie 

block in the branch ring belongs to the branch segment nearest to 

the first node. The dotted lines in Fig. 6.4(a) show the order in 

which the tie bl6cks are attached to the branch. The convention of 

ordering thus enables the branch segments to be kept in the correct 

order. 

6.3 Computer Language 

The board layout program involves a great deal of data 

structureprocessing. One requirement of the program is that it 
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should be readily transferable from one computer installation to 

another. There is no widely used data structure processing language 

so it was decided to use FORTRAN IV (10) together with a general 

purpose macro processor ML/l (4), for the layout program. The ICL 

4130 described in Chapter 14 has a magnetic tape based FORTRAN 

system which enables programs to be compiled and run from magnetic 

tapes. It a±so enables precompiled subroutines to be stored on 

magnetic tape which is a useful feature when developing a large 

program. 

The general purpose macro processor is used for the 

implementation of the data structure within the FORTRAN language. 

Some of its facilities are described in Appendix A. Statements 

describing operations on the data structure are written as macro 

calls. When completed, the program is processed by the macro 

processor so that all the user-defined statements, or macro calls, 

are replaced by FORTRAN statements. The program may then be compiled 

and run as a normal FORTRAN program. 

An example of the use'of the macro processor is described 

here. It is assumed that a variable, PTR, contains the index in the 

one-dimensional data array, IRAY, of a subgraph component block. 

The fifth and sixth elements of this block contain the X and Y 

co-ordinates of the component. The co-ordinates of the component 

may be obtained by using the macro calls: 

X = COMPX(PTR) 

and .Y = COMPY(PTR) 

The definitionsof the macro calls describe the replacement text for 

the calls so that after processing they are replaced by their 

equivalent FORTRAN statements, i.e. 
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X = IRAY(PTR+4) 

and Y = IRAY(PTR+5). 

The above example could be implemented by the use of a 

FORTRAN function statement. Thereason for using the macro processor 

is that data structure statements also need to appear on the left 

hand side of an assignment, for example: 

COMPX(PTR) = x 

This type of statement cannot be implemented by a FORTRAN function, 

hence the use of the macro processor. 

It is clear that a program written with macro calls is far 

easier to understand than its equivalent FORTRAN text. Changing the 

order of elements in a block or changing the length of a block during 

the development of the program is also facilitated. Only the macro 

definitions need to be altered as the macro processor will automatically 

apply the alterations to the program during processing. 
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Chapter 7 	Placement and Routing of Board Layout 

The algorithms for automatically constructing a board layout 

from the topological model ofa circuit are described in this chapter. 

A later chapter describes the modifications necessary to allow 

graphical interaction with the layout program. 

7.1 Consideration of Layout Methods 

The majority of methods for generating printed wiring board 

layouts split the problem into two separate stages. Component 

positions are computed first and the components are fixed at their 

appropriate co-ordinates. The conductor routing stage then becomes 

a problem of finding paths to connect together sets of fixed-position 

pins in the required order. This approach conveniently allows one 

to divide the layout algorithmc into two lesser independent problems. 

The main disadvantage is that components are placed with little or 

no regard to the subsequent routing of conductors. If the components 

could later be repositioned in congested areas of the board, some 

further conductors might be routed where therewas otherwise 

insufficient space between components. A further disadvantage is 

that considerable computing time may be wasted in searching for 

conductor paths that are topologically impossible to route. 

The advantage, of constructing a topological model initially 

is that the relative positions of all components and conductors are 

known before layout commences. This means that components can 

always be placed so as to allow sufficient clearance for intervening 

conductors. In addition, conductor routes can be constructed in 

steps from one component pin to the next rather than having to 

search for a path over a large area of the board. 
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7.1.1 Oblectives of Board Layout Method 

During the generation of a board layout, a number of objectives 

have to be considered. The following objectives are true whether the 

layout is developed from a topological model or by any other method: 

All the circuit components and conductor paths must be placed 

within the available board space. This may present some 

difficultk when a board is densely populated with components. 

In addition to the board'iarea required by the components 

themselves, further space is required between them for routing 

the conductors. 

Every conductor should be of minimuinlength. For high frequency 

circuits this reduces the effects of stray capacitance upon the 

performance of.the circuits. For all layouts, minimum length 

conductors reduce the amount of bbard space required for routing 

and enable more. compact layouts to be generated. 

The spacing between adjacent components and between adjacent 

conductors must be greater than certain specified minimum 

values. Clearances between adjacent components are necessary 

in order to allow for such things as tolerances in component 

positioning, insulation between the components and heat 

dissipation of some components. A minimum value of spacing 

between the centre lines of parallel conductors must be 

specified to allow for the width of conductors, insulation 

space between conductors and manufacturing tolerances in the 

production of printed wiring boards. 

As well as the essential conditions described above, there 

are often a number of constraints which are peculiar to each 

particular layout. For example, the adjustment screw of a 
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potentiometer should face towards. the edge of the board, or the 

input and output connections of a high gain amplifier should be 

kept apart so as to reduce the effects of inductive and 

capacitive coupling 

7.1.2 Force-Field Method of Layout Construction 

A method of board layout studied initially for this project 

made use of a mechanical force analogue similar to the ACCEL program 

described in Chapter 2. Using the topological model of a circuit, 

components and conductors were initially placed so that no conductor 

paths intersected. The object was then to alter the placements so 

as to give a compact layout whilst preserving planarity. Each 

conductor was considered to exert a force, proportional to its 

length, upon its two attached components. The purpose of this 

force was to bring closely connected components together and reduce 

conductor lengths0 Each component exerted a force of repulsion, 

inversely proportional to distance, on all adjacent components. 

The force was used to prevent adjacent components from over-lapping. 

The conductors were each divided into a number of segments. 

Forces of attraction and repulsion were similarly exerted between 

adjacent conductor segments so as to reduce the length of each 

conductor, without allowing it to cross any other conductor. The 

algorithm proceeded in an iterative manner, moving every component 

and conductor segment a distance proportional to the net force upon 

it. The algorithm terminated when all the components and conductors 

reached stable positions within the avai1ableboard space. 

A program was written to make a simplified study of the 

roblem. The main drawback encountered was that each conductor had 
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to be divided into many segments to ensure that no parts of adjacent 

conductors crossed. The problems associated with the storage of 

large amounts of data, together with the time requiredto perform 

many iterations of the program, made this approach unsuitable for 

large board layouts The results of the program were also critically 

dependent on the relative values of attraction and repulsion forces. 

An inductive method of construcfing board layouts was therefore 

developed, described in the following sections. 

7.2 Principle of Layout Algorithm 

The method used to construct the board layout of a circuit 

from its topological model builds up the layout in a logical series 

of steps from a known starting point. The type of board considered 

is a rectangular board with an edge connector along one side. A 

list of all the components connected to the edge connector ëan be 

obtained from the topological model These components may be placed 

in a strip across the width of the board, parallel and adjacent to 

the edge connector. The topological model then gives a list of the 

components connected to those already on the board. The layout 

may thus be constructed by placing components in a series of 

parallel strips across the board, working from the edge connector 

to the opposite side of the board. 

At any time during the layout construction, a boundary line 

may be drawn across the board separating the part of the board 

occupied by components from the unoccupied part. This is illustrated 

by the dotted line shown in Fig. 7.1. The boundary of the unoccupied 

part of the board is thus divided into a number of slots.. The lower 

edge of each slot is coincident with the upper side of a placed 

component. The two sides of each slot are coincident with either the 
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edge connector 

Fig. 7.1 	Board layout slots 

sides of components or the sides of the board. The width of the two 

slots shown in Fig. 7.1 are indicated by the measurements A and B. 

The board layout is constructed by placing components into 

successive slots of the unoccupied part of the board. This is in 

preference to using parallel strips across the whole width of the 

board due to the irregular shape of the placed component boundary. 

The initial slot of the layout is coincident with the lower edge 

and two sides of the board. Thereafter, the next slot chosen for 

component placement is the lowest slot (the one nearest to the 

edge connector), working from left to right across the board. As 

components are placed in a slot, the boundary of the unoccupied 

part of the board is updated, thus creating new slots. 

The processing of a slot is performed in two stages. The 

first stage consists of node development and sorting. Around the 

edges of the slot are conductors, or circuit nodes, from the 
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occupied part of the board. Reference is made back to the topological 

model to obtain a list of all the components and conductors connected 

to these nodes. The list is then sorted to determine the optimum 

set of components to place in the slot. The second stage of slot 

development consists of component placement and conductor routing. 

The physical co-ordinates and orientations of the components are 

calculated. The conductors are then routed from the edges of the 

slots to the appropriate component pins. 

7.2.1 Aims of Layout Algorithm 

When placing components into a slot, the main objective is 

to pack in as many components and conductors as possible. Before 

construction of the layout commences, there is little indication of 

the final component and conductor density of the board. Slots are 

therefore closely packed to ensure that the layout will fit dnto 

the board. If the board is not densely populated with components 

there will be a large strip of unoccupied space across its upper 

width when the layout is completed. The component and conductor 

co-ordinates may readily be multiplied by a scale factor in the Y 

direction so as to occupy the whole board if desired. 

The method of constructing the board layout is also aimed 

at producing minimal conductor lengths. In deciding the contents of 

a slot, the components chosen are those most closely connected to the 

existing part of the layout. The interconnecting conductors between 

components thus tend to be of minimal length. The correct clearances 

between adjacent components and conductors are also to be maintained 

by the layout algorithm. They may readily be computed to their 

correct values because the layout is constructed in a series of 

successive slots. Special constraints such as those mentioned in 
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section 7.1.1(d) are difficult to program for a general purpose 

layout algorithm. They are therefore dealt with by the interactive 

methods described in Chapter 8. 

7.3 Slot Development and Sorting 

This section describes the processing required in order to 

choose the optimum set of components and conductors to be placed in 

one slot during the construction of a layout. The slot is initially 

assumed to be empty and along its lower edge are the ends of a 

number of uncompleted conductor paths. These paths come from 

ccmponent pins or parts of conductor paths which have already been 

placed on the board atalower level. An example is shown in Fig. 7.2; 

slot 
boundc 

Fig. 7.2 	Development of slot nodes 

the component Cl has already been placed in the layout. The three 

conductor paths from a lower level are initially routed up to the 

points marked A, B and C on the lower slot boundary. 
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The conductor paths in the layout may be of two different 

types and it is appropriate here to describe the difference between 

them. The first type of path is the physical representation of a 

circuit node in the topological model. It directly connects together 

two or more component pins without crossing under any other components. 

Two examples are shown by conductor paths A and C in Fig. 7.2. The 

second type of path corresponds to a branch segment in the topological 

model. The branch concerned may be either a subgraph link branch or 

a conductor branch. The path is one which, when routed further in the 

layout, crosses under a component. An example is given by path B in 

Fig. 7.2. These two types of conductor paths are termed nodes and 

conductors respectively. 

The data for processing the contents of a slot is stored in 

blocks, similar to those described in Chapter 6.1. The blocks are 

organised into two lists called the base list and the working list. 

The base list contains fnformation on all of the uncompleted 

conductor paths at the lower edge of the slot. The working list is 

used for storing and processing information on -all of the possible 

contents of the slot. 

There are four different types of block which may be used in 

the base and working lists0 These are: 

Branch block which holds data related to a branch component. 

Subgraph block which holds data related to a subgraph component. 

Node block which relates a conductor path to all or part of a 

circuit node. 

Conductor block which relates a conductor path, to a branch 

segment in the topological model. 

Each block contains a pointer back to an appropriate part of the 
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topological model so as to identify the physical layout with the 

topological model. 

7.3.1 Development of Nodes and Conductors 

The initial step in finding the optimum contents of a slot 

involves the development of all the nodes and conductors along the 

lower edge of the slot. These elements are stored in the correct 

physical order in the base list of the slot. The development of a 

node or conductor is defined as creating a list of all the possible 

components and conductors which may be connected to the elment. 

This list then forms part of the working list of the slot. Examples 

of development are shown in Fig. 7.2. Node A develops into components 

C2 and C3, conductor B develops into a further conductor and node C 

develops into component C4. 

One difficulty in describing a node in the physical layout 

is that several parts of the same node may appear in different 

parts of the layout. A part of a node is defined as a conductor 

path connected to one or more components of a given circuit node. 

An example of two parts of a node in the same slot is given in 

Fig. 7.3. The topological model of the node and its connected 

components are shown in Fig. 7.3(a) whilst a possible physical 

representation is shown in Fig. 7.3(b). It is essential to uniquely 

identify each part of a node so that the parts may be developed into 

the correct sequence of components and conductors. 

Each part of a node is uniquely identified by pointers to 

three different elements in the topological model. These are the 

corresponding circuit node and tko bound branches which are connected 

to it. The order of branches around a node is defined in the 
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Fig. 7.3 	Development of a node 

topological model so there is a corresponding order of components 

and conductors in the physical layout. The two bound branches are 

defined as the first and the last branches connected to that part of 

the node which is already placed in the layout. The remaining 

branches connected to the node part, if any, are thus defined as 

those which lie between the two bound branches. Two examples of 

parts of nodes are shown in Fig. 7.3(b). The bound branches of 

part A are both the component Cl. The first and second bound 

branches of part B are the components C5 and C14 respectively. 

The development of a base node, or node in the base list 

of the slot, proceeds in a clockwise order of branches around the 

node. The first branch to be developed is the one following the 

first bound branch. If the developed branch is a component branch, 

the corresponding block in the topological model is checked. If 

the component has not yet been placed in the layout a branch block 

is added to the end of the working list. Otherwise, a node block 

is added to the working list. This represents apart of the node 
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which will be routed as a conductor path until it connects with the 

already - placed component. An example of node development is 

illustrated by node A in Fig. 7.3(b). Following the first boundi 

branch Cl, the components C2 and C3 are developed. The remaining 

components, C4 and C5, have already been placed so node C is added 

to the working list. 

If the developed branch is a link branch, the topological 

model is checked to see whether it crosses under any other branch. 

If there are branch crossings, a conductor block is added to the 

working list with a pointer to the appropriate segment of the link 

branch. If there are no crossings the link branch must be connected 

directly to its subgraph component. The corresponding component 

block is therefore checked as before to decide whether to add a 

subgraph block or a node block to the working list. 

The developed branch may be a conductor branch (produced by 

splitting a node during the construction of the pseudo planar graph). 

In this case there will always be a branch crossing so a conductor 

block is added to the end of the working list. The developed branch 

may also be a pseudo branch belonging to the edge connector. This 

means that the base node is part of an edge connector node. In 

this case a node block is added to the working list. The node will 

be routed as a conductor path until it is joined to another part of 

the same node which is already connected to the edge pin. The 

devëldpment of the base node is continued with each branch in turn, 

in a clockwise order around the node, until the second bound branch 

is encountered. 

A conductor block in the baselist may be developed in a 

similar manner to a base node. Each conductor block contains a 

pointer to a tie block in the topological model. The conductor path 
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in the layout may thus be identified with a particular branch segment 

and the direction in which the branch is being traversed. To develop 

a conductor bock the topological model is checked to find the 

element which follows the current branch segment. This element may 

be either a branch crossing or a node. In the case of a branch 

crossing, a duplicate conductor block is added to the end of the 

working list. The block is given an additional pointer to the 

component which it is to cross. This indicates the destination of 

the conductor and is used in a later part of the algorithm. 

When the current conductor segment is followed by a node 

there are two possible results. If the node belongs to a subgraph, 

the conductor block may be developed into a subgraph block, assuming 

that the component has not already been placed in the layout. If the 

node is a circuit node, the conductor block in the base list is 

replaced by a node block which has the conductor as its two bound 

branches. The node is then developed as a normal base node. 

Each node or conductor block of the base list is developed 

in turn. The working list then contains all the possible components, 

nodes and conductors. that could be placed in the slot. These elements 

are also in the correct physical order within the list. It is 

possible that a component may appear more than once in the working 

list, a§ shown in Fig. 7.3(b). These multiple instances of components 

are removed in a later stage of the processing. 

7.3,2 Orientation and Spacing of Corponents 

All the components in a layout have the possibility of four 

different orientations. These correspond to each side of the 

component rectangle lying parallel to and facing the lower edge of 



the slot. Before the spacing of components in a slot can be 

calculated, the component orientations must be determined. In 

addition it is necessary to know the number of conductors crossing 

under each component. This enables sufficient spacing to be - 

allowed between adjacent components for these conductors to be 

routed to a higher level if necessary. 

Every component in the working list is developed from a 

base node or conductor. The component pin to which the base node 

connects is termed the source pin. Each component is orientated so 

that its source pin is on the lower edge of the component, nearest to 

the base node. This reduces the length of conductors from the lower 

edge of the slot. As an example, the orientation of an integrated 

circuit component is illustrated by Fig. 7.11. The preferred 
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Fig. 7•4 	Orientatiob of a subgraph component 

orientation is shown in Fig. 7.4(a) whilst Fig. 7.4(b) shows the 

extra conductor routing required if the component source pin is not 

orientated towards the base node 1. If the source pin lies on a 

corner of the component there is a choice of two possible orientations. 

In such a case, the component is orientated towards an adjacent 

conductor which crosses under 114, if one exists. 
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When the layout algorithm is operating automatically, each 

subgraph remains fixed in its oiientation once this has been 

determined. This avoids the necessity of having to provide extra 

conductor routing such as that shown in Fig. 7. 14(b). Each branch 

component is initially orientated with a shorter edge parallel with 

the bottom of the slot. This enables the maximum number of components 

to be placed in the slot. If there is space to spare in the slot, 

each branch component may later be re-orientated so that a longer 

edge is parallel with the bottom of the slot. 

When calculating the spacing required for conductors to pass 

between adjacent components, it is assumed that conductors pass 

under components only at their crossing points. For example, components 

are spaced as shown in Fig. 7.5(a) as opposed to Fig. 7.5(b). This 

Fig. 7.5 	Spacing of components 

results in a slightly greater spacing than is necessary but avoids 

having to compute the positions of all the pins of the two adjacent 

components. 

