
Computer Aided Design of Printed Wiring Boards

N.A.Rose

Thesis presented for the Degree of Doctor of Philosophy of the

University of Edinburgh in the Faculty of Science, April 1970.

Table of Contents

1. Introduction page 	1

1.1 Printed Wiring Boards 1

1.2 Objective of Board Layout Design 2

1.3 General Method of Layout 3

1.14 Computer System

2. Survey of Existing Methods of Layout 7

2.1 Methods of Component Placement 7

2.2 Methods of Conductor Routing 11

2.3 Topological Methods of Layout 15

3. Topological Representation of a circuit 20

3.1 Requirements of the Topological Representation 20

3.2 Elements of the Topological Representation 21

3.2.1 	Circuit Node 21

3.2.2 	Branch Component 22

3.2.3 	Subgraph Component 22

3.2.14 	Edge Connector 24

3.3 Circuit Data Input 25

3.3.1 	Component Library 25

3.3.2 	Preparation of Circuit Data 26

3.4 Data Input Subroutine 28

4. - Construction of Planar Graph 33

14.1 Planar Graph Constraints Due to Board Layout 33

4.2 Methods of Constructing a Planar Graph 35

14.3 Principle of Planarity Algorithm 36

4.3.1 	Processing of Planar Graphs 37

4.3.2 	Example of Planar Graph Construction 40

4.3.3 	Processing of Non-Planar Graphs 41

4.3.4 	Insertion of Subgraph Components page 45

4.4 Description of Planarity Subroutine 45

4.4.1 	Search Procedure for Planar Paths 47

4.4.2 	Region Construction 49

4.4.3 	Further Search Procedures 49

5. 	Insertion of Non-Planar Branches 51

5.1 Statement of the Problem 51

5.2 Principles of Branch Insertion 52

5.3 Insertion Path Searching 55

5.3.1 	Component Branch Search 56

5.3.2 	Link Branch Search 57

5.4 Path Construction 58

5.5 Branch Insertion Subroutine 60

6. 	Computer Implementation of Topology Algorithms 62

6.1 Data Storage 62

6.2 Data Structure 63

6.2.1 	Interconnection of Nodes and Branches 64

6.2.2 	Subgraph and Branch Components 66

6.2.3 	Branch Segments and Planar Regions 68

6.3 Computer Language 71

7. 	Placement and Routing of Board Layout 74

7.1 Consideration of Layout Methods 74

7.1.1 	Objectives of Board Layout Method 75

7.1.2 	Force-Field Method of Layout Construction 76

7.2 Principle of Layout Algorithm 77

7.2.1 	Aims of Layout Algorithm 79

7.3 Slot Development and Sorting 80

7.3.1 	Development of Nodes and Conductors 82

7.3.2 	Orientation and Spacing of Components page 85

7.3.3 	Counting of Slot Contents 89

7.3.4 	Sorting of Slot Contents 91

7.4 Placement and Routing 	 0 94

7.4,1 	Component and Conductor Placement 95

7.4.2 	Placement of Crossing Conductors 98

7.4.3 	Processing of Base List Elements 103

7.4.4 	Routing of Conductors 107

7.5 Overall Layout Algorithm 	
0

7.5.1 	Selection of Slots ill

7.5.2 	Description of Flow Diagram 113

8. 	Interaction With Board Layout 118

8.1 Objectives of Interaction 118

8.2 Generation of Display 	 0 119

8.3 Interaction Facilities Provided 123

8.3.1 	DELETE Mode 123

8.3.2 	ORIENTATE Mode 125

8.3.3 	PULL Mode 127

8.3.4 	MODIFY Mode 128

8.3.5 	RESET, UNCHANGE and FINISH Modes 129

8.4 Modifications to Layout Algorithm for Interaction 130

8.4.1 	Reconstruction df Layout 130

8.4.2 	Insertion of Slot Modifications 131

9. 	Computer Implementation of Layout Algorithm 134

9.1 Data Structure 134

9.2 Free Storage System 137

93 Measurement System of Layout 139

9.4 Output of Board Layout 141

10. Results of Layout Procedures 	. page 143

10.1 Description of Circuits 1 143

10.2 Construction of Pseudo-Planar Graph 147

10.2.1 	Construction of Planar Graph 1147

102.2 	Insertion of Non-Planar Branches 149

10.2.3 	Comparison of Circuits 151

10.3 Construction of Layouts 152

10.3.1 	Layout of Circuit A 152

10.3.2 	Layout of Circuit B 15 14

10.3.3 	Layout of Circuit C 155

10.3.4 	Comparison of Computer Requirements 157

10.4 Results of Interaction 157.

10.4.1 	interaction With Circuit A 158

10.4.2 	Interaction With Circuit B 159

10.4.3 	Interaction With Circuit C 161

10.4.4 	Comparison of Interaction Results 161

10.5 Comparison With Manually-Generated Layout 162

11. Discussion of Method and Improvements 171

11.1 Improvements to Topological Algorithm 171

11.2 Improvements to Layout Algorithm 175

11.3 Improvements to Interaction 179

11.14 Improvements to Computer Organisation 182

11.5 Extension to Doulle Sided Boards 184

11.6 Integration With an Industrial Environment 185

11.7 Discussionof General Points 	 . 187

12. Conclusion 	 page 189

Acknowledgements
	

190

Appendix A 	Use of Macro Processor 	 191

Appendix B 	Display Software 	 196

Glossary of Terms 	 • 2014

References
	

210

-1-

Chapter 1 	Introduction