An algorithm has been developed to determine the orientation 

of a component and the spacing required for conductors which cross 

under, or are connected to it. The first operation of the algorithm 

is to identify the source pin of the component. A branch component 
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may then be orientated with its source pin lowermost in the slot. 

For a subgraph component it is necessary to know on which of the four 

sides the source pin lies. This is determined by examining four 

pointers which are stored in the master component block. These 

pointers indicate the four pins which are nearest to the corners of 

component. Given the source pin therefore, the corresponding side of 

the component may be determined and hence the appropriate orientation. 

The spacing required for conductors around a branch component 

is calculated by counting the number of conductors which cross under 

it. This gives the left and right hand spacing required in the X 

direction. No spacing is necessary in the Y direction below the 

component. Neither is spacing required above as the top of the 

component will form the lower edge of a later slot. An example of 

conductor spacing is shown in Fig. 7.6. 
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Fig. 7.6 	Branch component conductor spacing 

The spacing required around a subgraph component is computed 

in several stages. Firstly, the pin at the top left hand corner of 

the component is obtained. The number of nodes and pseudo branch 

crossings is then counted from this pin down to the pin at the 

bottom left hand corner. From the corner, the number of nodes and 

crossings is counted as far as the source pin. The second figure 

gives the left hand Y spacing required and the sum of the two 
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figures gives the left hand X spacing. Continuing the count to the 

bottom then the top right hand corner pins gives the corresponding 

values for the right hand side of the component. An example of 

conductor spacing is shown in Fig. 7.7. 
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7.3.3 Counting of Slot Contents 

Having developed thebase list of a slot, the working list 

contains all possible components and conductors that could be placed 

in the slot. The next stage is the calculation of the total width 

of all these elements so that it may be compared with the actual 

width of the slot. In addition, some initial sorting of the working 

list is performed. This sorting is intended to remove multiple 

instances of components and unnecessary conductor paths. 

The slot space occupied by a component is assumed to include 

space for conductors crossing under or connected to the component as 

well as the width of the component itself. In many cases, the 

conductors which are to cross under the component have already been 

developed from a lower level so that the working list contains their 

conductor blocks adjacent to the component block. These conductors 

are termed adjacent crossing conductors. The sum of block widths in 
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the working list would thus effectively include each of these 

conductor widths twice in the total. To avoid this, the destinations 

of conductors on either side of a component are checked before adding 

the component width to the total. Any adjacent crossing conductors 

are counted and each is given a special marker. The left and right 

hand spacings of the component are then reduced by the appropriate, 

number of conductor widths.. 

The widths of all components, their left and right hand 

spacings, and all conductors are added together to give the total 

width of all the slot elements. At the same time a check is made for 

multiple instances of each component in the working list. When more 

than one instance of a component is found, the one with the greatest 

number of adjacent crossings is retained in order to minimise 

conductor lengths. The remaining instances are deleted from the 

working list and the total width of the slot contents is reduced 

accordingly. 

When deleting a component from the working list it must be 

replaced by a node block. This preserves the connection from the 

base node to a further instance of the component. The bound branches 

of the replacement node are obtained by reference to the base node 

and any adjacent components connected to the same base node. If 

the working list already contains an instance of the node, adjacent 

to the component to bedeleted, the bounds of the existing node 

block are merely updated. 

It frequently occurs that a base node develops into several 

conductors. If these conductors do not cross under any components in 

the slot they are routed up towards a higher level slot. This would 

result in several parallel paths from one base node. To prevent 
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this, all conductors in the working list which have been developed 

from a base nodeand which have not been marked as crossing under 

adjacent components are replaced by their corresponding base node. 

Whenever two adjacent instances of a node then occur in the working 

list, the two node blocks are combined into one. The bound branches 

of the new node block are updated and the total width of slot contents 

is decremented by one conductor width. 

The working list now contains one instance only of each 

component. All unnecessary parallel conductor paths have been 

removed and the total width of the potential slot contents is known. 

7.34 Sotting of Slot Contents 

The total width of the potential slot contents is compared 

with the actual width of the slot. There are three possible results, 

each with its corresponding course of action: 

The width of potential slot contents is greater than the slot 

width. Some components must therefore be removed from the 

working list.. 

The slot is exactly filled by its contents. The algorithm may 

then proceed to the placement and routing stage. 

The slot width is greater, than the potential contents. The 

spare space may be filled by reorientating some of the components. 

A sorting algorithm has been developed to decrease the contents 

of the working list. The basic strategy is to keep thelarger 

components in the list and to delete the smaller ones. ' This is 

based on the assumption that the smaller components may be more 

easily planed in later slots, especially if the later slots haveless 

width than the 'current slot . 
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The first step is to take the value of the actual slot width 

and subtract from it the width of all nodes and conductors in the 

working list. This gives a figure for the maximum possible space 

available for components. In actual fact the available space is less 

than this because components are replaced by nodes when they are 

deleted. The insertion of these extra nodes into the working list 

gives rise to some difficulty in calculating the exact space 

available in the slot. When several components are developed from 

one base node there are many different combinations in which 

components, and nodes from deleted components, may occur. Fig. 7.8 

shows just one sequence by which three components may be successively 

deleted from the working list. 

I?cEI1r1 	Tc;L 
(a) 	 (b) 	 (c) 	 (d) 

Fig. 7.8 	Deletion of components from the working list 

During the sorting procedure components may be marked to 

indicate that they are to be placed in the slot. The working list 

is searched for the largest component which has not yet been so 

marked. If any component is found that has greater width than the 

available space it is immediately deleted. Having found the largest 

component it is temporarily marked so as to keep it in the working 

list. The total width of the slot contents is then counted, 

replacing all unmarked components by the width of their base node. 
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marked so as to be ignored in further searches. The procedur&; 

is repeated until either the slot is completely filled or there are 

no further branches with adjacent crossing conductors. 

The algorithm continues if there is still space to spare in 

the slot. The remaining unmarked branch components in the working 

list are examined to find the onewhich will give the greatest 

increase in width when re-orientated. The component thus found is 

re-orientated and the spare slot space is decreased accordingly. 

The search procedure is then repeated until either all the branch 

components have been re-orientated or the slot space is completely 

filled. 

At this stage the working list is completely processed with 

reference to its contents. The components in the list are orientated 

for the most efficient use of the slot space'and all the components 

and conductors in the list maybe placed within the actual iidth of 

the slot. 

7.4 Placement and Routing 

The components and conductors to be placed in the slot are 

held in the working list in the borrect physicl order. They have 

resulted from the development and sorting procedures described in 

the previous section. Thenext stage of the layout algorithm 

involves the assignment of physical co-ordinates to the contents of 

the slot. Conductors may then be routed from. the base nodes to the 

appropriate.component pins and to the end of conductors held in the 

working list. 



-95- 

7.'i.l 	Component and Conductor Placement 

The conductor blocks in the working list represent conductors 

which are to be routed from a base node at the bottom of the slot, 

through the slot and up to a later slot at a higher level. Each 

conductor end is assigned a physical co-ordinate so that it may be 

projected upwards to a higher level without meeting an obstruction. 

The conductor ends are therefore assigned co-ordinates in exactly the 

same manner as components. 

The X co-ordinates are assigned by working across the slot 

from left to right. The initial X co-ordinate is set to the left 

hand edge of the slot. The first component or conductor is then 

positioned at this co-ordinate. In the case of a component, due 

allowance is made for the space required by crossing conductors. 

The X co-ordinate is then increased by the total width of the 

element just placed. This enables the procedure to be repeated 

with the remaining components and conductors in the slot. 

When assigning the Y co-ordinates of the slot contents, 

several points must be taken into consideration. The first is 

illustrated by the example in Fig. 7.9, In routing a conductor 

path from a base node to its appropriate conductor:end, it may 

have to pass over several other base nodes. The conductor end 

must therefore be given sufficient Y clearance from the bottom of,  

the slot to enable all the conductor paths to be routed without 

intersections. Similarly, components require clearance from the 

bo+tom of the slot in order to prevent unwanted conductor crossings. 

It may be observed from Fig. 7.9 that nodes B, C, D and E 

have to be routed around node F. This node is therefore the basic 

obstruction to the routing of the other nodes and it causes a 
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LAA.O  
Fig. 7.9 	Placement of components and conductor ends 

"wave front" of conductor corners to the left of itself. Each 

corner point is one conductor width to the left and above the 

previous corner. This fact is used in calculating the Y 

displacement of components and conductors. 

To calculate the required Y displacement of a component 

or conductor, the right hand X co-ordinate of the element together 

with its base node are first obtained. The next base node to the 

right is then examined and its co-ordinates obtained. The position 

of the "wave front" caused by this node may thus be calculated. 

The procedure is repeated with successive base nodes to the right 

until either the co-ordinates of the. "wave front" lie:, to the right 

of the current component or the end of the base list is reached. 

The number of base nodes examined indicates the required number of 

conductor-width displacements of the component in the Y direction. 

The whole procedure is then repeated on the left hand side of the 

current component or conductor. The larger of the two figures gives 

the required Y displacement. 
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Before placing a component in the slot, a further Y 

displacement may be necessary due to crossing conductors along the 

lower edge of the component. If the component has both a left and 

right hand Y displacement for crossing conductors, the larger of the 

two is taken. This is then added to the Y displacement described 

above to give the total displacement of the component. An example 

of such component placement is shown in Fig. 7.10. When the total 

0 1 	
] 

Fig. 7.10 	Placement of components 

displacement of each component in the slot has been calculated, it 

is assigned a Y co-ordinate and added to a list of placed components. 

During the placement of elements in a slot, it frequently 

occurs that the last few elements are conductors followed by spare 

space at the right hand side of the slot. Conductor ends that are 

placed to the right of their respective base nodes have to be 

routed around components as shown in Fig. 7.11 (a). Conductor 

ends that are placed to the left of their respective base nodes 

have no such obstacles to avoid. In addition, if these conductors 

have to be routed to the right in a later slot they will follow an 

un-necessarily long path as shown in Fig. 7.11 (b). 

When the components and conductor ends have been assigned 

co-ordinates, the working list is scanned from the right hand side. 
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Placement of conductors at RH. side of slot 

If a conductor end is found which lies to the left of its base node, 

it is repositioned to the same co-ordinates as its base node. This 

results in shorter conductor paths as shown in Fig. 7.11 (c). The 

scanning of the working list is continued until a component block is 

encountered, or a conductor which is routed to the right from its 

base node. 

7.4.2 Placement of Crossing Conductors 

At the stage now reached in the processing, the components 

have been placed in the slot. The conductors which cross under or 

are connected to these components may therefore be placed in the 

layout. The routing procedure is performed in two stages. Firstly, 

a list of all the nodes and crossing conductors around a given 

component is constructed by referring to the topological model. 

The actual crossing conductors are then routed. In the second stage, 

the nodes and conductors are routed out around the component and 

their list is connected into the working list. 

To process a subgraph component, the first pseudo branch of 

the component is obtained. By referring to the topological model, 

the number of crossings of this branch, if any, may be determined. 
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By further reference to the component position and its master block 

in the component library, the co-ordinates of the two end points of 

the pseudo branch may be calculated. The co-ordinates of the required 

number of crossing points, equally spaced along the branch, may thus 

be calculated. At the same time, a list of blocks is constructed, 

containing a node block fpr the first node of the pseudo branch and 

a conductor block for each of the crossing conductors. 

The procedure is repeated for each pseudo branch in turn, 

adding node or conductor blocks to the end of the list as they are 

encountered. The two ends of the list are then joined to form a 

ring, for reasons explained below. The ring thus contains all the 

nodes and crossing points, with co-ordinates, in the same order as 

would be obtained by traversing the perimeter of the component 

rectangle. An example of component crossing points is shown in 

Fig. 7.12. The pins of the component are labelled A to F and the 
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Fig. 7.12 	Subgraph component with crossing conductors 

crossing points are labelled P to T. The order of blocks in the 

ring would thus be A P B Q C D R E S T F. 

The next step is to route the crossing paths under the 

component, for example paths Q to R, B to S and P to T in Fig. 7.12. 

Each block in the ring is examined in turn. When a conductor block 
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is encountered the topological model is checked to find the node or 

crossing conductor to which it is connected. The ring is then 

searched to find the corresponding node or conductor block. The 

co-ordinates of the two points may thus be obtained and a conductor 

path routed between them0 The procedure is repeated for the 

remaining conductor blocks in the ring so that all the crossing 

paths are routed under the component. 

Branch components are processed in a similar manner. A 

ring of nodes and crossing conductors is constructed as before. 

In this case the conductor blocks may be matched in pairs, corresponding 

to a crossing conductor appearing on two sides of the component. 

The co-ordinates of the two blocks in each pair are identical so no 

conductor routing is required under the component. 

The conductor crossing procedure is repeated for every 

component in the working list so that each;has a ring of node and 

conductor blocks associated with itself. The next stage of 

processing involves routing the node and conductor paths around 

the component as part of the layout procedure Also the ring of 

blocks associated with each component has to be connected into 

the working list. 

The conductor routing algorithm described:  later is based 

partly on the assumption that conductors may always be projected 

up to a higher Y level without encountering any obstruction. When 

a component is placed it is necessary to route its connected nodes 

and crossing conductors so that this assumption is true. An example 

of routing is shown in Fig. 7,13. Nodes and conductors on the sides 

of the component are routed outwards to the left or right. Those 
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I 	 I 

Fig. 7.13 	Routing of component nodes 

along the bottom edge of the component are routed downwards then 

outwards as shown in the diagram. 

A further complication occurs when the component has 

adjacent crossing conductors or nodes as illustrated in Fig. 7.14. 

J 	I 	I 
I 	I 

I 	 J 	I 
I 	I 	 I 

TTIET,1' 
Fig. 7.14 	Routing of adjacent component nodes 

Nodes on the lower edge of the component do not need to be 

projected outwards. Conductor paths are routed up towards them 

from the base level at a later stage of the procedure. Nodes on 

the side edges of the component however, have to be projected 

outwards to different X co-ordinates as shown. This prevents 
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intersections when the conductor paths are routed up from the base 

level. 

The procedure for routing the nodes and conductors outwards 

from a. component starts by searching the ring of blocks for the one 

corresponding to the component source pin. The blocks in the ring 

to the left of the source pin are then examined in turn. Any 

adjacent connected nodes on the lower edge of the component are 

passed over. The remaining nodes on the lower edge, if any, are 

routed downwards by the required amount so that they may later be 

routed sideways without intersection. The reason for forming the 

blocks into a ring is that the block corresponding to the source 

pin may occur at any point in the list of nodes and crossingL 

conductors. The routing procedure has to examine bloc}z both to the 

left and to the right of the source pin. It is thus more easily 

programmed if the blocks are connected into a ring instead of a 

straight list. 

The nodes which have just been routed downwards, together 

with those on the left hand side of the component, are examined in 

turn. Each node is routed out to the left of the component so that 

its X co-ordinate differs by one conductor width from that of the 

previous node The difference is negative if the node is to be 

connected to one in the base list and positive if the node is to be 

routed up to a later slot level. As each node is routed the 

co-ordinate of its end point is updated. The whole procedure is 

then repeated for nodes andconductors tb the right of the sourcepin. 

At this point, the blocks representing adjacent conductors 

and nodes of a component have been duplicated by the various layout 

algorithms. One instance of each block appears in the working list, 
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developed from a block in the base list. The other instance appears 

in the ring of blocks associated with the component. To remove one 

instance of each block from the data structure, the co-ordinates of 

the blocks in the working list are first re-assigned to the co-

ordinates of the corresponding blocks in the component ring. The 

duplicate blocks are then deleted from the component ring. 

For each component in the slot, the ring of blocks is split 

at the source pin block so that a straight list is formed. This 

list is then.inserted into the working list adjacent to the component 

block. The working list thus contains all the nodes and crossing 

conductors around each component in addition to the elements which 

it previously contained. Furthermore, the order of these nodes and 

conductors still corresponds to the order of those encountered in 

scanning across the slot from left to right.. 

7.4.3 	Processing of Base List Elements 

The working lis.t of the slot includes at this stage a number 

of node and conductor blocks which have been developed from the base 

list. . It also includes a source node block for each component in 

the slot. The conductor routing procedure routes paths from each 

element in the base list to one or more of these elements in the 

working list. Before the routing can proceed however, the 

appropriate blocks to which each base element is to be connected :o 

must be identified. In addition, pairs.of elements in the base 

list may correspond..to two parts of the samenodeor conductor. 

These parts must be identified so that they may beconn,ected together. 

Node and conductor blocks in the working list which are 

connected to a base node are termed the target blocks of the base 
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below. 

The process of comparing each base block with the next is 

repeated. If however, a marked block is encountered when looking 

for the next block, it is passed over and the following block is 

examined. Referring to Fig. 7,15 again as an example, it is 

assumed .that blocks C and D have already been marked. When the 

next block following B is searched for, blocks C andD will be 

passed over so that blocks B and E are compared and marked as part 

of the same node. During the following search, blocks C, D andE 

will be passed over when finding the next block after B.• Thus 

block F wilibe identified as another part of the same node. The 

comparison procedure is continually repeated, identifying another 

paii,  of connected blocks at each pass throughthe base list. It is 

completed when a complete search is •  made through the base list 

without finding another connected pair of blocks. 

The processing of a connected pair of base blocks involves 

the checking and modification of several elements of data. Consider 

first the connection of two parts of a conductor, such as blocks C 

and D shown in Fig. 7.15. Each conductor block in the base list has 

a corresponding block in the working list to which apath  will be 

routed by the conductor routing algorithm. The two conductor blocks 

in the working list are therefore modified so that their correspond-

ing baseblocks will be connected. The co-ordinates of both the 

blocks in the workinglist are re-assigned to the .co-ordinates of 

the left hand hase block. The conductor routing algorithms will 

thus construct a path from the right to the left hand base block.' 

Theconnection of two parts of a node is more complex as 

not all the parts of the node may yet exist in the layout. The 
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co-ordinates of the two working list blocks are updated in the same 

manner as the conductor blocks described above. In addition, the 

bound branches of the two working list node blocks are checked. 

The left hand bound branch of the left hand part of the node is 

examined first. The topological model is referenced to find the 

next branch on the node in a clockwise direction. If this is the 

same as the right hand bound branch of the right hand working 

block the node is complete. If the node is not yet complete the 

bound branches of the remaining part are stored in the left hand 

working block. 

An example of the connection of two parts of a base node is 

shown in Fig. 7.16. Part (a) shows the topological representation 

H 	r1 
Li 

L A ------ ----'B] 

(a) 

Fig. 7.16 	Connection of two parts of a node 

of the node and its attached components whilst part (b) shows the 

partial layout of the node and components. It is assumed that the 

base blocks A and B have been recognised as two parts of the same 

node. The left hand bound branch of block A is then found to be 

component Cl. Referring to the topological model, the next branch 
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in a clock*ise direction on the node is component C5. The component 

does not correspond to the right hand bound branch of block B, which 

is component CLI.. This indicates that a further connection has to be 

made to the node, in this case component C5. When the connections to 

a node are thus not complete, the base blocks are specially marked. 

This prevents any further connections from being nested around these 

base blocks. 

Routing of Conductors 

The blocks in the base list have now been prepared for the 

actual routing of conductors. Each base block has a list of the 

working blocks to which it is to be connected and each working 

block has been assigned its appropriate co-ordinates. The basic 

principle of the conductor routing algorithm is :  that each conductor 

is routed towards its target X co-ordinate and then up to its 

target Y co-ordinate. The conductors are constructed by operatingin 

strips parallel to the bottom edge of the slot and one conductor 

width wide. If a conductor meets an obstacle during routing, such. 

as another conductor, it is projected up to the next strip level and 

the routing is attempted again at the next level. 

An example of the method of conductor routing is shown in 

Fig. 7.17. It can be seen that the resultant conductor paths are 

orthogonally routed, i.e all:  parts of each path'are parallel with 

either axis - of the rectangular board perimeter. The paths so 

produced are not generally the shortest possible between a base 

block and its targets. - This method of routing however, has two 

major advantages in the -  construction of conductor paths. The first 

is that the tedious calculation of clearances between adjacent 
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Fig. 7.17 	Routing of conductors 

conductors at different angles is avoided. The second advantage is 

that the components are already placed to allow sufficient clearance 

for orthogonally routed conductors. No checking of component 

positions is therefore necessary during routing. 

During the routing of conductors, it is necessary to know 

the current end point of each conductor path so that intersections 

may be avoided. A base node may be routed both to the left and to 

the right from its initial position as illustrated by node A in 

Fig. 7.17. To store the current conductor end points therefore, 

each base node block has two base limit elements. These store the 

X co-ordinates of the end points on either side of the base node 

during routing. Initially the two base limits are set to the X 

co-ordinate of the base node itself. 

When a conductor path has been successfully routed to a 

target block in. the working list, there are two possible ways of 

dealing with the block. If it represents a specific point such as 

the source pin of a component, the routing to that point is complete. 

The block is therefore deleted from the working list. The other 
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possibility is that the target block represents the end point of a 

node or conductor which is later to be routed up to a higher slot. 

In this case the block is retained in the working list so that it 

may be included in the base list of the later slot. 

The conductor routing algorithm starts by routing up to the 

lower edge of the slot any base'nbdes which are below this level. 

The first level of routing is then carried out, taking successive 

base nodes across the slot from left to right. The node to be 

routed next is selected from the base list. Its list of targets is 

searched to find the one nearest tothe base node and on its left 

hand side. The base block to the left of the current. block, if any, 

is then examined to find its right hand base limit. This is compared 

with the chosen target X co-ordinate to check for possible obstruction 

of the conductor path. 

If the path to the target block is not obstructed, a 

conductor is routed first horizontally then vertically from thebase 

node to the target. This is illustrated by the components to the 

left bfflodeA in Fig. 7.17. The target block is removed from the 

list of base node targets and is also deleted from the working list 

if necessary. The left hand base limit of the base node is then 

updated to theX co-ordinate of the target. A different procedure 

is employed if the path tothe target block is obstructed. A 

horizontal conductor is routed from the base node to within one 

conductor width of the obstruction. It is then routed up one 

conductor width to the next strip level and the base limit is 

updated to the X co-ordinate of the current conductor end. The 

routing of th' path is continued later at the next stipIibecie1. 
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Any further target blocks to the left of the base node are 

routed in turn, assuming there are no obstructions. Each new 

conductor path starts at the current co-ordinate of the left hand 

base limit as shown in Fig. 7.18. The routing of conductor paths to 

Target 

KI 

_ 

Fig. 7.18 	Conductor routing to targets 

successive targets continues until either an obstruction is 

encountered or there are no further targets to the left of the 

base node. The routing procedure is then performed in a similar 

manner for targets on the right hand side of the base node. The 

same routing process is then carried out for each base node in 

turn across the slot. 

At the end of one pass across the slot, some of the base 

nodes may have an empty target list. All the targets have been 

successfully connected to each of these nodes so they are deleted 

from the base list. The remaining base nodes have all been 

obstructed at some stage of their conductor path routing. Base 

nodes which have been routed in one direction only, such as nodes 

B, C and D in Fig. 7.17, have both their base limits set to the X 

co-ordinate of the current conductor end. The conductor routing 

level is then incremented by one conductor width and the routing 

procedure is repeated with each of the remaining base nodes in turn. 

The whole procedure is repeated at successive routing levels until 

no blocks remain in the base list. 
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The processing of one slot is completed at this stage. 

The components and their crossing conductors have been placed in 

position and all conductors within the slot have been routed. The 

slot base list is empty and the working list contains the component 

blocks and any remaining nodes or conductors which are to beurouted 

up to a later slot. The processing of the remainder of the working 

list is described in the next section. 

7.5 Overall Layout Algorithm 

This section describes the algorithm for the overall control 

of the layout process. It deals basically with the organisation and 

selection of successive slots, each of which is processed in the 

manner previously described. 

7.5.1 	Selection of Slots 

The width and co-ordinates of successive slots are determined 

by the components which have already been placed on the board. This 

principle, is described earlier in section 7.2. Tofacilitate the 

computation of these slot dimensions and' co-ordinates,.a list of 

components placed on the board at the current working level is 

constructed. 'The order of components in the list corresponds to 

their order across the board. The list also contains the X 

co-ordinates of the two sides and Y co-ordinate of the top edge of 

each component. An example of component positions is shown in 

Fig. 7.19. Components Cl to C7 are placed components at the 

current iorking level from which the position of the current slot 

has been calculated. Components CS to C10 are part of the current 

slot and'will be added to the placed component list at a later stage. 
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Fig. 7.19 	Placed component list and selection of slots 

The co-ordinates of the next slot to be processed are 

found by examining the placed component list. The list is first 

searched to find the component with the lowest upper edge. This 

determines the bottom edge, or working level, of the slot. The 

left and right hand X co-ordinates of the slot are then coincident 

with the two component sides or board edges which project above the 

working level on either side of the lowest component. If there are 

several possible slots at the same level, the leftmost slot is 

chosen first. The choosing of slot boundaries is illustrated by 

Fig. 7.19. Components C3, C4, C6 and C7 are all at the current 

working level. Component C3 is taken first, being the leftmost 

component. This then gives the positions of the slot sides as the 

sides of components C2 and C5. 

When all the components have been positioned in the current 

slot, the placed component list is updated. The list is first 
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searched to find the two components which lie on either side of the 

slot. The intervening components thus lie below the current working 

level and so are deleted from the list. The newly placed components 

are then inserted into the samepart:of the list. In the example of 

Fig. 7.19, components C3 and C4 lie below the current slot. When 

they are deleted from the list, components C8, C9 and ClO are 

inserted between components C2 and C5. 

7.5.2 	Description of Flow Diagram 

The flow diagram for the overall layout algorithm is shown in 

Fig. 7.20. The algorithm tarts with several initialisation procedures. 

These include the initialisation of the free storage system described 

in Chapter 9.2 and the setting up of dummy end blocks for the base, 

working and placed componert lists. The board dimension data is then 

read in. It consists of the board length and width together with the 

X co-ordinate of each edge connector pin across the lower edge of the 

board. The initial base list is then constructed by referring to the 

topological model of the layout. The outside edge of the graph 

gives the list of edge connector nodes in the correct order. The 

bound branches of these base nodes are given by the two pseudo 

branches-connected to each node. 

The boundary of the initial slot is made coincident with the 

sides and lower edge of the board. The base list is then developed 

in the manner described in section 7.3.1 to form-the working list. 

The contents of the working list are -then processed and sorted as 	- 

previously described. The components, if any, are positioned in the 

slot and their crossing conductors are routed under the components. 

The placed component list is then updated and the corresponding 

component blocks deleted from the working list. 
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Initialise free storage system. Set up working 

lists. Read in board dimension data 

Generate Initial base list 

IDevelop base list & put results Into working list 

Orientate components & count width of working list 
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crossing conductors under components 

Update placed component list 

Construct lists of base node targets 

Route all conductors In the slot 

Display the oboard layout 

I Update base list & find next slot position 
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Fig. 7.20 	Flow diagram of layout algorithm 
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Before proceeding, a check is made for a set of conditions 

which may occur in a similar way to those illustrated in Fig. 7.21. 

Fig. 7.21 	Conflict of conductors in slots 

The. current slot is bounded by components Cl and C2. Component C3 

is placed in the slot, displaced upwards by a number of conductors 

as shown. A later slot will then be bounded by components C2 and C3 

as shown by the dotted line in the diagram. The left hand corner of 

the later slot will contain some conductors from the current slot so 

that conflict of component and conductor placement may occur. To 

prevent this happening, a dummy component is inserted into the 

placed component list to coincide with the offending conductor at 

the right hand side of the current slot. This action is only 

necessary if the highest Y co-ordinate of the end conductor is 

greater than the working level of the later slot. 

The layout algorithm then proceeds to the insertion of 

conductor paths. The list of targets for each base node is first 

constructed then all the conductor paths of the slot are routed. 

Having completed the placement of components and conductors in the 

current slot, a display of the current board layout is generated. 

The display is used for the interaction procedures to be described 

later and its method of generation is described in Chapter 8.2. 
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At this stage a check is made for a set of conditions. 

which may occur such as those illustrated in Fig. 7.22. The 
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Conflict of conductors in slots 

current slot is bounded by components Cl and C2 and several of the 

base nodes are connected together as shown. A later slot will be 

bounded by components Cl and C3 with its working level ai the top 

edge of component C2. The routed conductors of the current slot 

will thus lie within the boundary of the later slot. As slots are 

assumed to be initially empty, some conflict of conductor routing 

may occur. The solution to this problem is to update the upper 

level of all component blocks between and including the current 

slot limits. The upper levels in the placed component list are 

set equal to or greater than the highest level of conductor routing 

so that the later slot will lie above these conductors. 

At this stage of the layout algorithm the working list of 

the current slot contains only the blocks of nodes and conductors 

which are to be routed up to a later slot. The base list, although 

not explained previously, contains all such nodes and conductors 

across the board at the current-working level. Only a section of 

the list is used at any one time to form the base list of a slot. 
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The working list of the current slot is therefore inserted into the 

overall base list so that the nodes may be developed in a later slot. 

As the nodes are ordered from left to right across the board, the 

correct point of insertion of the working list may readily be 

determined. 

The layout algorithm continues by examining the placed 

component list to find the position of the next slot. Having found 

its co-ordinates., the base list is searched to find the set of base 

nodes which lie between the sides of the slot. This set then forms 

the base list of the next slot so that the whole procedure of 

processing a slot may be repeated. The layout algorithm is completed 

when all components have been placed and all node and conductor 

interconnections completed. This state is detected when the base 

list of all nodes across the board is empty. The layout is then 

complete and is ready for output by the method to be described in 

Chapter 9. 
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Chapter 8 	 Interaction with Board Layout 

Interaction is defined as the close communication between a 

computer program and the user, whilst the program is running. In 

terms of the board layout problem this means that the user can 

observe and alter the course of the program during the computation 

of a'layout. Interaction thus enables the layout algorithm to be 

supplemented by the skill of the user and should result in layouts 

which are an improvement upon those produced by purely automatic 

methods. 

The man-ffiachine communication devices used are a graphical 

display for computer output, and alight pen and Teletype keyboard 

for input. Interaction with the layout program is feasible only if 

a graphical display is available to present the necessarily large 

quantities of visual data rapidly. Other forms of output either 

give insufficient detail, as in the case of a Teletype, or take an 

excessive time to produce useable data, as in the case of a 

mechanical plotter. 

8.1 Objectives of Interaction 

There are two aspects of the layout program in which 

interaction may be most usefully employed. They are situtithns 

in which the exact definition, and hence programming, of the problem 

is verydifficult. The user, however, has the ability to examine 

the overall state of the layout and to intuitively find a solution 

to the particular part.of the layout problem. He may then modify 

the layout accordingly by the use of interaction. 

The first use for interaction is in satisfying special 

requirements for particular board layouts. Some boards may require 
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certain components to be specially positioned. For example, the 

adjustment screw of a potentiometer or variable capacitor should be 

accessible from the front edge of the board. Other boards may 

require certain critical components to be closely grouped together 

so that they may be attached to a heat sink and maintained at 

equal temperatures. Other boards again may require the input and 

output conductors of a high gain or high frequency amplifier to be 

kept as far apart as possible so as to reduce the effects of stray 

capacitance. 

Conditions such as those just described are difficult to 

incorporate into a general purpose layout program. The obvious 

approach is to use an automatic layout algorithm to do most of the 

work in producing a board layout. The user then interacts with the 

algorithm in the areas where special conditions have to be satisfied. 

The second use for interaction is in the improvement of an 

automatically-produced layout. The layout algorithm optimises the 

placement and routing of a succession of slots, or subsets, of the 

layout. The optimum placement for each slot however, may not be the 

optimum for the whole board. Interaction enables the user to assess 

and modify the overall appearance of the layout. By re-positioning 

a number of components it may be possible to improve the component 

packing density and reduce the total conductor length. 

8.2 Generation of Display 

The display of the current state of a board layout is an 

essential stage in the process of interaction so it is generated 

after each slot has been processed. A partially completed layout 

is shown in Fig. 8.1 The board outline is shown as a rectangle 
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with the edge connector pins across the bottom edge. Each component 

is shown as a bounding rectangle labelled with the component name. 

Conductor paths are shown by. lines representing the centre line of 

each path. On the display, components and conductors are drawn at 

different intensities so that they may be readily distinguished. 

Across the top of the display screen are a number of characters, or 

light buttons, that may be used to control the modes of interaction. 

The display software, described in Appendix B, enables the 

display file to be divided up into a number of segments. Each 

segment may then be uniquely identified in the graphical display by 

pointing at it with the light pen. In addition, every segment may 

be assigned an integer number by the user, termed the user name. 

Each component and light button to be displayed is therefore 

generated as a separate segment so that it may be uniquely identified. 

In the case of a component, the user name is then used to provide a 

pointer back to the appropriate component block in the data structure. 

The generation of display file is cQmmenced by positioning 

the seven characters for the light buttons across the top of the 

screen. The user names for these light buttons are set to the 

integers one to seven so that they may later be identified and 

processed when seen by the light pen. The remainder of the display 

file to be generated has all, of its dimensions, multiplied by a 

display scale factor. This factor is read in as part of the board 

data and is used to ensure'that the layout fi]Jls the display screen. 

The next part of the display to be generated is the 

rectangle representing the board perimeter. ]he'pins of the 'edge 

connector are then plotted in representational form across the 
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bottom edge of the board as shown in Fig. 8.1. In practice there is 

usually a standard mask which surrounds the actual board layout. 

This mask defines the board outline, the pins of the edge connector 

and any further information necessary. 

Each component to be displayed is generated as a display 

subroutine so as to conserve display file space. Furthermore, the 

component will have one of four possible orientations. Every 

master component block in the component library therefore has four 

elements allocated for display. The elements contain pointers to 

the display subroutines for each of the four orientations if they 

have been generated; otherwise they contain a zero pointer. 

To display a component, the beam position is set to the 

appropriate co-ordinate. The orientation of the component is 

obtained and the corresponding element of the master component 

block is checked. If that particular orientation has not yet been 

plotted, the required display subroutine is generated and its 

address stored in the master component block. The component is 

then plotted as a separate display segment together with its 

component name. The component name may consist of up to four 

characters, evenly spaced about the centre point of the component 

rectangle. This explains why names of less than four characters 

appear to be offset to the left. The user name of thedisplay 

segment is then set as a pointer back to the component block in 

the topological model0 

When all the component subroutines have been generated, the 

conductor paths are plotted. The conductors are held in a list and 

each one is represented by a list of change points, described in more 
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detail in Chapter 9,1, As there is no interaction with conductors 

they are all generated in one display segment. The display of a 

conductor is generated as a co-ordinate point at its start followed 

by a string of vectors describing the conductor path. 

When the display file has been completely generated it is 

transmitted over the link to the PDP-7 computer. The display file 

is then shown on the graphical display so that the user may examine 

it and operate upon it with the light pen. 

8.3 Interaction Facilities Provided 

The light buttons on the display provide the user with a 

number of modes of interaction, which are described below. The 

modes of interaction are concerned with the movement of components 

only as these control the overall form of the layout. The automatic 

part of the algorithm then deals with the correct clearances and 

routing of conductors. A state diagram of the interaction subroutine 

is shown in Fig. 8.2. It illustrates the ways in which the user may 

change from one state, or mode, to another. The letters by each 

state indicate the light buttons to be activated in order to change 

to further states of the program. 