Printed wiring boards are used by nearly all manufacturers

of electronic equipment in the construction of their products. The

design of a printed wiring board is a process which takes a

considerable amount of the designer's time and is prone to errors.

It is therefore desirable to develop a computer program which will

quickly and accurately design printed wiring board layouts.

The design of a layout is a complex problem and many of

the steps are performed intuitively by a human designer. The

writing of a computer program to automatically design a layout is

thus a difficult task, and many different methods have already been

attempted. A method is described here which uses the principles of

graph theory in designing a layout. It also enables the user to

interact with the computer to improve the results.

1.1 Printed Wiring Boards

A printed wiring board is a thin board of insulating

material upon which an electronic circuit is constructed. Each

component of the circuit has a number of terminal wires or pins

which pass through holes drilled in the board. The electrical

connections required to form the circuit are printed onto the

surface of the board as a set of copper paths or conductors. The

board provides insulation between adjacent conductors but does not

allow conductor. paths to intersect, except where a connection is

intended. The arrangement of component positions and conductor

paths on a board is termed a layout.

Printed wiring board layouts may take a number of different

forms. Some circuits consist of components of varying types and

sizes such as resistors, capacitors, transistors, etc. termed

-2-

discrete components. Other circuits consist of integrated circuit

components, all the same size and shape and arranged in a fixed

matrix of positions on the board. Other circuits still, contain a

mixture of discrete components and integrated circuits, such as an

integrated circuit amplifier with a number of feedback components.

The conductors of a printed wiring board may be placed on

one side of the board, termed a single sided board, or on both sides,

termed a double sided board. In some cases a board may be constructed

as a set of laminations containing as many as twelve layers of

conductors. The reason for using more than one layer of conductors

is that on a closely packed board there may be insufficient area for

all the required conductors on one side of the board. Also, it is

often theoretically impossible to route all the conductors of a

cLrcuit without intersections on one side of the board. Electrical

connections between the two sides of a double sided board are made

by copper lined holes through the board, called throughplated holes.

External connections to the printed circuit board may be

made by connecting wires to terminal pins onthe board. More

generally, however, all the external connections of the circuit are

brought to a set of gold-plated conductors on one edge of the board,

termed the edge connector pins. This edge of the board then plugs

into a multi-way socket to make connections to external signals and

power supplies

1.2 Objective of Board Layout Design

The objective of this project is the development of a computer

program to lay out printed wiring boards. The type of boards to be

considered are single sided boards with an edge connector along one

side of the board. The components placed on the board are to be

-3-

discrete components of any number of pins, including integrated

circuits. There is considerable interest in laying out this type of

board as the majority of electronic circuits use discrete components

and many circuits may readily be constructed on single •sided

boards. Single sided boards have an advantage over double sided

in that they cost less to produce. The program is not intended

to lay out boards containing only integrated circuits in a fixed

matrix of positions. This problem is preferably solved by other

methods, some of iihich are described in chapter 2.

Ideally the program should be completely automatic in its

oper'ation so as to produce results in a minimum of time. It has,

however, been found virtually impossible to specify an algorithm

which will satisfy all of the constraints and conditions required

by a general purpose layout program. 'The program therefore

includes facilities for human-interaction with the layout process

by means of a graphical display and light pen.. This enables the

experience and skill of the user to be included in the design

process whilst relieving him of the task of having to accurately

draw the detail of the layout.