8.3.1 	DELETE Mode 

The DELETE mode enables the user to delete a component from 

the slot in which it is placed. The component is removed from the 

slot and replaced by its source node. The source node will then be 

projected up to the level of later slots until there is a slot with 

sufficient space to accommodate the component. The effect of 

deletion therefore is to move components up to a higher level in 

the layout. The slot from which the component is deleted will have 
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spare space corresponding to the component width. The layout 

algorithm will automatically attempt to fill this space by 

inserting further components or re-orientating the existing 

components in the slot. 

To operate the DELETE mode, the user points the light pen 

at the light button "D". The light button character is then 

displayed at twice the scale to indicate which mode the program is 

in. The user then points at the component to be deleted, which 

immediately disappears from the display. The modification may then 

be implemented by entering the MODIFY mode described below. 

8.3.2 	ORIENTATE Mode 

The ORIENTATE mode enables the user to alter the orientation 

of components in the layout. There are some restrictions on the 

number of orientations that each component may have' and these are 

described later. The ORIENTATE mode is operated by pointing the 

light pen first at the light button 0t1 then at the component to be 

moved0 The display software returns a,pointer to the appropriate 

segment of the display file. From this the user name may be 

obtained, which in turn gives a pointer to the component block in 

the data structure. 

A marker cross is displayed at one corner of the component 

to indicate s.hich one is to be re-orientated, In addition, a 

small marker arrow appears, pointing in the positive Y direction to 

indicate the current orientation. By typing C or A on the' Teletype 

keyboard the orientation marker is, rotated through 900  in a clockwise 

or anticlockwise direction respectively. If the new orientation is 

not allowable for that component, the marker disappears until typing 
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of further C or A characters brings the marker- into an allowable 

orientation again. When the new orientation has been decided 

upon, it is implemented by entering the MODIFY mode. Again, the 

layout algorithm will automatically attempt to fill the current 

slot to capacity with other compOnents in addition to the 

re-orientated one. 

The restrictions on allowable component orientations are 

due mainly to the conductor r.outing subroutines. These will not 

deal with conductors which have to be routed down one side of the 

component, across the bottom and out to the other side such as 

those shown in Fig. 8.3. This is due to the method of component 

Fig. 8.3 Non-allowable component orientation 

orientation discussed in Chapter 7.3.2. Every component 

therefore has a number of allowable orientations out of a possible 

four. Branch components have three allowable orientations, the 

non-allowable one being with the source pin on the upper edge of 

the component. Subgraph components are only allowed an orientation 

with the source pin on the lower edge of the component. This 

normally allows one orientation only. Two are allowable if the 

source pin is at 	corner of the component. During the component 

orientation subroutine a marker is automatically set to indicate 
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the allowable orientations. This enables the allowable orientations 

to be rapidly checked during the interaction subroutine. 

8.3.3 	PULL Mode 

The PULL mode enables the user to pull a component down 

from a slot to a lower level slot, subject to some restriction. The 

component to be pulled down is identified by pointing the light pen 

first at the light button "F" and then at the component. The 

component is marked by a cross on the display, as shown on component 

R6 in Fig. 8,1, and a tracking cross appears on the screen. As the 

tracking cross is moved over the display, a set of three lines 

indicate the perimeter of the slot in which the cross is positioned. 

The tracking cross is placed in the slot into which the component is 

to be pulled. The modification is then implemented by entering the 

MODIFY mode. When the component is pulled down, one or more other 

components will necessarily be deleted automatically from the lower 

slot in order to make room for the new component. 

The restriction on pulling down a component is that the base 

list of the lower slot must contain at least one of the nodes to 

which the component is connected. The reason for this is that every 

new component added to the layout is connected to an existing part 

of the layout. If a component were to be placed in a slot with no 

connecting base node, there would be no way of knowing which way to 

route the conductors around the component. 

The display of slot boundaries around the tracking cross 

may also serve a useful purpose prior to the re-orientation of a 

component. It may be used'to check visually whether there is 

sufficient room in a slot to turn the component. The slot display 
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is implemented by means of a list of slot dimensions which is built 

up with the layout. The list may be rapidly scanned and compared 

with the tracking cross co-ordinates to find the appropriate slot 

boundaries. 

8.3,4 	MODIFY Mode 

The MODIFY mode is used to initiate the changes required by 

any one of the above three modes. The purpose of having a separate 

mode to initiate the modifications is to give the user a safeguard 

against errors If he points the light pen at the wrong component 

by mistake, he can recover from the error before the modification is 

actually carried out. 

Modifications to a slot will alter its placed component 

profile and will consequently alter the pattern of higher level 

slots. All parts of the layout above the modified slot must 

therefore be deleted and later reconstructed with a new set of 

slots. This is also the reason why only one modification is 

carried out at a time. If two modifications were to be made in 

different slots, one slot would probably be at a higher level than 

the other. As all the layout above the lower slot would be deleted, 

the modification to the higher slot would then no longer be valid. 

Part of the data structure contains a list of all the 

modifications or changes made to the layout0 Each block in the list 

contains a pointer to a component, the change required and the 

co-ordinates of the modified slot0 The list is ordered in increasing 

slot level, Each time a change is made, a new block is constructed 

and inserted into the appropriate place in the list. Any changes in 

higher level slots are then deleted from the list as they are no 



-129- 

longer valid. The actual implementation of the change is then 

carried out, described in detail in Section 8.4. 

8.3.5 	RESET, UNCHANGE and FINISH Modes 

The RESET mode is the base state in whichthe program waits 

for further control from the user. After a slot has been produced 

automatically or has been modified, the display is updated and the 

program returns to RESET mode. The other use of this mode is when 

the user makes an error in pointing the light pen at a component 

during PULL, ORIENTATE or DELETE mode. The RESET mode restores the 

program to its state before the modification was attempted. Marker 

crosses, slot boundaries, etc. are removed from the display or 

deleted components are displayed again. 

The UNCHANGE mode cycles the layout program automatically 

through the placement and routing of the next slot. When the slot 

is completed, the display is updated and the program returns to 

RESET mode. By repeated entry of the UNCHANGE mode, the whole 

board layout may be constructed automatically. 

It is not always obvious to the user when a layout has been 

completed. Each time that the UNCHANGE mode is entered therefore, 

a check is made to see if the layout is complete. If it is, the 

program enters the FINISH mode. Further modifications may be made 

if required by returning to RESET mode followed by the required mode. 

If, however, the light pen is pointed at the FINISH mode light 

button, the layout is completed and the program is ready for the 

output of results. 
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8.4 Modifications - to Layout Algorithm for Interaction 

The automatic layout algorithm described in Chapter 7 must 

obviously be modified in order to include interaction facilities. 

The modifications take the form of four extra subroutines added to 

the layout program, the basic subroutines remaining substantially 

unchanged. Two of the interactive subroutines have already been 

described. These are the display generation subroutine, described 

in Section 8.2, and the light pen servicing subroutine, described 

in Section 83. The two further subroutines to be described deal 

with the cutting ba4 of a layout to the level of the latest change 

and with the actual incorporation of the change into a slot. 

8.4.1 Reconstruction of Layout 

The base and working lists of the layout agorithm hold 

detailed information on the state of the layout at the current 

working level. Once the components have been placed and the 

conductors routed at this level, the information becomes largely 

redundant. The redundant base and working blocks are therefore 

returned to free storage before moving on to the next slot, so as 

to conserve storage space. It is thus extremely difficult to 

recall the state of the layout at any level below the current 

working level. One may find which conductor paths exist at a 

given level but there is no way of determining to which nodes or 

conductors they correspond. 

The problem of cutting back the layout to the level of a 

modified slot is approached from a different direction. The entire 

layout is deleted so that no part remains except for a list of the 

changes made at the current and lower levels. The layout is then. 

reconstructed, incorporating the changes, up to the level of the 
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latest changes The layout procedure may then continue from this 

point. Reconstruction of the layout every time a change is made is 

not the most economical way of using computer time. This point is 

further discussed in Chapter 114. 

The subroutine for cutting back the layout to the level of 

the latest change starts by adding a new block to the list of 

changes. The required contents of the block are described in 

Section 8.3.14, The blocks in'the base list, working list, placed 

component list and other lists of the layout algorithm are all 

returned to free storage, except for the list of changes. The 

layout is then reconstructed automatically from the initial base' 

list of edge connector nodes, as described in Chapter 7. Any 

changes required in the slots are incorporated by the methods to be 

described below. During the reconstruction, the generation of display 

'file is suppressed. When the currently modified slot is reached, 

the display is regenerated and the program is ready to proceed under 

interactive control again. 

8.4.2 	Insertion of Slot Modifications 

The fourth subroutine required for the interaction facilities 

deals with the actual incorporation of changes into a slot. It 

operates between the stage of counting and'the stage of sorting the 

contents of the slot, when the layout is being reconstructed. After 

the total width of all possible contents of the slot have been 

counted, its co-ordinates are compared with those in the next block 

of the list of changes. As previously mentioned, each block in the, 

list of changes contains the co-ordinates of a slot to be modified. 

If there are no changes to be made in the 'current slot the algorithm 
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proceeds with the sorting of slot contents as described in 

Chapter 7.3.4. 

When the current slot co-ordinates do coincide with those of 

the next change block, the component whose position is to be modified 

is obtained from the change block. The working list is then searched 

to find the corresponding block. If the component is to be deleted 

from the slot, its block is deleted from the working list and the 

total width of slot contents is updated. If the component is to be 

re-orientated, its orientation and width data are re-computed. Its 

block is marked to indicate thatthe orientation must remain unchanged 

and the total width of the slot contents is updated. If the component 

is to be pulled down into the slot, its block is marked to indicate 

that it rhust remain in the slot. In the case where the user tries 

to pull a component down into an incorrect slot, the component 

block will not be found in the working list so a corresponding 

error message is printed out. 

When a modification has been incorporated into the working 

list, the nextblock in the change list is examined in case there 

is more than one modification to be made in the same slot. When 

alithe modifications have been included, the resultant total 

width of all possible slot contents is compared with the actual 

width of the slot. Depending on the result, either one of the 

two subroutines described in Chapter 7.3.4 may be called in order 

to increaseor decrease the width of the potential slot contents. 

The subroUtine for increasing the width of slot contents 

is modified slightly so that appropriately marked components are 

not re-orientated to take up a greater width. The subroutine for 
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decreasing the width of slot contents is modified so that all the 

marked components remain in the slot. These measures ensure that 

the user's modifications are not altered by the automatic part of 

the layout algorithm. It may occur that the user tries to pull 

down or re-orientate too many components in a slot. If the width 

of the slot contents cannot be reduced to less than the actual slot 

width, an appropriate error message is printed out. 

When all the modifications have been made in a slot and 

when the slot contents have been adjusted to the correct slot 

width, the layout algorithm proceeds to the placement and routing 

stage. If then continus automatically, processing each slot in 

turn and including further modifications where appropriate. The 

automatic reconstruction of the layout is completed when the 

currently modified slot is reached. The program is then ready 

to proceed under further interactive commands. 

'I 
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Chapter 9 	Computer Implementation of Layout Algorithm 

This chapter describes further programming methods used to 

implement the layout algorithm. It also indicates the ways in which 

the programming and form of output of the algorithm have been 

affected by the available computer hardware and software. The 

methods of data storage described are extensions of those outlined 

in Chapter 6. 

9.1 Data Structure 

The layout algorithm generates and uses many items of data 

during the construction of a layout. The form and quantity of this 

data constantly changes as the layout progresses. A data structure 

is therefore necessary to store the information in the correct order 

and in a readily accessible form. Much of the data is obtained 

from the data structure representing the topological model of the 

layout, described in Chapter 6. 

The main additional features required for the layout 

algorithm are three lists. These are the base list, the working 

list and the placed component list. An example of one of these 

lists is shown in Fig. 9.1. During the construction of the layout 

I 	 I 
I 	 I 

Fig. 9.1 Two-way list used for layout program 
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it is frequently necessary to know what elements lie on either 

side of a given component or conductor in one of the lists. The 

blocks in each list are therefore given two-way pointers as shown 

in the diagram so that the lists may readily be traversed in 

either direction. 

Every block in the three lists is given a marker to describe 

the type of element it represents. The base and working lists may 

contain four different types of element. These are node, conductor, 

branch component and subgraph blocks. The placed component list 

contains only placed component blocks. As blocks are constantly 

being added to and deleted from the lists the problem arises of 

knowing which blocks represent the ends of the lists. This problem 

is solved by connecting dummy blocks to the two ends of each list. 

The same blocks thus remain at each end of the list and when the 

list is empty, one of its dummy blocks becomes connected directly 

to the other. 

The fourth element of every block in the base and working 

lists contains a pointer to part of the data structure of the 

topological model. This enables each block to be uniquely 

identified. Node, branch and subgraph blocks contain pointers to 

their corresponding blocks in the topologicalmodel. Each conductor 

block contains a pointer to the tie block in the topological model 

that represents the corresponding segment of the conductor. The 

remainder of every block contains data that is obtained and used 

during the layout algorithm. This includes such items as the total 

width of a component and its crossing conductors, the source node 

of a component, the bound branches of a node and so on. 
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A further type of data structure is required to describe 

the conductor paths of the physical layout. The structure is 

illustrated by Fig. 9.2. Each conductor path consists of a 

Fig. 9.2 Rpresentation of two conductor paths 

line start block together with a number of line point blocks. 

The line start block contains the starting co-ordinate of the path 

and a pointer to the list of line point blocks. The line ioint 

blocks hold the co-ordinates .of the path at each point where it 

changes direction, including the end point. They also each hold 

a pointer to the next block of the path. 

All the conductor paths of a layout are held in one list. 

Each line start block therefore contains a pointer to the next 

block in the list. In addition, each block contains a pointer 

to the last line point of its conductor path. This enables an 

extra point to be added to the end of the path without having to 
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to search through the whole list of line points. It should be 

noted from the diagram that the two co-ordinates of every block are 

packed into one word. This saves a considerable amount of storage 

space in the data structure as a typical layout contains a large 

number of line point blocks. 

If often occurs that a conductor path has to be routed 4p 

through several successive slot levels befQre its destination is 

reached.. It is preferable that one càntinuous path be defined, 

rather than have a new line start for each part of the path in 

successive slots. In order to obtain a continuous path the node 

or conductor block in the base list which represents thepathis 

given a pointer to the line start block. When the path is routed 

from the base to the working block, the line startpointer is also 

passed on to the working block. As this block is later inserted 

into the base list of a higher slot, the line start is effectively 

passed up to the next slot level. A further measure is taken to 

conserve storage sace when extending a conductor path. If the 

path is to be extended in the vertical direction, the Y co-ordinate 

of the final point is updated rather than create a new line poiiit 

block. 

In programming the layout algorithm, the data structure 

manipulations are described extensively by use of the ML/l macro 

generator. A further set of macro calls are defined and used in 

the same way as outlined in Chapter 6.3. 

9.2 	Free Storage: System 

The data storagesystem used for the layout algorithm is an 

extension of that used for the topological algorithm.. The data is 
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stored in a number of blocks which are allocated from one large 

array, as described in Chapter 6.1. During the working of the 

layout algorithm however, a large number of data blocks are created 

and used. When part of the layout has been constructed many of 

these blocks become redundant. Furthermore, when interaction is 

used and the layout is modified, most of the layout data structure 

becomes redundant. A free storage system is therefore added to the 

basic data storage system so that redundant blocks may be used again 

by the layout algorithm. 

There are a number of ways of arranging a free storage 

system. Some systems allocate data blocks by dividing up the next 

largest block. If any blocks returned to free store are adjacent, 

they are merged into one larger block. Other systems move up all 

allocated blocks below a returned block so that all the free store 

is at one end of the data array. Further systems may use a 

combination of these techniques. The particular system used here 

is simplified by the fact that the layout algorithm uses only eight 

different types of block. Every instance of a particular type of 

block is alwaysof the same length sothat there are never morethan 

eight different block lengths in the storage system. 

The free storage system is shown in diagrammatic form by 

Fig. 9.3. The basic part of the system is a store block which 

contains eight elements, corresponding to the eight different types 

of data block required. Every data block contains'a marker which 

described its type. These markers are actually the integers from 

one to eight, so that each type of block may be associated with 

one element in the store block. All the free blocks ofa particular 

type are thus held in a list. The corresponding element of the 
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Store block 

- 	 Fig. 9.3 	Free storage system 

store block then contains 'a pointer to the start of this list as 

shown in the diagram. 

When a data block of a particular type is required from 

free store, the corresponding element of the store block is examined. 

If the element contains a pointer to a list of free blocks the 

first block is removed from the list and made available to the 

program. If the element contains a zero-value pointer the blocks 

of that type have either all been allocated or have not' yet been 

created. In either case a new block is created from the un-used 

part of the data array in the manner described in Chapter 6.1. 

To return a block to free storage, its type marker is first obtained. 

The corresponding element of the store block then indicates the list 

to which the data block should be added. 	' 

9.3 Measurement System of Layout 

The system of describing co-ordinates, for the laybut 

algorithm is partly influenced by the FORTRAN compiler available 

for the ICL 4130 computer. One feature of the compiler is that 
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an array of integer numbers requires one store word per number 

whereas an array of real numbers requires two words per number. 

The data array for the layout algorithm is of considerable length 

so that there is insufficient store space to allow a real array. 

As the layout co-ordinates are stored in the data array, they must 

be held in integer form. 

Before commencing the layout, a basic unit of measurement 

is defined by the user. A typical unit could be 0.025 1 t. All 

dimensions and co-ordinates of the layout are then expressed in 

terms of an integral number of these units. The computer word 

length is 24 bits which allows the maximum value of an integer to 

be approximately 8 x 106.  This gives more than sufficient resolution 

for a small basicmeasurement unit together with a. large board size. 

The reference point of the board from which all co-ordinates are 

measured is the bottom left hand corner of the board. This assumes 

that the edge connector lies along the positive X axis. 

Every master component in the component library has a 

reference point and a reference orientation so that its pin co-

ordinates may be defined. The reference orientation is such that 

the longest axis of the component lies parallel to the Y axis, with 

the reference point at the bottom.left hand corner of the component. 

The pin co-ordinates may then be defined relative to this reference 

point. When a component is placed in the layout its position is 

defined by its orientation and the co-ordinates of its reference 

point. The relative pin positions are then found by rotation about 

the component reference point. 
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The co-ordinates of the conductor paths define the position 

of the centre line of each path. The minimum distance between centre 

lines is specified.by  the user. This distance allows for the width 

of conductors and the spacing between them. The present version of 

the layout algorithm permits only one value of conductor width and 

spacing for the whole layout. 

9.4 Output of Board Layout 

The basic data describing a board layout is held as a set of 

integer co-ordinates within the data structure of the computer 

program. The user generally requires the description of a layout in 

the form of one or more diagrams showing the placement of components 

and the routing of conductor paths. The methods of output used at 

present are described below and some further possibilities of data 

presentation are discussed in Chapter 11,6. 

The display of a board layout is used as the basis of data 

output for the layout algorithm. The generation of the display file 

has already been described in Chapter 8.2. The various ways of 

observing and storing this information are illustrated by Fig. 9.11. 

The display software (11) also enables the display file to be either 

punched out on paper tape or transmitted over the high speed link to 

the PDP-7 computer. Corresponding software in the PDP-7 enables the 

display file to be read in from paper tape or from the.link and then 

displayed on the Type 340 display. 

The display file may be stored from the PDP-7 core onto 

magnetic tape for subsequent display or plotting. A plotter 

softwarepackage (12) is available to drive the Calcomp plotter from 

the display file data so as to produce a hard copy of the display. 
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Magnetic tape 	 Plotter 	 Display 

Fig. 9•4 Outputs of board layout program 

For present applications the component positions and conductor paths 

are drawn on the same diagram as shown, for example, in Fig. 8.1. 

The program may readily be modified so as to produce two separate 

diagrams of component placement and conductor routing if required. 

On completion of a board layout further data is output for 

the purpose of comparing several different layouts of the same 

circuit. The total length of all conductors on the board is 

computed and printed out, together with the overall height of the 

board actually used by the layout algorithm. 
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Chapter 10 	Results of Layout Procedures 

This chapter describes the results of the planarity and 

layout algorithms. Three circuits are given and their layout 

diagrams shown. These are then compared with the results obtained 

by interaction. All the layout diagrams are grouped together at 

the end of the chapter so that they may readily be compared. 

10,1 Description of Circuits 

Three different circuits are used to illustrate the results 

of the layout procedures. They are labelled A, B and C and are shown 

in Figs. 10.1, 10.2, and 10.3 respectively. They aretypical of the 

smaller type of industrial circuits that are laid out on single sided 

boards. 

Circuit A has been used for most of the development and 

testing of the algorithms so detailed data is available for all 

stages of its layout construction. The circuit is used to show the 

results of the planar graph and pseudo-planar graph algorithms. 

The circuit layouts also illustrate the improvements that may be 

madeby the use of interaction. 

Circuit B, of similar size to A, is again used. to illustrate 

the layouts obtainable by automatic and interactive means. In 

addition, a manually-designed layout of this circuit is given. The 

computer and the manually generated layouts are compared and the 

different techniques disçussed. 

Circuit C has approximately twice the number of components 

of the previous -two circuits. It is used to illustrate the effects 

on computer time and storage space of larger circuits. It alsosshows 

the improvements that are possible by the use of interaction. 
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Fig. 10.1 Circuit diagram of circuit A 



H 

01 

7 

DI Dc 07 

Fig. 10.2 Circuit diagram of circuit B 



Fig. 10.3. Circuit diagram of circuit C 
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10.2 Construction of Pseudo-Planar Graph 

The construction of the pseudo-planar graph of a circuit is 

an essential part of the layout procedure. As the planarity, 

algorithm is completely automatic, and the results are then used in 

the generation of the physical layout, the graph is not normally 

output from the computer0 When output of the graph is required, it 

is printed out in the form of a list of regions. Each region is 

itself a list of the branch segments which form the boundary of the 

region. Although this form of data is ideally suited to the 

planarity algorithm, it results in a difficult task when constructing 

a diagram of the graph. The comparison of planar and pseudo-planar 

graphs has therefore been made for one circuit only. 

10.2.1 Construction of Planar Graph 

The initial planar graph of circuit A is shown in Fig. 10.4. 

The circled numbers are the circuit nodes, corresponding to those 

labelled in Fig. 10.1 Subgraph nodes are labelled by theIr 

transistor number folowéd by a letter A, B or C denoting the 

collector, base or emitter of the transistor respectively. Component 

branches are labelled with their appropriate component name. The 

branches shown dotted are those which have been removed from the 

total graph in order to make it planar. The outside edge of the 

graph is composed of the edge pseudo branches and the edge connector 

nodes, labelled from 1 to 6. The first region of the graph is then 

that which 1ies outside the boundary of the graph. 

The first starting node taken in the construction of the 

planar graph is node 1 and the first target is node 2. The search 

fora planar path between these two nodes yields the components RI, 

Cl and TR2. These components, together with the edge pseudo branch 



1-2 therefore form the boundary of the second planar region. The 

remaining two pseudo branches of subgraph component TR2 are then 

added to the graph as a further planar region. The next target 

in an anticlockwise direction from the start node is thus node 2B. 

Another planar path is then found, adding component R4 to the graph. 

The following target is node 9. As no planar path exists between 

this node and the starting node 1, the search direction is changed 

to a clockwise direction from the start node. 

Two further planar regions are added to the graph by 

searching for planar paths from node 1 to node 6. The following 

target is then node 13. No path exists from node 1 to node 13, 

however, without touching the edge of the free region at some other 

oint and hence dividing the free region into two parts. The 

remaining branch on the start node, branch R9, is thus deemed to be 

non-planar as it conflicts with component branch Rll and link branch 

14C. The algorithm continues by taking further nodes in turn as 

starting nodes0 Thesenodes are 9, 8, 7, 1A, 11, 3, 4 and 5 in that 

order. The planar graph is then complete as shown in the diagram. 

It can be seen from the planar graph that the two branches 

with which R9 conflicted, Rll and link 1+C, have also been removed 

from the graph at a later stage. Branch R9 could thus be included 

in the planar graph. Similarly there are two other brancheswhich 

could be included. These are link branch 3C and either component 

branch R5 or R60 The planarity algorithm thus does not necessarily 

select the optimum planar subset of a graph. This is not critical 

however as the planar branches removed from the graph are recognised 

and re-inserted during the next stage of the algori1hm. 
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Non-planar branches 

Fig. 10.4 Planar graph of circuit A 
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The insertion of component branch R12 into the graph 

illustrates a difficulty in the construction of a physical layout 

from a topological model. The branch constitutes the shortest 

possible path, or path of minimum number of branches, between nodes 

1 and 6. The edge pseudo branch 1-6 however, represents the outside 

edge of the board. To connect component R12 into the layout 

therefore, its connecting conductors must be routed around three 

sides of the board. This iliustra€es the problem that the shortest 

distance in the graph does not necessarily represent the shortest 

distance in the layout. 

10.2.2 	Insertion of Non-Planar Branches 

The completed p,seudo planar graph of circuit A is shown in 

Fig. 10,5. It is substantially the same as Fig. 10.4 except that 

the non-planar branches have now been assigned fixed paths in the 

graph. These branches are still s1own as dotted lines so that they 

may readily be recognised. The nodes labelled with numbers greater 

than 1000 are new nodes formed by the "node splitting" process of 

inserting non-planar component branches. 

The effects of the "node splitting" algorithm can clearly 

be seen in the diagram. Part of node 1, for example, is split into 

node 1001 so that component branch R6 may be inserted into the graph. 

Part of node 3 is split into node 1002 for the insertion of branch 

R8. It is then split again into node 1003 for the insertion of R2. 

Thenumber of parts into which a node may be split is limited only 

by the number of branches connected to it. It may also be observed 

that the three planarbranches mentioned above have been recognised 

and inserted into the graph. 
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----. Non-planar branches inserted 

Fig. 10.5 Pseudo-planar graph of circuit A 
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A further point to note from the diagram is that non-planar 

branches R6 and link 4C are crossed. Branch R6, being a component 

branch, is inserted into the graph first. Although it crosses one 

branch in splitting node 1 there is still space for further crossings 

under the component. When the link branch is later inserted, the 

insertion algorithm is concerned only with the amount of space under 

component and pseudo branches already in the graph. Hence a non-

planar component branch may later be crossed by several non-planar 

link branches. 

10.2.3 	Comparison of Circuits 

The relative sizes, storage requirements and computing times 

of the three circuits used are compared in Table 1 below. The 

computing time given is the approximate time required to read in the 

data, set up the data structure and construct the pseudo-planar 

graph of the circuit. The storage requirement is the number of 

words of the data array used in the construction of the pseudo- 

planar graph. 

Circuit A B C 

No. of components 21 26 38 

No. of circuit nodes iLl. 16 32 

Storage 	(words) 1345 1731 3157 

Computing time (secs.) 5 5 11 

Table 1 	Comparison of Circuit Sizes and Computing Times 

A further point arises from the construction of a pseudo-

planar graph. If the algorithm is started from another node on the 

edge connector it generally produces a different graph of the same 
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circuit. This occurs naturally as no attempt is made to search for 

the optimum planar graph of the circuit. The computing time required 

- 	to generate a pseudo-planar graph is short, as can be seen from 

Table 1, It is therefore feasible to start at a different node and 

generate a different graph of the circuit if, for any reason, the 

first graph is unsatisfactory. 

10.3 Construction of Lyouts 

The layouts constructed automatically by the layout algorithm, 

with no alterations by the user, are discussed here. The results of. 

interaction are described in the next section. 

10.3.1 	Lajrout of Circuit A 

The layout of circuit A is shown in Fig0 10.6 and clearly 

illustrates a number of features of the layout algorithm. The 

packing density of components on the lower part of the board is 

good and conductor lengths are short0 This is due to the fact that 

the first components selected for placement are those closely 

connected to the edge connector. The.next components selected are 

then those most closely connected to the existing part of the 

layout. This strategy produces a compact layout as intended. 

The upper part of the board has a lower component density 

and contains a number of long parallel conductor paths. This is 

mainly due to connecting up ends of node and conductor paths which 

have already been started at lower levels of the layout. When 

processing base nodes in the higher slots, they frequently develop 

into components which have already been placed on the board or into 

conductors which have to cross under these components. The upper 

part of the board therefore contains a higher ratio of conductors 
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to components in order to preserve the circuit topology. This 

weakness of the algorithm can,, however, be improved by the use of 

interaction. 

The circuit contains one extremely long conductor. This is 

the link branch which connects component TR4 to TR3 and R7 and which 

crosses under Rb, R9 and R6. This length of conductor path is 

undesirable in a practical layout because it increases the board 

space required for routing and may introduce excessive stray 

capacitance between adjacent conductors. It illustrates the fact 

that a short path in the graph does not necessarily represent a 

short path in the layout. The path is necessary in. the layout, 

however, in order to preserve the circuit topology. A draughtsman 

laying out the circuit would either re-arrange the component 

positions or insert a wire jumper in order to reduce the conductor 

length. 

Part of the board space is un-used in the slot bounded by 

the board edge and component Cl, and above components RiO, R9 and 

Ri. Development of the base nodes of this slot yields either' 

components which have already been placed or conductors which are 

to cross under other components. No components can therefore be 

placed in the slot so the available space is wasted. It is obvious 

from the diagram though, that componnt TR2 could be placed in this' 

slot even though its source node lies outside the slot boundary. 

An'extension of the principle of the PULL mode of interaction could 

thus be used to automatically pull components down into empty slots 

and hence improve the component packing density. 

The crossing conductor between components RiO and R9 is the 

cause of frequent.comment. The actual component-crossing parts of 
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the conductor are inserted at the same time as the components. At 

a later slot level (across the tops of the components) the conductors 

are routed up to that level before they are recognised as two parts 

of the same conductor and joined. The same procedure is absolutely 

necessary however in the case of the conductor connecting Rll and 

TR4. If the two parts of this conductor are not routed to a level 

above TR4, the conductor will clash with the crossing under TRLI.. 

Unnecessary bends in conductors such as that between RiO and R9 

could be avoided by further programming. This would check for the 

absence of components between the two parts of the conductor before 

routing the conductor path. 

10.3.2 Layout of Circuit B 

The automatically produced layout of circuit B is shown in 

Fig. 10.8. Most of the observations on circuit A also apply to this 

circuit. One point that is immediately obvious is that the layout 

has "fallen off" the top edge of the board. Although such a layout 

could not be built it shows a useful property of the layout algorithm. 

The algorithm will continue over the edge of the board and still show 

the state of the layout. It will not, as some layout programs do, 

go into an error state when there are too many components to fit 

onto the board. 

There are two possible courses of action when the layout 

exceeds the board size. If the layout is mostly on the board it 

may probably be arranged wholly on the board by the use of interaction. 

If a large proportion of the layout is off the board, the required 

component density is too high. The circuit must therefore be 

placed on a larger board or partitioned onto two separate boards. 
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Unlike the previous layout, circuit B is laid out on a 

board whose width is less than its length. A considerable area of 

the board space is thus taken up by conductors routed up to 

components at higher slot levels. In the limiting case the board 

width would be almost entirely taken up by conductors and there 

would be no room for further components to be placed. This 

situation can be partially remedied by interaction and can be 

eliminated by using a wider board. 

The layout algorithm optimises the contents of each slot 

in turn. This may not however give the optimum overall layout as 

is illustrated by component R2 at the top of the layout. R2 is 

placed in the slot across the top of R14 and bounded by the edge 

of the board and component R16. There is only sufficient room in 

this slot to place R2 in a vertical orientation. If placement had 

been delayed to the later slot across the top of R16, the component 

could have been horizontally orientated. This would then have 

reduced the overall height of the layout. This is atypical case 

where interaction can be used to improve a layout. 

10.3.3 Layput of Circuit C 

The automatically produced layout of circuit .0 is shown in 

Fig. 10.11 and illustrates the layout of a larger circuit. It can 

be seen that the component packing density on the left hand side of 

the board is good. The components-are closely interconnected with 

few crossing conductors. In comparison the right hand side of the 

board is largely taken up by a number of parallel conductor paths. 

Closer examination of the layout reveals,that there are 

three or four conductors which follow parallel paths under components 	- 

VR1, RlL, R19, R22, R26, R23 and R25 in that order. These are the 
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conductors which occupy most of the right hand side of the board. 

The paths are necessary in order to preserve the circuit topology 

and they once again demonstrate the problem involved in translating 

a topological model into a physical layout. The excessive space 

requirements may be reduced by the use of interaction. In the 

case of a manually produced layout, the conductor paths would 

probably be avoided by the use of wire jumpers. 

The diagram shows that the spacing between adjacent 

components with crossing conductors is greater than necessary. 

Examples of this are components Rl, R2 and R3 on the left and 

components *25 and R23 on the right hand side of the bottom slot. 

The reason for the unnecessarily long crossing conductor paths 

- has already been explained for circuit A. If the lengths of these 

paths are reduced by further programmed checks as suggested, the 

same information can be used to reduce the spacing between the 

adjacent components. This would then improve the component packing 

density of the layout.. 

The diagram shows that the orthogonal routing of conductors 

could be improved in some cases. For example, the conductor paths 

from the top and right hand sides of Rlli could each have several 

change points removed by routing the conductors vertically as far 

as possible then horizontally. Sborage space for the conductor 

paths would be reduced also. Conversely, the same treatment could 

not be applied to the conductors below components R8, R17, R13 and 

R14. The cnductor routing can thus be improved at the cost of 

further computational checks during routing or by allowing interaction 

with the conductor paths.. 
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lO.3.'4 Comparison of Computer Requirements 

The computing times and storage requirements for the three 

layouts are compared in Table 2 below. To obtain the computing 

•times, the generation of display and the interaction subroutines 

have been suppressed. This has been done to eliminate the user 

interaction time and the time taken to completely regenerate and 

transmit the display file for every slot. The time given is thus 

that required to automatically generate the complete layout from an 

existing topological data structure. It does not include the time 

taken for the output of results as this is dependent on the form 

of output used. 

The storage requirement for each circuit is the number of 

words of the data array used by the layout algorithm. This comprises 

storage for the topological model, the layout, its conductor paths 

and the data blocks used for the base, working and other lists. 

Circuit A B C 

Computing time 	(secs.) 

Storage space 	(words) 

8 

2995 

13 

4258 

26 

8243 

Table 2 	Comparison of computing times and storage space 

10.4 Results of Interaction 

In this section the results of interaction with the three 

board layouts are discussed and compared with the automatically 

produced layouts. It should be emphasised that the modified layouts 

are not unique. A completely different, possibly better, layout may 

be obtained for each circuit by carrying out different modifications. 
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10.4.1 Interaction With Circuit A 

The modified layout of circuit A is shown in Fig.- 10.7. 

Comparing it with the automatic layout of Fig. 10.6, it can be seen 

that the component packing density has been improved. A number of 

long parallel conductor paths have also been eliminated from the 

layout. 

The basic strategy of interaction in this case is the 

observation that six of the parallel conductors across the top of 

the automatic layout are developed from the edge pin 1 and components 

R9 and RiO. The two components are themselves developed from edge 

pin 1. If the components were on the right hand side of theboard, 

only one conductor from edge pin 1 would have to be routed across 

the top of the layout. The other five conductor paths would then 

be drastically reduced in length.. 

To produce the modified layout, components R9 and RlO are 

deleted from the first slot. The layout algorithm compensates for 

the change in slot contents by automatically re-orientating the 

components in the bottom slot as shown. Continuing with the layout 

algorithm, the next slot to be processed is that across the top of 

R12 and bounded by TR4 and the edge of the board. It-so happens 

that R9 is placed in this slot by the program. The user then 

continues to use the automatic facility of the algorithm to produce 

the remainder of the layout. 	 - 

From the layout of Fig. 10.6 it can be seen that some 

conductor paths could be shortened by rotating component TR4 through 

900 anticlockwise. The automatic algorithm has not done this 

because TR4 has a choice of twO - possible orientations. The 

information available at the time of assigning the orientations is 
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not sufficient to choose the better of the two. The modification 

has therefore been made by the use of interaction as shown in 

Fig. 10.7. 