1.3 General Method of Layout

Most computer methods of board layout already in use

divide the problem into two independent parts. These are the

placement of components on the board, followed by the routing of

conductors. Some of these methods are reviewed in chapter 2.

The disadvantage of this approach is that there is no form of

feedback from the conductor routing to the component placement

stages. There is, for example, no re-arrangement of adjacent

components to allow an extra conductor to pass - between,such as a

L

designer would try in a practical case. This often means that the

routing algorithm spends considerable time searching for conductor

paths which are topologically impossible to complete.

The method of layout described here attempts to resolve

this difficulty by constructing a topological representation of the

circuit first, before the layout is constructed. This means that

during component placement, due space may be allowed for the

conductor paths on the board.

As the conductors are to be routed on a single side of the

board, ailconductor crossings must be eliminated from the layout.

A tpological model of the layout is constructed by the use of

graph theory so as to remove all crossovers. Its method of

constructiort is described in chapters 3 to 6. The circuit topology

is then known so the physical layout may be constructed by a series

of logical operations. The layout algorithmt constructs small

sections of the layout in turn, working from one edge of the board

across to the opposie edged Any special constraints required are

incorporated into the layout by means of graphical interaction.

The construction of the layout and the use of interaction are

described in. chapters 7 to 9. The results and possible improvements-

to the method are discussed in chapters 10 and 11 respectively.

1.4 Computer System

The computer system on which the layout program has been

developed is described here as it has, in several ways, influenced

the manner in which the program has been written. A diagram of the

system is shown inF.ig.l.l. The computer used for the major part.

of the computation is-an ICL 4130. It - has the usual peripherals of

paper tape readers and punches, control teletype, line printer and

-5-

2 Paper tape readers I 	I 2 Paper tape punches I 	I Une printer

Control

teletype 	 4130 Computer 	
I

64k store

24 bIt word

Data link

50k char/sec

3 Magnetic

tape units

Control 	 PDP-7 Computer

teletype

8k store HO
18 bit word

Paper tape

reader 	
, 	

I 	

340 Display with

light pen

Paper tape 	
C 	30"Calcomp plotter

punch 	

\
2 DECtape units

Fig.1.1 	Computer Installation

ME

three magnetic tape units. It is connected by a high speed data

link to the PDP-7 computer. The link allows communication in both

directions between the two computers at rates of up to 50,000

characters/second.

- The PDP-7 computer deals with the maintenance of the display

and the servicing of light pen interrupts during interaction. The

Type 340 display with light .pen operates asynchronously with the

computer but shares its core store for storage of display file.

The useful area of the display is 9 12 inches square with a resolution

of 1024 points a-long each axis. The other peripherals of the

computer include a paper tape reader and punch, a control teletype,

two DECtape magnetic tape units and a 30 inch wide drum type

Calcomp plotter.

The ICL 4130 computer is programmed - in FORTRAN IV using the

magnetic tape based FORTRAN system. Due to the limitations of core

space and the maximum allowable number of subroutines, the overall

layout program-is split into two parts and run as two consecutive

programs. These are the topological part and the-board layout

part. No special programming is required for the PDP-7 computer

as previously developed display and interaction software is used

(see Appendix B).

- 	A note is appropriate here on the use of the words

"topological" and "graphical". "Topological" is used to describe

the abstract structure, or graph, of the circuit to be laid out

before it has been given physical dimensions. "Graphical!" is

used to describe the visual display of the board layout whilst it

is being constructed. These two words will be used in the sense

just given to avoid any confusion of terms.

-7-

Chapter 2 	Survey of Existing Methods of Layout

This chapter presents a survey of some of the known methods

of laying out printed wiring boards by computer. Most methods tend

to divide the problem into two separate parts; placement of

components followed by routing of conductors. Some topological

methods of constructing layouts have been proposed but none of them

appear to have been put into practice.

2.1 Methods of Component Placement

Most of the papers published on board layout tend to

concentrate on circuits in which all the components are integrated

circuits of the same size and shape. This means that the board may

be divided into a fixed matrix of positions such that each component

occupies one position. The component placement problem then

resolves itself into one of deciding into which position toplace

each component. Thecriterion of a good placement is usually taken

to be onewhich gives a minimum total conductor length. Th desired

result is to reduce conductor congestion on the board and to reduce

the effects of capacitance between adjacent conductors. Conductor

lengths are assumed to be the point - to - point distances between

connected components as the actual conductor paths are not known

at this stage.