Although this circuit gives a simplified example of 

interaction, it illustrates how significant improvements can be made 

to a layout by a few modifications in conjunction with the automatic 

algorithm. The user's ability to look ahead from a slot to later 

parts of the layout enables the overall layout to be optimised, rather 

than the contents of each slot. Actual figures on the improvements 

to the layout are given in Table 3 below. 

Due to the increased packing .density of the layout after 

interaction, a large blank space is left at the top of the board. 

Theie are a number of ways of dealing with this, depending on the 

user's requirements. The layout may readily be expanded in the Y 

direction so as to fill the whole board space. Alternatively it 

may be left as it i, or re-laid out on a smaller board.. 

10.4.2, Interaction With Circuit B 

The modified layout of circuit B is shown in Fig. 10.9 and 

may be compared with the automatic layout of Fig. 10.8. It can be 

seen that interaction has reduced the layout size to bring it well 

within the bounds of the board. Two basic interaction strategies 

are used for this layout. The first, as for circuit A, involves 

recognising that some components developed from a base node produce 

a number of conductors which are routed up to higher slot levels. 

These components, such as TR4 in the bottom slot of Fig. 10.8, are 

thus moved up to a higher level so as to reduce their connected 

conductor lengths 	 . 
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Removal of TR4 from the bottom slot leaves room for further 

components in the slot (D3, Cl and Rl) and consequently gives a 

greater packing density0 The layout is continued and components 

such as TR4 are moved upwards to higher levels until most of their 

nodes can be connected to adjacent conductors. The moving of a 

component up to a higher level consists of deleting it from all the 

slots it appears in until the required level is reached. This is 

sometimes tedious and could possibly be improved by having a further 

mode of interaction to pull components upwards. 

The second interaction strategy involves arranging the 

desired orientations of components. An example is given by components 

R13 and R15 in Fig. 10.9. Previously the components were orientated 

vertically in the slot across the top of R8 and TR2, and bounded by 

C3 Sand R2. This gave a greater height to the layout and left spare 

space in higher slots to the left of the components. The two 

components arere-arranged by deleting R13 from the slot. This 

leaves sufficient space for P15 to be orientated horizontally. R13 

is then orientated horizontally in a higher slot. The same technique 

is also used to move component C2 from the right hand side of the 

board to the top of the layout. 

One important point noted during interaction is that 

modifications to a layout should be made at lower levels first. If 

this is not done, a later modification at a low level will delete 

the layout and modifications above that level. In some cases, such 

as pulling a component down to a lower level, this is unavoidable 

and means that the higher level changes will have to be made again. 
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I0. 1 l..3 	Interaction With Circuit C 

The modified layout of circuit C is shown in Fig. 10.12. 

Comparing it with the automatic layout of Fig. 10.11 it can be seen 

that interaction has made a considerable improvement to the layout. 

The techniques used to improve the layout are similar to those 

described for the previous two circuits. An additional strategy has 

also been used, based on the observation mentioned in section 10.3.3 
c 

that a number of components are crossed by the same three or four 

conductors. The lengths of these conductors can be considerably 

reduced by arranging that the crossed components are adjacent to 

each other. The results of this strategy can be seen in the centre 

and right hand side of the layout. 

At higher levels of working on the layout, the time taken to 

make a modification becomes quite noticeable. This is due to the 

fact that the layout and the display are completely regenerated up 

to the level of the modification. Possible improvements to this 

situation are discussed in Chapter llLf. The modified layout still 

contains a number of long parallel conductor paths. It is possible 

that with further interaction some of these paths may be reduced in 

length. It is a general point, however, that the improvements to a 

layout are ultimately limited by the circuit topology.. 

104 Comparison of Interaction Results 

The "goodness" of a layout is difficult to specify. It 

depends partly on the overall appearance of the layout and partly on 

the user's special requirements. Often, two completely different 

layouts of the same circuit may be equally satisfactory. For this 

reason two simple criteria are used for comparing layouts generated 
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with and without interaction. These are the total conductor length 

of the layout and the overall height of the board used by the 

layout algorithm. The comparison of circuits is made in Table 3 

below. 

Circuit A B C 

Conductor length without interaction 2446 5548 11802 

Conductor length with interaction 1185 3714 6972 

Percentage reduction in length 51% 33% 41% 

Layout height without interaction 82 174 152 

Layout height with interaction 62 130 114 

Percentage reduction in height 24% 25% 25% 

Table 3 	Improvement of layouts with interaction 

The storage requirement of each of the three circuits is 

approximately the same as that given in Tble 2. The storage space 

used cannot be measured accurately as it is dependent on the amount 

of interaction carried out to generate the layout. 

10.5 Comparison With Manually-Generated Layout 

The modified layout of circuit B shown in Fig. 10.9 is 

compared with a manually-generated layout of the same circuit, 

shown in Fig. 10.10. The main difference between the two is that the 

manual layout makes far more use of the space under components for 

conductor rouiing. This is in contrast to the topological method 

which uses component crossings only as a last resort when inserting 

branches into the graph. The consequent results are that the computer 

layout requires a larger board area with a greater proportion of the 

space taken up by conductor paths. 
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A further difference is that the manual layout has all the 

components placed in the same orientation. This is usually done to 

assist the manufacture of the board and to give it a more pleasing 

appearance. The computer layout tends to pack the components in a 

number of different orientations so as to make better use of the 

available board space. A similarity between the two layouts is the 

number of parallel conductors across the top of the board. Both 

approaches have similar problems of preserving the planarity of 

conductor paths on a single-sided board. 

The overwhelming advantage of the computer method is the 

time taken to produce the layout. A draughtsman would take several 

hours to produce the completed layout diagram. The computer method 
to 

takes minutes produce an initial layout with perhaps half an hour of 

interaction time to improve the layout. In addition, the output of 

the program may be used to drive a mechanical plotter to produce the 

finished drawings of the required accuracy. For a large layout the 

corresponding saving in time can be several weeks. 
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Fig. 10.8 	Automatic layout of circuit B 
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Fig. 10.9 	Layout of circuit B modified by interaction 
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Fig. 10.10 Manually-produced layout of.circuit B 
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Chapter 11 	Discussion of Method and Improvements 

It is clear from the previous chapters that a feasible 

method has been developed for the design of printed wiring boards . 

There are a number of improvements and alterations that should be 

made to the method to make it more useful to the industrial user, 

for whom it is intendeth These include changes both to the basic 

algorithms and to the ways in which they are organised in the 

computer system. Many of the alterations: are dependent on the 

type of hardware available to the user and the type of board layouts 

which he wishes to design 

11.1 Improvements to Topological Algorithm 

The layouts illustrated in Chapter 10 show that the present 

topological algorithrr produces graphs which are quite adequate for 

the type of board layouts considered. One possible improvement lies 

in the method of searching for paths to insert non-planar link 

branches into the pseudo-planar graph. At present a search is made 

from the regions around the start node of the branch to a region 

containing the target node When several non-planar branches have 

a common start or target node, the search method can. result in 

conductors following parallel paths under components as shown in 

Fig 11,1(a). Examples of this can beuseen in the crossing conductors 

of components R19 and R25 in Fig0 1012. 

The suggested improment to the algorithm is that the 

search tree should also include regions which contain link branches 

that are already connected to the start or target node. The branch 

to be. inserted may then be connected to one of these link branches 

so as to avoid parallel conductor paths under components to the 
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P O P 

(a) 	 (b) 

Fig. 11.1 Improvement  to conductor routing 

start or target node. The method is illustrated by Fig. 11.1(b). 

Link branch PQ is already in the graph and a search for path RQ 

yields a target region containing the branch PQ. In this target 

region PQ may be divided in two by the insertion of an extra node, 

N. The conductor path RN is then inserted as shown. This reduces 

the board area required for conductor routing and leaves more space 

under càmponents for the insertion of further non-planar branches. 

Non-planar cOmponent branches are inserted into the graph 

by splitting nodes and "hopping over" the conductors joining the 

two parts of each node. The number of nodes that can be split is 

limited by the physical dimensions of the component. At present, 

if the limit of nodes split is reached befoxe a path to the target 

node has been found, the component is removed from the graph as 

non-planar. A possible improvement is to add a conductor branch 

to one end of the component at this stage. The path search may 

then be continued by crossing this conductor under other components. 
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Some components such as potentiometers, indicator lamps or 

test points may have to be mounted adjacent to one edge of the board 

for accessibility. At present the user can move such components 

towards the edge of the layout by interaction. He cannot guarantee 

to place them on the very edge of the layout due to the existing 

circuit topology. One way of solving this problem is to define a-

special pseudo branch in the graph which connects the component in 

question to one of the two end edge connector nodes. If the pseudo 

branch cannot bedeleted as non-planar and cannot be crossed by 

conductors, the component will automatically be placed in the graph 

adjacent to the outside edge. The pseudo branch may laier be 

removed when the pseudo planar graph is complete. 

A limitation of the present program is that the connections 

of components to the edge connector pins have to be completely 

specified before the layout is started. If often occurs that a 

circuit may have several input or output nodes whose order of 

connection to the edge connector is not critical. In such cases 

the layout can frequently be- improved and some non-planarities 

eliminated by re-arranging the order of nodes connected to the 

edge pins 

A possible solution to the edge connector problem is 

illustrated in Fig. 11.2- Three components, Cl, C2 and C3 which 

form part of a circuit are to be connected to three edge connector 

pins, 1, 2and 3. An arbitrary assignment of component-to-edge 

pin connections may produce non-planarities as shown in Fig. 11.2(a). 

This can be prevented by temporarily connecting the components and 

edge pins to a common node, -N, as shown in Fig. 11.2(b). The- 
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(a) 	 (b) 	 (c) 

Fig. 11.2 	Connection of components to edge connector 

circuit data structure is then operated upon by the planarity 

algorithm. 

The components and edge pins are connected to the same 

temporary node so their order of connection to it will be 

determined by the' planarity algorithm. There will also be no 

non-planarity for that part of the circuit. When the planar 

graph is completed, the component-to-edge pin connections can be 

re-assigned and the temporary node removed as shown in Fig. 11.2(c). 

The same technique can also be used for integrated circuit components 

with multiple inputs. 

The present planar graph algorithm is initialised with the 

assumption that the board to be laid out has an edge connector. 

It can be modified if necessary to deal with boards which have no 

edge connector. In this case, a search is made through the total 

graph to find a closed path of branches. This path is taken as the 

outside edge of the graph and all its branches are marked so that 

they cannot be crossed by conductors. The planarity algorithm then 
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proceeds as before. The laying out of such a graph is discussed in 

the next section. 

11.2 	Improvements to Layout Algorithm 

Examination of the layouts in Chapter 10 shows that a number 

of improvements to the layout algorithm are possible. One of the 

more obvious improvements is to conductor paths such as those 

shown in Fig. 11.3(a). The reason for such paths has already been 

 0 

: 	 : 	 : 	 : 

0 

(b) 
	

(c) 

Fig. 11.3 Improvement to conductor paths 

explained in Chapter 10.3.1 and the shortening of them is a 

straightforward task. The list of placed components is searched 

to ensure that none lie in \ the space between the two components. 

If the space is clear, the crossing conductors may then be routed 

as shown in Fig. 11.3(b). Ideally the two components should also 

be placed adjacent to each other so as to conserve board space. 

This involves further checking to ensure that the components are 

not at different levels or of different sizes such as those shown 

in Fig. 11.3(c). 

A further improvement involves the routing of conductors 

under components. At present conductors are allowed under components 

only at crosèing points. All other conductors are routed around the 

components as shown in Fig. 11.4(a). The proposed improvement is to 
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(a) 	 (b) 

Fig. 11.4 Improvement to component spacing 

allow conductor routing under components as shown in Fig. 11.4(b). 

This would enable the closer spacing of components and hence 

improve the board packing density. To implement this change it is 

necessary to compute the pin positions of all adjacent components 

so as to ensure that there is sufficient space for conductors 

between the pins. The user must decide in this case whether the 

saving in board space justifies the extra computation time required. 

At present the layout program uses a standard conductor 

width for the whole layout. This is generally the way in which 

boards are designed but occasionally some conductors need to be 

of greater width to carry increased current. There are several 

possible solutions to this problem. One is to assign a conductor 

width to each circuit node at the data input stage. The corresponding 

width is then used during the layout construction. A second method 

is to define two or more parallel conductors between the appropriate 

points. During the layout stage the parallel paths are merged to 

form one conductor. of the required width. 

Many of the orthogonally routed conductor paths produced by 

the layout algorithm could be considerably reduced in length if 

diagonal routing were allowed. This has not been done at present 
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due to the problem of having to rigorously check the: clearances 

between diagonally routed conductors whilst constructing a layout. 

One possible way of reducing conductor lengths is to allow interactions 

with conductor paths; this is discussed in the next section. Another 

possibility is to complete the layout then operate upon the data 

structure with a further program. This program would merely "round 

off" and shorten the existing conductor paths. 

The problem of laying out boards with no edge connector has 

already been mentioned in the previous section. It may be dealt with 

in a straightforward manner. Instead of developing the initial 

working list of the layout from the edge connector nodes, the list 

is filled with components from the outside edge of the graph. 

These components are positioned in- the first slot along the lower 

edge of the board. The layout algorithm may then proceed in the 

normal way to complete the layout. 

A further extension to the layout algorithm would be to 

allow for obstacles in the layout. The obstacles could be such 

things as handles or fixing holes on the board. The program would 

require some form of "look ahead" capability when positioning 

components. It would ensure that conductors from the completed 

part of the layout- 'could be routed around the obstacle and up to 

a-higher level as shown in Fige 11.5. If this feature - were 

implemented it could also be used to deal with irregular shaped 

boards. The board shape would be defined as a rectangle with parts 

masked off by obstacles as shown in the example of Fig. 11.6. 
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Fig. 11.5 	Avoidance of obstacles on board 

Fig. 11.6 	Definition of irregular shaped board 

Further imprcvements to the basic layout algorithm lie in 

the experience gained from using the interactive display. It is 

hoped that the insight gained from some of the interaction 

techniques can be incorporated into the automatic algorithm to 

improve its performance. One such technique already proposed is 

that components with many nodes and crossing conductors rcuted up 

to higher levels should themselves be moved up to higher slot 

levels. This wculd reduce the lengths of conductors attached to 

these components and improve the component packing density. 
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A further facility that could be added to the layout' 

algorithm concerns the non-planar branches removed from the pseudo 

planar graph. At present a list of these branches, if any, is 

printed out when the pseudo planar graph is completed. The user 

later has to find the appropriate conductor paths in the layout to 

which wire jumpers may be connected. It would be a useful facility 

if the layout algorithm were to find the shortest distance between 

each pdirof nodes to be connected and indicate'the required paths 

for the wire jumpers. 

11.3 Improvements to Interaction 

There 'are a number of improvements, that can be made to the 

interactive facilities available, some fairly simple and others of 

a more fundamental nature. One improvement immediately obvious to 

the user is the reduction in time needed to make a modification to 

the layout. Modifications near the top of circuit C in C ' 

Fig. 10.12, for example, take from 10 to 15 seconds to be implemented. 

This is because the whole current layout has to be deleted then 

reconstructed up to the modification. This method has been used 

for the ease of programming although it is obviously not the most 

efficient way of using computer time. Methods for improving the 

interaction time are discussed in the next section. 

It has been found from experience that a user may spend, 

say, half an hour interacting with a layout to obtain a satisfactory 

solution. On examining a hard copy of the display, a number of 

further improvements to the layout often become apparent. Before 

these improvements can be made in a later interaction session the 

whole procedure of modifying the layout has to be repeated. One 



solution to this difficulty is to store the list of changes made to 

the layout on magnetic or paper tape. At the start of the next 

session, the list of changes can be read in and the whole modified 

layout built up automatically. 

For large layouts there will be problems in displaying the 

whole board with sufficient detail to allow interaction. The most 

obvious solution is to "scissor" the display so that only a portion 

of the layout is seen, magnified to fill the whole screen. The 

display may then be considered as a "window" which can be moved by 

interactio'n over a much larger diagram of the whole layout. This 

facility should be implemented in the display software as it does 

not affect the basic layout algorithm. 

The question of display software leads on to the problem of 

allowing interaction with the conductor' paths of a layout. In a. 

large layout there are many hundreds of conductor path change points. 

If every one is to be identifiable by the light pen it must be 

represented by a separate segment of display file. The storage 

requirement for, the display file will then be considerably increased. 

A way out of this difficulty, again, is to scissor the display so 

that only a small portion of the layout is seen at any one time. 

This will result in a corresponding decrease in the length of the 

display file. 

At present the user can alter the orientation of any 

component and put it into a particular slot by means of interaction. 

From then on the layout algorithm automatically positions the 

component in the slot, with clearances for adjacent conductors. 

All elements are placed in order from the left so that any spare 
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space is always on the right hand side of the slot. 

A useful additional mode of interaction would be the 

ability to provide manual placement of components and conductors 

within a slot. This would allow the user to override the automatic 

algorithm. He could then place components towards the right hand 

side of the slot if desired, or pack them more closely by allowing 

overlap with conductors as shown in Fig. 11.4(b). 

Experience of using interaction has shown that however much 

a layout is modified there are usually some long conductor paths 

that cannot be shortened. Component R12 in Figs. 10.6 and 10.7 is 

a good example; its connections must always be routed around the 

outside edge of the layout. The reason for this is that the circuit 

topology remains unchanged by interactive modifications to the 

layout. Again, it has already been noted that a short conductor 

path in the topological model does not necessarily give a short 

path in the layout. 