The method described by Rutman (30) uses the idea of

"unconnected sets" of components. The components are given an

initial placement on the board, either randomly or manually. They

are sorted into a number of unconnecte,d sets such that none of the

components within a set are interconnected. An unconnected set of

components is then removed from the board and each component in the

set is systematically placed in every vacant space on. the board in

turn. The total length of interconnectionsbetween the component

IM

and those. already on the board is calculated at each point. As the

component belongs,to an unconnected set, its length of interconnections

is independent of the remaining components in the set. A matrix of

all the component positions and conductor lengths for the set is

constructed. From the matrix, the optimum placement solution for

the set is calculated such that the total wire length is a minimum.

The procedure is repeated for all of the unconnected sets. The

layout solution is further improved by interchanging the positions

of connected components in an attempt to reduce the lengths of the

longest wires. Themethod should result 'in a compact layout but it

is only feasible for circuits in whichall the components are of

the same size. Also, the method takes no account of the topology

of conductor connections.

The method described by Mamelak (22) is used for the

placement of computer logic moduleE. From the logic diagram of

the circuit to be laid out, a connection matrix of components, or

logic modules, is constructed. The components may be divided

into a set of ttchains ?t such that, each chain' consists of an

interconnected group of components, two of which are connected at

least to the remaining components of the group. A chain is,

illustrated in Fig. 2.1(a), where'components A and B are ihe two

"verticest" of the chain and'the remaining components C, D and E

arethe "basepoints" of the chain. One property of a chain is

that it maybe rearranged as shown in Fig. 2.1(b) to reduce the

number of conductor intersections.

A permutation procedure is used to divide the components

into a set of chains such that each chain may be placed on one row

of positions of the board. The row chosen for each chain depends

-.-

A 	 B

'A 	I
IC 	IOD 	I E

C 	 D 	 E

(a) 	Basic chain 	 (b) Placement in row of board

Fig.2.1 Chain of Components

on the total length of interconnections with other chains. Thus the

y co-ordinate of each component is determined and the connections

between the components of a chain may be made in the x direction on

one layer of the board with a minimum number of intersections. A

similar procedure is used to assign an x co-ordinate to each

component and to reduce the number of intersections between conductors

in the y direction on the second layer of the board. Although this

method is only suitable for integrated circuit layouts, it does

take some account of the wiring topology by attempting to reduce

the number of intersections.

The method described by Case (6) is used to assign the

positions of small circuit cards on a large "mother board". The

method allows an engineer to specify the positions of selected

cards. Of the remaining cards, one is selected and tried in every

vacant position on the board. The total length of conductors

between the card and the already assigned cards is calculated at

each position. The card is placed in the position that gives

minimum conductor length, and the, procedure is then repeated with

-10-

each of the remaining cards. It does not give an optimum placement

of components so a further procedure is used to improve the placement.

The second procedure attempts to interchange the position of each

card with every other card on the board. If an interchange results

in a reduction of total wire length, the card positions are re-

assigned. Again) this method produces a compact layout with lpw

total wire length but does not consider the wiring topology.

The method described by Dunne (7) constructs a layout in

stages rather than attempting component interchanges as described in

the previous methods. The algorithm selects a location on the board

which is nearest to the components which havealready been placed.

(Initially only the edge connector is placed.) From the list of

components to be placed, the one which has the greatest number of

connections to the already-placed layout is selected. The algorithm

then attempts to route the conductors to the component, using a

double sided board. If the routing is not successful, further

components are tried in the given board location. If a solution

still cannot be found, a new board location is chosen. The

procedure is repeated for each component in turn. The'method has

only been used for integrated circuit components but could possibly

be modified for discrete components. It gives the first solution

encountered and does not attempt to find the optimum solution. The

method does, however, check that all conductor paths can be routed to

a component before placing it.

The one method encountered which deals specifically with

discrete components is the ACCEL program (9). Component positions are

assigned by a t 1force placement't method. Each conductor of a circuit

is assumed to be an "elastic wire" such that it exerts a force of

-11-

attraction, proportional to its length, on the component at either

end. The effect of this force is to group together components which

are closely connected. In addition, forces of repulsion exist

between adjacent components to prevent component overlap. The

conductors also exert a ttorqueu upon components in order to

select the best orientation for each component.

The components are given an initial arbitrary placement.

Theprogram then operates in an iterative manner, summing the

forces on each component in turn and moving it towards an equilibrium

position. The forces of attraction are initially high and the forces

off repulsion low so as to rapidly improve the layout. After a

number of iterations, the components are constrained to a vertical

or horizontal position, whichever is nearest to the current component

orientation. The forces of repulsion are increased to prevent

component overlap and the iterations are continued until component

movements are negligible. The method thus gives a good placement of

different-sized components. Although closely connected components

are grouped together to reduce the total conductor length, no account

is taken of conductor topology. The method of conductor routing is

described in the next section. A similar method is used by Leevers

(20) for the placement of integrated circuits. In the final stages

of this method, components are forced onto the nearest allowable

board positions.

2.2 Methods of Conductor Routing

Nearly all methods of conductor routing start with the

assumption that the components have already been placed. The

problem is thus one of connecting together pairs of terminals.

-12-

The connecting paths must be routed so that no paths intersect and

it is desirable that the total conductor length is a minimum. Most

methods assume that a double sided printedwiring board is used.

The classic method for constructing conductor paths is Lee's

algorithm (19). The board is divided into a grid of squares. Those

which contain obstacles such as component terminals or conductors

are marked as being occupied. The two squares to be connected

together, the start and target squares, are specially marked. All

unoccupied squares around the start square are marked with a 1 1'.

All the unoccupied around these are marked with a 1 2' and so on.

A wave of marked squares thus spreads out from the start square

until the target square is reached. It is then a simple matter to

trace a path back to the start square. The algorithm is generally

modified because the search wave spreads in all dirçctions from

the start square, involving unnecessary computing time. Secondly,

the algorithm will find all the paths of equal length between two

points but has no way of distinguishing between the different paths.

TheACCEL method of conductor routing (9) uses a novel

topographical model of the layout for routing. The board is divided

into a grid of squares, eachof which may be assigned an "altitude".

Initially alithe squares are set to zero altitude. Any obstacles

such as component pins or holes in the board are assigned an

altitude so as to form a "peak". The edges of the board are

represented by a ridge around the layout. To find a path between

two pins, the target peak is depressed to a negative a1titude

A modified version of Lee's algorithm is then used to find the

most downhill path from the startto the target pin.

-13-

The program has several phases of operation. Firstly, all

paths are routed simultaneously for a number of iterations. Paths

successfully completed are inserted as ridges in the topographical

model so as to repel conductors routed in later phases and avoid

congestion on the board. Secondly,the procedure is repeated with

all the remaining conductors routed simultaneously. Thirdly, the

procedure is repeated with the renaining conductors, routing one

conductor at a time. The method can be used for either single or

double sided boards. In the case of a double sided board, the whole

procedure is performed on one side of the board, then repeated for

the remaining conductors on the second side of the board.

Other modifications may be made to Lee's algorithm in drder

to improve its efficiency, as illustrated by Mikami and Tabuchi

(24). In this method a double sided board is used with all horizontal

conductors routed on one side and all vertical conductors routed on

the other side. This avoids the problem of crossing conductors but

restricts the conductor paths which may beformed. The boardis

again divided into a grid but instead of searching square-by-square,

the search is perfornie line-by-line. From the start square four

lines, limited in length by existing obstacles, give the possible

directions of the search. Each of these lines may pass through the

board at a number of 'through-plated holes. Each of the through-

plated holes may therefore be developed into two more lines on the

opposite side of the board. The procedure is continued until the

target square is reached. The line-by-line' method of searching is

considerably faster and uses less storage space than Lee's algorithm.

Two methods of conductor routing on double sided boards are

described by Kodres and Lippmann (13). The first approach sorts sets

_1L -

of interconnected pins, or nets, into a list of decreasing net size.

The size of a net is defined by the perimeter of the rectangle

surrounding all pins in the net. To route a given net, the pins

furthest apart are connected by a path which uses the least number

of through holes. The remaining pins of the net are then connected

onto the path already routed. Paths are only chosen which lie

within the rectangle of the net and which use less than a specified

number of through holes. These constraints help to reduce board

congestion. When all of the nets have been processed, any remaining

conductors are routed by using Lee's algorithm to search exhaustively

for a path.

The second approach divides the board into a grid of squares

and assigns a congestion cost to each square; A square is given a

high cost if it can be used by many nets, so that conductor paths

will tend to avoid congested parts of the board. The nets are

connected one at a time in order of increasing conductor length.

For each'connection the path is chosen which has the lowest

congestion cost and which uses the least number of through holes.

The two methods described avoid the problem of conductor crossings

by routing conductors horizontally on one side of the board and

vertically on the other side.