The two points just noted could be improved by having a 
11 

deeper level of interaction which would allow the user to modify 

the topology of the layout. Conductor paths could then be redefined 

so that although they crossed under more components their physical 

lengths were shorter. The modifications to the topology would have 

to be made by indicating which components in the layout were to be 

crossed by each new conductor path. Although it is possible to 

interact directly with the graph, it is difficult to visualise the 

layout from a diagram of the topological model. It would also be 

necessary to generate a display of the graph which is a considerable 

tak in itself. 
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11.4 Improvements to Computer Organisation 

There are a number of ways in which the layout program may 

be improved to make better use of the computer time and storage. 

These have not been implemented at present because of insufficient 

programming effort available and the fact that some of the computer 

facilities have been improved since the program was written. Several 

of the improvements discussed are intended for the present 4130 - 

PDP-7 system and might not be applicable to a different computer 

system. 

An important improvement that could be made is in the time 

taken to make a modification to the layout by interaction. The 

4130 computer now has a dic-based FORTRAN system which was not 

previously available. The disc system enables data to be stored 

and later retrieved at a high rate whilst the program is in operation. 

The proposed modification is that the current stateof the 

layout is recorded at the completion of each slot processing. When 

the contents of a slot are modified, the layout can be cut back to 

the previous slot level instead of having to rebuild the whole 

layout as at present. The problem still exists for PULL mode where 

a component can be pulled down below the previous slot level. In 

this case the reconstruction time could still be reduced by saving 

the state of the:layout at selected lower levels. 

When adding the contents of the latest slot to the layout, 

the curi'ent program completely regenerates the display file in order 

to show the latest slot. This means that as the working level of 

the layout increases and the display file becomes longer, the 

algorithm will take correspondingly more time to progress from one 
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slot to the next. The reason for using this method is that conductors 

are routed upwards through successive slots as continuous paths. With 

the present program there is no way of telling which part of a path 

has already been displayed. The whole display file is therefore 

deleted and then regenerated. 

The display software allows the user to build up a display 

file as a series of segments. Later additions can be generated as 

separate segments and added onto the end of the existing display 

file. The use of markers or extra elements in the conductor path 

data structure could be used to indicate which parts of each 

conductor have already been displayed. Only additions to the 

display need then be generated and transmitted over the link, 

thus speeding up the layout program. 

With the layout of very large circuits the program will 

run into problems of storage. space for the data structure and 

display file. There are several possible solutions depending on 

the amount of storage space required. A number of elements in the 

data structure such as branch type markers and orientation markers 
N 

are small integers so that several of them could be packed into one 

24 bit computer word. This would decrease the storage requirements 

of the data structure and has already been done in the case of 

conductor path change points. 

A more drastic approach would be to divide either the 

program or the data structure into several sections. The sections 

would be,' swapped between the disc and the core store during the 

running'of the program. Only the required sections of program and 

data would then be held in the core store at any one time. Whichever 
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method is used, the program will take longer to run due to the extra 

unpacking of integers or the swapping of sections. The storage 

requirements of the display file can be alleviated by displaying 

only part of the layout at a time. This should be fairly easy to 

do if scissoring is available as part of the display software. 

11.5 Extension to Double Sided Boards 

The present version of the program deals with single sided 

boards as these have been most widely used up to now. Industry is 

making increasing use of double sided boards so it would be 

advantageous to extend the program to deal with such boards. Major 

changes would be necessary both to the topological and to the 

layout algorithms. 

To extend the program to double sided boards, the topological 

data structure has to be modified so that conductors can be assigned 

to one or other side of the board. Component and pseudo branches 

have to be duplicated for the two sides of the board because every 

component pin hole appears on both sides of the board, at a defined 

distance from the remaining pins of its component. The suggested 

approach is that the graph of the circuit is operated on by the 

planárity algorithm toproduce a planar graph for one side of the 

board. The resultant non-planar branches together with the components 

already in the first planar graph are then operated upon to produce 

a second planar graph for the other side of the board. 

When the first planar graph is subtracted from the total 

graph some parts of the remaining graph may become disconnected from 

one another. The second pass of the planarity algorithm must 

therefore be able to deal with a graph which is composed of several 
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isolated subgraphs. Following the two passes of the planarity 

algorithm there may still be a. 2few non-planar branches. These can 

be inserted into either of the two planar graphs by the methods 

described in Chapter 5. 

The layout part of the algorithm also requires modification 

for double sided boards. Two base and two working lists are required 

for the two sides of the board. Only one slot profile list is 

required as components are placed onone side of the board only. 

The sizes and positions of successive slots are calculated from the 

slot profile list as before but in each slot, two base lists are 

developed simultaneously. Components and conductor paths are then 

placed in the slot in a similar manner to the present program. The 

display generation subroutine also requires modification so that the 

conductor paths on either side of the board can be distinguished. 

The modifications suggested will require considerable re-organisation 

of the program but should be rewarded by its increased usefulness. 

11.6 Integration With an Industrial Environment 

The current program has been developed to a state where it 

is possible to design a layout for a given circuit and set of 

components. The program output is in the form of one diagram which 

contains the essential information needed to construct a printed 

wiring board. There are a number of ways in which the program can 

be modified, mainly at the input and output stages, to provide more 

de€ailed and accurate data for the actual manufacture of boards. 

These modifications have not been implemented because they are 

dependent upon the individual uset"s requirements and computer system. 



The first such modification that could be made to the program 

is the form of data input. At present there are possible sources of 

error in labelling the nodes on a circuit diagram, in extracting the 

component connection data from the diagram and in punching the data 

onto paper tape. A possible solution is to use the light pen and 

graphical display to draw the circuit diagram directly as input (32). 

At the same time the program can build up the corresponding 

topological data structure. This method has the advantage that any 

errors in the circuit description are far more easily detected from 

a graphical display than from a written table of data. 

In some cases the user may initially employ a circuit 

analysis program to predict the performance of a circuit. The 

interconnection data of the circiit may then be fed directly into 

the layout program. This removes the possibility of errors at the 

input stage of the layout program. The user, can be confident that 

Xhe layout produced corresponds to the original circuit analysed. 

The present program also requires a component library to be read in 

for each board layout. Where the user has a data bank of standard 

components, this may replace the function of the component library. 

On the output side of the layout program there are a number 

of possible improvements, depending on the equipment available to 

the user. The layout diagrams shown in Chapter 10 may be divided 

into two separate diagrams. One diagram would show the conductor 

paths so that a mask could be produced for etching the conductor 

pattern onto the printed wiring board. The second diagram would 

show the placement of components on the board and would be used when 

assembling the board. 
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The data structure representing the layout is flexible in 

use and may be processed by other programs to produce the typeof 

output data required. One possibility is to producea data tape 

for driving a mechanical plotter fitted with a light source and 

light sensitive paper. This would enable etching masks to be 

produced directly. A further possibility is to produce a data 

tape to operate a numerically-controlled machine for drilling the 

component:pin holes in the board. 

11.7 Discussion of General Points 

As can be seen from the results in Chapter 10, the program 

produces a layout in which components are packed onto the board so 

as to make the best use of the available board space. The method 

is ideally suited to circuits which contain a number of different 

types of component such as resistors, capacitors, transistors and 

integrated circuits. The program in its present form is not suitable 

for circuits which contain mostly integrated circuits in a fixed 

matrix of positions on the board. Such boards place considerable 

constraints upon the algorithm and so are more appropriately laid 

out by one of the methods described in Chapter 2. 

The data structures described in Chapters 6 and 9 use a 

variety of configurations, such as one-way lists, two-way lists and 

rings. These different types of structure are easily implemented 

by the use of the macro generator (Appendix A). It has been found 

that by matching a type of structure to the particular problem being 

solved, the programming is simplified and the storage space is 

efficiently used. This contrasts with other data structure systems 

in which only one configuration and hierarchy pf elements is allowed. 



The main disadvantage of using a mixed type of data structure is 

that programming errors, such as obtaining a pointer to a non-

existent block, can be difficult to trace unless comprehensive 

checking procedures are used. 

The current program has been developed for the design of 

printed wiring boards. Some of the algorithms used may be applied 

to other design problems. An obvious application is the design of 

integrated circuits where similar problems are encountered, although 

on a different physical scale. The relevant problems are those of 

arranging a number of components of varying sizes and shapes upon a 

plane surface and routing interconnections between them. Although 

it is not strictly necessary, it is preferable that the interconnection 

pattern is planar. The algorithms may also be used in other 

applications where it is necessary to design a set of paths between 

interconnected objects. One such possibility (14, 15) is the 

optimum layout of the rooms and corridors of a building. 



Chapter 12 	 Conclusion 

The results shown in earlier chapters indicate that a 

feasible method has been developed for the layout of printed wiring 

boards by computer. Thelayouts considered are of single sided 

boards containing discrete components of various sizes. The initial 

topological approach to the layout problem. compars favourably with 

the more conventional method of component placement followed by 

conductor routing. As placement and routing are performed 

simultaneously, congestion of parts of the board by conductor paths 

is avoided. The automatic part of the layout algorithm produces 

useable layouts although it tends to form some long parallel 

conductor paths. 

The results also show that significant improvements to a 

layout can be obtained by the use of interaction. The graphical 

display and light pen ensure close communication between the user and 

the layout program. Man-machine interaction thus enables the skill 

of the user to be combined with the speed and accuracy of the layout 

algorithm so as to rapidly produce a suitable layout. As the user 

only interacts with the highest level of the program, he is relieved 

of the detail of inserting conductor paths and checking component and 

conductor clearances. In addition, the algorithm ensures that the 

resultant layout corresponds exactly to the input data. 

The algorithm produces results comparable with a manual 

layout, method and in very much less time. It is thus suitable for use 

within an industrial environment. At present the results produced 

indicate the positions of components and the paths of conductors. 

Further improvements and modifications are required before production 

quality drawings may be output directly by computer. 
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Appendix A 
	

Use of Macro Processor 

The ML/l macro processor has been used for the programming 

of data structure operations within the FORTRAN language. It enables 

programs to be more easily written and understood and allows data 

structure definitions to be readily altered during program develop-

ment. Only the facilities of ML/l which have actually been used 

are described here. For a more detailed description of these and 

other facilities, the ML/1 Users Manual (LI.) should be consulted. 

The ML/l macro 1anguage provides general purpose macro 

processing -facilities which can be used to process any piece of 

text. The processor requires an environment which defines the 

macro calls that are to be used. The input and processing of a 

piece of text is termed the evaluation of the text and the resultant 

output is termed the output text. The processor allows macro calls 

to appear anywhere in the text and allows any number of parameters 

to be associated with each call. The macro calls are of two types. 

Operation macros are defined as part of the system and are used to 

set up the environment. The three operation macros which have been 

used are MCSKIP, MCINS and MCDEF. Substitution macros are those 

defined by the user for specifying the way in whiàh the text is to 

be evaluated. 

MPV T P 

The operation macro MCSKIP allows parts of the source text 

to be skipped over during the evaluation of text. The macro defines 

a pair of delimiters, or skip names, which may appear in any number 

of places in the source text. The piece of text between each pair 

of delimiters may be copied over to the output text. Any macro 
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calls within this piece of text, however, will also be copied over 

and will not be evaluated. 

The parameters of the MCSKIP macro are three optional 

characters followed by the skip names. The optional characters are:-

M - indicates that the two skip names are to be matched in 

pairs. 

T - indicates that the text within the skip is to be copied 

to the output. 

D - indicates that the skip nanes are also to be copied. 

The MCSKIP macro has been used in this application as part 

of the definition of substitution macros, described later. The 

macro call used is: 

MCSKIP MT, < >; 

The skip names are < and > and the final semicolon is the delimiter 

of the macro call itself. This call defines a matched pair of skip 

names such that the text between each pair will be copied over to 

the output text but the skip names themselves will not be copied. 

MCINS 

When defining a substitution macro, it is necessary to 

indicate whereabouts in the replacement text the parameters of the 

macro call are to go. This is done by using an insert to indicate 

the relevant place for each parameter. The insert call itself has 

one associated parameter to define which parameter of the substitution 

macro call is to be inserted. 

An insert is defined by use of the MCINS operation macro. 

The definition consists of an insert name followed by a delimiter 

which indicates the end of the insert parameter. As the insert 
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is associated with the definition of substitution macros, its 

insert name must be a string of characters which will not appear 

anywhere else in the source text. 

As an example, the insert used for this particular application 

is described here. The insert is defined by: 

MCINS XX. .; 

where XX is the insert name and . is its delimiter. An example of 

an insert call is then: 

XX A2. 

where the parameter of the call is A2. The 2 indicates that the 

second parameter of a substitution macro call is to be inserted 

into the output text. The A indicates that. all leading and trailing 

spaces around the parameter are to be suppressed. 

MCDE.F 

The operation macro MCDEF enables the user to set up a 	 - 

substitution macro. The definition of a macro consists of three 

parts, a macro name, a delimiter structure and a replacement text. 

The macro name is the string of characters by which the macro call 

is identified. The delimiter structure defines the order and type 

of delimiters which separate the parameters of the macro call. The 

replacement text defines the output text and parameters which are 

to replace the original macro call. 

An example of a typical macro definition is shown below. 

This particular macro is Used to refer to the contents of the head 

of a data block. It is called with one parameter which is a pointer 

to the first word, or head, of the block. The data array to which 

the block belongs is called IRAY. The macro definition is thus: 
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MCDEF HEAD( ) AS <IRAY(XX A2.)>, 

When the macro is called with one parameter, for example POINTER, it 

produces the following substitution: 

HEAD(POINTER) - IRAY(P0INTER) 

Referring again to the definition above, the macro name of 

this definition is HEAD. The first and second delimiters of the 

definition are ( and ) respectively. The word AS then acts as a 

separator between the delimiter structure and the replacement text. 

By convention, each parameter of a macro call precedes its 

relevant delimiter so in the above example it is the second 

parameter which is to be inserted into the replacement text. 

When the processor is actually evaluating a macro call, it 

first evaluates the arguments of the macro definition. This allows 

for the case in which the macro definition contains a call to 

another macro. For this reason, the replacement text of a macro 

is enclosed by a matched skip so that it is not evaluated during 

the definition of the macro. 

Use of a Macro Processor 

To use the macro processor, a paper tape is first prepared 

containing all the macro definitions which will be required. The 

processor program tape is then read into the PDP-7 computer, 

followed by the macro definition tape. This sets up the environment 

so that the processor is ready to evaluate any number of source 

tapes. As,each source tape is read in and evaluated, the source 

text is copied over to an output paper tape until a macro name is 

identified. The appropriate replacement text is output then the 

evaluation of source text continues. 
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Three examples of the use of macros are shown below. The 

first example is a macro that refers to the first node to which a 

branch is connected. The macro definition is: 

MCDEF BNODE1( ) AS <IRAY(XX A2.+l)>; 

The resultant substitution is: 

BNODE1 (BPTR) - 	IRAY(HPTRi-1) 

The second.example is a macro which refers to the X co-ordinate of 

the Nth pin of a master component block in the component library. 

Its definition is: 

MCDEF MCORDX( • ) AS <IRAY(XX A2.+11+XX A3.-t-.XX A3.)>. 

and its resultant substitution is: 

MCORDX(MPTR,N) -- IRAY(MPTR+ll+N-i-N) 

The third example shows how the marker in the head of a 

component branch block may be defined as an integer number. The 

definition is: 

MCDEF MARKCB AS <1000000>; 

A statement containing two macro calls: 

HEAD (BRANCH) = MARKCB 

will result in the following FORTRAN statement: 

IRAY(BRANCH) = 1000000 

All the operations on the data structure for the layout algorithm 

are defined in a similar manner by the use of macro calls. 
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Appendix B 	Display Software 

The interactive display software enables the user to generate 

a graphical display and to use it for interaction with his program. 

The software is organised into two parts, one part residing in the 

ICL 4130 computer and the other part in the PDP-7 computer. The set 

of subroutines in the 4130 may be called from the user's FORTRAN 

program. These subroutines generate and operate upon a display file 

which is held in a large array. When a new display file is generated, 

or modifications are made to an existing display file, the relevant 

parts of the file are transmitted over the high speed link to the 

PDP-7 computer. 

The software in the PDP-7 includes a Link Executive program 

which controls the data transfers in both directions over the link. 

Whenever a display file or modification is received from the 4130, 

the display file in the PDP-7 is immediately updated so that the 

change is seen on the Type 340 display. The software also services 

the display tracking cross and handles interrupts from the light pen 

and Teletype keyboard. When an interrupt occurs, the relevant data 

is assembled into a four-word attention block. This block may then 

be transmitted back over the link to the 4130 when requested by a 

call from the user's FORTRAN program. 

The FORTRAN display and interaction subroutines associated 

with the user's program are described below. Only those facilities 

which have actually been used for the layout algorithm are described. 

For a more detailed description of these and other facilities, the 

system description (11) should be consulted. 
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1. Generation of Display File 

The first subroutine that must be called before generating a 

display file has the calling sequence: 

CALL DEFPIC(IFILE, LIMIT) 

The subroutine passes over to the display software the name of the 

array which is to hold the display file, IFILE. The maximum 

allowable size of this array is defined by the value of LIMIT. 

The second subroutine which must be called has the calling sequence: 

CALL SENTER 

This subroutine initialises all the display subroutines and causes a 

set of character definitions to be read in from magnetic tape. The 

characters are defined as display subroutines because no character 

generator is. available. 

The basic subroutine for plotting points on the display has 

the calling sequence: 

CALL MOVETO(IX,IY,VIS,ISCALE,INTENS) 

where IX and IY are the required co-ordinates of the point. VIS is 

a logical variable which determines whether or not the point is 

visible. The value of ISCALE sets the scale of the following display 

file and the value of INTENS sets the display intensity. 

The basic subroutine for drawing straight lines has the 

calling sequence: 

CALL LINE(IDELX,IDELy,vIS) 	 - 

where IDELX and IDELY are the required X and Y displacements from 

the current beam position. The logical variable VIS determines 

whether or not the line is visible. 



The software has facilities for generating and calling display 

subroutines. A display subroutine may be generated at any point in 

the display file but its definition must be complete before a call 

is made to the subroutine. Every display subroutine is assigned a 

unique system name by the software. The system name is, in fact, 

the index of the display file array at the first element of the 

subroutine. 

A display subroutine definition is commenced by the calling 

sequence: 

CALL DEFSUB(NAMSUB) 

The value of the variable NAMSUB is set to the system name of the 

subroutine by the display software. The lines and characters 

defining the subroutine are then generated by calls to the appropriate 

routines. The definition of the display subroutine is concluded 

by the calling sequence: 

CALL ENDSUB(NAMSUB) 

Whenever an instance of the display subroutine is then required, it 

is obtained by calling: 

CALL CALSUB(NAMSUB) 

Two functions are available for generating alphanumeric 

characters. The first one displays a single character and is 

called by: 

NAME = CHAR41(NCODE) 

where. NCODE is an integer code for the character to be plotted. 

The character is defined as a display subroutine so its system name 

is assigned to the variable NAME. This means that copies of the 

character can then be displayed by calling it as a display subroutine 

with the parameter NAME. The second function enables a string of 
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characters to be plotted. It is called by: 

NAME = TEXT(IARR,N) 

where NAME •serves the same purpose as before. IARR is the name of 

an array which contains the codes for the characters to be plotted, 

packed four to a word. N is the number of characters to be plotted. 

When the whole display file has been generated it is 

terminated by the calling sequence: 

CALL DEFPIC(IFILE,MEDIUM) 

where IFILE is the display file array. MEDIUM is an integer variable, 

the value of which determines tihether the display file is transmitted 

over the link to the PDP-7 or is punched out on paper tape. 

2. Display File Editing 

The display software enables the display file to be divided 

into a number of segments. These segments are linked together in a 

simple list so that each segment may be displayed in turn. When 

extra segments are added to the list, or existing segments deleted, 

only the differences in the display file are transmitted to the 

PDP-7. This considerably reduces the amount of data sent over the 

link when making small'changes to a large .display file. 

Every segment has a three word header block followed by a 

section of display file. The header block contains a pointer to 

the next segment in the list, a system name and a user name. The 

system nameis merely the array index of the first word of the 

segment. The user name is an integer value which the user may 

associate with the segment. 

The display software automatically creates the first segment 

at the start of the display file. When another segment is required, 
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it is obtained by calling: 

ISEG = NEWSEG(LABEL) 

ISEG is assigned the system nam of the new segment and LABEL is its 

user name. Whenever a new segment is opened, the previous segment 

is automatically terminated. 

An alternative method of creating a segment is by calling 

the function: 

ISEG = INSTAT(IX,IY,NAMSIJB,LABEL) 

This function is used to create an instance of the display subroutine 

NAMSUB at the co-ordinates IX and IY. ISEG is assigned the system 

name of the segment and LABEL is its user name. 

After any segment has been defined, its display scale or its 

intensity or both may be altered by calling: 

CALL CHINTS( ISEG , ISCALE , INTENS) 

ISEG is the system name of the segment and ISCALE and INTENS are the 

new values of scale and intensity respectively. 

Segments can be deleted from the display in a number of 

ways. A segment may be temporarily deleted by the calling sequence: 

CALL REMOVE(ISEG) 

where ISEG is the system name of the segment. The segment disappears 

from the visible display although it remains in the display sequence. 

The segment may be restored by calling: 

CALL RESTOR(ISEG) 

The second method of deleting a segment removes the segment 

permanently from the display file so that the corresponding array 

space may be used again. Any display subroutines in the segment are 

thus deleted as well. All calls to these subroutines are therefore 
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removed from the remainder of the display file by the display 

software. The required calling sequence is: 

CALL CANCEL(ISEG) 

The third method of deleting a segment is by the calling 

sequence: 

CALL DELETE(ISEG) 

This removes the segment from the display sequence although it 

remains in the display file array. The method is used for segments 

which contain only subroutine or character definitions that are not 

to appear in the display until called from later segments. 

3. Light Pen and Keyboard Interaction 

When using interactive computer graphics, the light pen and 

Teletype keyboard on the PDP-7 computer are the means by which the 

user communicates with his program. The light pen enables parts of 

the display file to be identified and the keyboard enables single 

characters to be sent to a FORTRAN program in the 4130 computer. 

As the PDP-7 computer cannot directly interrupt the FORTRAN program 

in the 4130, it stores an attention block. This block may then be 

read from the FORTRAN program to determine which device in the 

PDP-7 caused an interrupt. 

Before the light pen or Teletype can cause an interrupt 

they have to be enabled. This is done by the following call from 

the userts  FORTRAN program: 

CALL ENABLE(I) 

The parameter I is an integer whose value determines whether the 

light pen or the Teletype keyboard is to be enabled. A similar 

subroutine call allows the user to disable either device at any 

stage of the interactive program. 



-202- 

Every segment of the display may be made either sensitive or 

non-sensitive to the light pen. This allows the user to organise the 

display file so that light pen interrupts are obtained only from the 

relevant parts of the display. A segment is made sensitive to the 

light pen by the call: 

CALL MSSLP(ISEG) 

Pointing the light pen at a display segment will thus cause an 

interrupt only if the segment is made sensitive and the light pen 

is enabled. 

The user's FORTRAN program can be made to wait for an 

interactive operation by the call: 

CALL ACTION(IRAY) 

The program waits in a loop until an attention block is ready in 

the. PDP-7 computer. The contents of the block are then read into 

the four-word array IRAY. The first word of this array indicates 

whether the attention was caused by the light pen or the Teletype 

keyboard. The second word gives the system name of the segment in 

which the light pen hit occurred, or the six bit code for the 

charaàter entered on the keyboard. The following two words give 

the X and Y co-ordinates of the light pen hit ifappropriate. 

At some stages of the user's interactive program it may be 

desirable to remove any redundant light pen hits before proceeding 

to the next stage. This is effected by the call: 

CALL ATKILL 

The call causes the attention mechanism to be reset so that all 

attention blocks waiting in the PDP-7 are cancelled. 
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4. Tracking Cross Routines 

The display software allows a tracking cross to be used and 

its co-ordinates to be read to the user's FORTRAN program. The 

tracking cross is made to appear on the display by calling: 

CALL TRSET(IX,IY) 

The parameters IX and IY are the co-ordinates of the position at 

which the cross is to appear. The tracking cross may then be 

tracked by the light pen without further attention from the 4130 

computer. 

The current co-ordinates of the tracking cross may be read 

at any time by the call: 

CALL •TRACK(IX,IY,ISTOP) 

The parameter ISTOP is an integer variable which indicates whether 

the PDP-7 has an attention block waiting. When the tracking cross 

is no longer required, it can be removed from the display by calling: 

CALL TRKILL 

The subroutines described here provide the user with fairly 

sophisticated facilities for interactive programming. A display 

file can readily be constructed and modified by interaction. The 

segmentation and naming system then. enables the user program to 

rapidly determine which part of the display was seen by the light 

pen. 
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Glossary of Terms 

Base limits 	Two variables associated with a base node. They 

store the extreme X co-ordinates of the node 

during conductor routing. 

Base list 	 A list of the nodes and conductors along the 

bottom edge of a slot, used during the 

construction of a layout. 

Block 	 A group of consecutive words of the data storage 

array, used to store information on an element 

of the graph or layout. 

Board 	 A thin board of insulating material which 

supports the components of a layout. A pattern 

of copper conductors is etched onto one or both 

sides of the board to interconnect the components. 

Bound branches 	Two branches associated with each part of a node 

during the construction of the layout. They 

indicate those parts of the node which have 

already been placed in the layout. 

Branch 	 An element of a graph which interconnects a pair 

of nodes, sometimes termed an tiedget?  of the graph. 

Branch component A component with two connecting wires or pins. 

It is represented in the graph by a component 

branch. 

Branch segment 	A component, pseudo or linkbranch is divided 

into two branch segments when crossed by another 

branch. The division of branches is caused by 

the insertion of non-planar branches into the 

pseudo-planar graph. 
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Bridge branch. 	A branch which provides the only connection 

between a subset of the planar graph and the 

remainder of the graph. 

Circuit (electrical) A specified set of components and their 

interconnections which performs an electrical 

function on the signals applied to it. 

Circuit (graphical) A set of branches which form a closed path in 

the graph. 

Circuit node. 	A point of common electrical connection of two 

or more components. 

Component 	 An element of the electriöal circuit, such as a 

resistor or a transistor. 

Component branch 	See Branch component. 

Component pin 	A terminal wire or connection point of a component 

which passes through a hole in the printed wiring 

board and connects with a conductor. 

Conductor . 	 A copper track formed onto the printed wiring 

board which connects one part of the circuit to 

another. 

Conductor branch 	A branch representing a conductor which connects 

two circuit nodes. It is formed when splitting 

a node into two parts during the insertion of a 

non-plan.r branch. 

Data structure 	The system of data blocks and pointers which is 

used to represent the graph and layout within the 

computer store and which holds details of the 

component library. 
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Development 	During the construction of the layout, a node in 

the base list is developed by creating a list of 

all the components and conductors which could be 

directly connected to it. 

Discrete component A component which performs a single electrical 

function, such as a resistor or a capacitor. A 

number of these components must be interconnected 

in order to construct a circuit, as opposed to an 

integrated circuit component in which a complete 

circuit is included within one package. 

Double sided board A board which has a conductor pattern on both sides. 

Edge connector 

	

	A set of gold plated conductors along one edge of 

the board, perpendicular to that edge, to which 

the external connections of the layout are brought. 

The edge connector plugs into a multiway socket to 

make contact with external signals and power supplies. 

Edge pin 	 One of the conductors of the edge connector. 

Free region 	Used during the construction of the planar graph. 

It contains all those nodes and branches which 

have not yet been defined as part of the graph. 

Graphical display The visual display of a layout, plot 	on a 

cathode ray tube. 

Interaction 	The close communication between a computer program 

and the user, whilst the program is running. 

Layout 

	

	 The arrangement of component positions and conductor 

paths on a printed wiring board. 
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Link branch 	A branch which connects a subgraph node to its 

corresponding circuit node. It is represented 

physically by a length of conductor connected to 

one pin of a subgraph component. 

Master component 	An item in the component library which describes 

all the common characteristics of a particular 

group of components. 

Node splitting 	The process by which a node is divided into two 

parts, connected by a conductor branch, so that 

a non-planar component branch can be inserted 

into the graph. 

Orthogonal routing The method of routing conductors in which all 

parts of every conductor lie parallel with either 

axis of a rectangular board. 

Part of a node 	A conductor path which is connected to one or 

more components of a given circuit node. The 

node may exist in several parts during the 

construction of a layout. 

Planar graph 	A graph which maybe drawn on a plane in such a 

way that its branches intersect only at their end 

points. Planarity is an intrinsic property of a 

graph and so is independent of any geometrical 

representation of the graph. 

Pointer 	 Used to indicate the interconnections between 

blocks in the data structure. A pointer to a 

block is a variable containing the arrayindex 

of the first element of that block. 



Pseudo branch A branch connected between two pins of a 

subgraph component or between two edge connector 

nodes. 	It is used to represent the physical 

distance between two nodes so as to limit the 

number of conductors passing between the nodes. 

Pseudo planar graph A graph which represents all the components and 

interconnections of a layout. 	It represents a 

planar set of.conductor paths even though there 

are a number of component/conductor branch 

crossings. 

Region An area within aplanar graph bounded by a 

closed path of branches. 

Routing The process of constructing a conductor path 

between two points in the layout. 

Single sided board A board which has a conductor pattern on one 

side only. 	The components are mounted on the 

opposite side of the board. 

Slot An area of the board, bounded on three sides by 

placed compdnents or board edges. 	It is used as 

a working area for constructing a further part 

of the layout. 

Sourcepin The component pin which connects a component to 

the base node from which it was developed. 

Subgraph component A component with more than two connecting wires 

or pins. 	It is represented in the graph by a set 

of subgraph nodes, pseudo branches and link 

branches. 
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Subgraph node 	A node representing one pin of a subgraph 

component. 

Through plated hole A copper-lined hole through a board which 

makes a connection between bonductors on the 

two sides of a double sided board. 

Tie block 	 A two-element block which associates a branch 

segment with its two adjacent regions. 

Topological model The pseudo-planar graph wtiich represents the 

order of connection of all the components and 

conductor paths in a layout. 

Tree 	 An ordered hierarchy of nodes and branches, used 

to record the progress of a search through the 

graph. 

Wire jumper 	An insulated piece of wire connected into a 

single sided board layout. It enables two 

conductor paths to be crossed without inter-

connection. 

Working list 	A list used during the construction of a layout. 

It holds data which is processed to determine 

the contentsof a slot and the physical 

co-ordinates of these contents. 



-210- 

W. Bader, "The topological problem of the printed circuit 

board and its solution", Archiv fur Electrotechnik, 

vol. 49, no. 1, pp.  2-12 5  1964. 

J.W. Brackett, A.C. Kilgour, J.V. Oldfield, "Fortran package 

for generating a PDP-7 display file". CAD project report no. 

CAD-R-14, University of Edinburgh, Nov. 1967. 

M.A. Breuer, "General survey of design automation of digital 

computers", Proc. IEEE, vol. 54, no. 12, pp.  1708-17215 

Dec. 1966. 

P.J .. Brown, "ML/l Users Manual", University Mathematical Lab., 

Cambridge, June 1967. 

R.G. Busacker & T.L. •Saaty, "Finite graphs and networks", 

McGraw Hill Book Co., 1965. 

P.W. Case et al, "Solid logic design automation", IBM Journal 

of Research & Development, vol. 8, no. 2, pp.  127-140, 

April 1964. 

G.V. Dunne, "The design of printed circuit layouts by computer", 

Proc. 3rd. Australian Computer Conference, Canberra, 

pp. 419-423, May 1966. 

G.J. Fisher & 0. Wing, "Computer recognition and extraction 

of planar graphs from the incidence matrix", Trans. IEEE, 

CT-13, no. 2, pp.  154-163, June 1966. 

C.J. Fisk etal, "ACCEL: Automated circuit card etching 

layout", Proc. IEEE, vol. 55, no. 11, pp.  1971-1982, 

Nov. 1967. 



-211- 

W.P. Heising, "History and summary of FORTRAN standardisation 

development for the ASA", Comm. ACM, vol. 7, no. 10, pp.  590-

625, Oct. 1964. 

A.C. Kilgour, M.D. Brown, "SPINDLE ; a system permitting 

interactive display list editing" CAD project report no. 

CAD-R-55,. University of Edinburgh, June 1969. 

A.C. Kilgour, "Program to plot a display file on the 

incremental plotter", CAD project report no. CAD-R-37, 

University of Edinl3urgh, Dec. 1968. 

V.R. Kodres, H.E. Lippmann, "STL board layout", IBM technical 

report no. TR 00.1010, March 1964. 

M. Krejcirik, "Computer aided plant layout", Computer Aided 

Design, pp.  7-19, Autumn 1969. 

M. Krejcirik, "Computer aided building layout", IFIP Congress, 

Edinburgh, pp.  1126-1130, August 1968. 

G. Kuratowski, "Sur le probleme des courves gauches en 

topologie", Furidam Math. vol. 15, pp.  271-283, 1930. 

C.A. Lang, J.C. Gray, "ASP - A ring implemented associative 

structure package", Comm. ACM, vol. 11, no. 8, pp.  550-555, 

August 1968. 

S.E. Lass, "Automated printed circuit routing with a stepping 

aperture", Comm. ACM, vol. 12, no. 5, pp.  262-265, May 1969. 

C.Y. Lee, "An algorithm for path connections and its applic-

ations", IRE Trans. on Electronic Computers, vol. 10, no. 3, 

pp. 346-365, Sept. 1961. 

D.F.A. Leevers, "The use of a graphical display in the automatic 

design of printed circuit boards", International Conference on 

CAD, Southampton, lEE Conference publication no. 51, pp. 11-20, 

April 1969. 



-212- 

S. MacLane, "A conthinatorial condition for planar graphs", 

Fundam. Math. vol. 28, pp. 22-32, 1937. 

J.S. Mamelak, "The placement of computer logic modules", 

Journal ACM, vol. 13, no. 4, pp. 615-629, Oct. 1966. 

D.D. McCracken, "A guide to FORTRAN IV programming", John 

Wiley & Sons, Inc. 1965. 

K. Mikami, K. Tabuchi, "A computer program for optimal routing 

of printed circuit conductors", IFIP Congress, Edinburgh, 

pp. H47-H50, August 1968. 

W.M. Newman, "The ASP-7 ring-structure processor", Computer 

Technology Group Report 67/8, Imperial College, Oct. 1967. 

T.A.J. Nicholson, "A permutation procedure for minimising 

the number of crossings in a network", Proc. lEE, vol. 115, 

no.1, pp. 21-26, Jan. 1968. 

D.T. Ross, "A generalised technique for symbol manipulation 

and numerical calculation", Comm. ACM, vol. 4, pp. 147-150, 

1961. 

D.T. Ross, "The AED free storage package", Comm. ACM, vol. 10, 

no.8, p.  481 	August 1967. 

T. Rowley, "Further topology associated with automatic layout 

of printed wiring", AEI internal report no. NP.g.12, Sept. 1967. 

R.A. 'Rutman, "An algorithm for placement of interconnected 

elements based on minimum wire length", Proc. SJCCçAFIPS, 

vol. 25, pp. 477-491, 1964. 

H. Whitney, "NonLseparable and planar graphs", Trans. Amer. 

Math. Soc., vol. 34, pp. 339-362, 1932. 

N.E. Wiseman et al, "PIXIE - a new approach to graphical man- 

machine communication", International Conference on CAD, 

Southampton, lEE Conference publication no. 51, pp. 463-471; 

April 1969. 