A method of conductor routing for double sided boards, using

graphical interaction, is described by Leevers (20). A graphical

display and light pen are used to display and modify one side of

the board at a time. Each conductor is initially displayed 	a

straight line joining two end points. Near-vertical conductors are

assigned to one side of the board and near-horizontal t the ct;'

-15--

to the other although the assignment may later be altered if desired.

Low level routing facilities allow conductors to be routed around

obstacles by the insertion of intermediate corners, and diagonal

conductors to be replaced automatically by conductors of horizontal

and vertical sections. Higher lever facilities attempt to automatically

route each conductor in turn by application of the low level facilities.

The program initially attempts automatic routing and usually succeeds

with many of the conductors. In cases where a path cannot be found,

the operator intervenes and uses the low level facilities, by means of

the light pen, to re-order part'of the layout. The skill of the

operator is thus used to assist the program in difficult parts of the

layout. In later stages of the layout, the method relies heavily on -

the operator to find conductor paths.

There are a number of advantages and disadvantages of

splitting the layout problem into the separ- 	parts of placement

and routing. These are discussed further in Chapter 7.1.

2.3 Topological Methods of Layout

Theprinciple of the topological methods of layout is to

minimise either the number of conductor crossings or the number of

conductors removed from the layout to eliminate crossings. Several

algorithms have been programmed but none appear to have been taken to

the stage of actually producing a layout.

In the method described by Bader (1), the branches of a

graph are re-arranged, and some removed, so as to eliminate all

crossings. An example from the paper is shown in Fig. 2.2. The

graph is searched for a closed circuit which includes as many of

the nodes as possible; in this caseall the nodes, as shown in

86

(b) Graph redrawn

3

(a) Graph with crossings

4

(c) Auxiliary graph

+

+ inside

- outside

-16-

IAi

—fa

(d) Assignment of branches

(e) Graph with crossings removed

Fig.2.2 Construction of a Planar Graph

-17-

Fig. 2.2(a). The graph is redrawn with the circuit on the outside

edge and the remaining branches within as shown in Fig. 2.2(b). An

auxiliary graph is then drawn, Fig. 2.2(c), whose nodes correspond to

the branches on the inside of Fig. 2.2(b). Pairs of branches which

conflict in Fig. 2.2(b) are represented by branches joining the

corresponding nodes in the auxiliary graph. The branches of Fig. 2.2(b)

may be assigned to either the inside or the outside of the closed

circuit in order to remove crossings. The assignment is made by

starting with an arbitrary nodein Fig. 2.2(c), node 1, and assigning

it to the inside. Adjacent nodes are then assigned to the outside

and so on, as shown in Fig. 2.2(d). If the graph is non-planar,

branches are removed at this stage. The graph may then be redrawn

without crossings as shown inFig. 2.2(e). The'method has been

further developed and programmed for computer by Fisher and Wing

(8). A matrix method is used to process the graph So that non-

planar. branches are identified and removed from the graph.

Thealgorithm described by Nicholson (26) minimises the

number of crossings in a graph, rather than deleting non-planar

branches. In this method, the fhodes of the graph represent

components and the branches represent interconnections. The nodes

are arranged in a straight line and the branches are drawn as

semicircies above or below the node line as shown in Fig. 2.3.

The graph may then be described by a permutation of the order of

nodes andthe direction of the branch semicircles. An initial

permutation is constructed by selecting an initial node then adding

the node which has the most connections to the existingpart of the

permutation. This is repeated for all nodes, inserting each one

into a position-which gives least crossings. An iterative procedure

-18-

Fig.2.3 Permutation Representation of a Graph

then changes the order of nodes in the permutation in an attempt

to further reduce the number of crossings.

A method of constructing a planar graph of components and

interconnections is described by Rowley (29). The circuit is

defined by a list of components and a list of interconnections.

A set of branches is selected so that a "tree" of all the components

may be constructed. Each new component added to the tree is

connected by one branch only as shown in Fig. 2.4. A "tree list"

of all the component pins in order around the tree is made as

shown by the dotted path in Fig. 2.4. Any other interconnection

in the circuit will divide the tree list into two parts at the

points of connection. Two branches are in conflict if the two

parts of the tree list formed by one branch each contain a node

of the other branch. A matrix of all the branch conflicts is

then constructed. From the matrix, a set of conductors is selected

such that the number of non-planar branches removed from the graph

is a minimum. The resultant graph is not necessarily the optimum

planar graph as it is dependent on the branches selected for the

-19-

Fig.2.4 Formation of Tree List

initial tree.

The advantages and disadvantages of the topological methods

described above are discussed further in Chapter 4.2.

-20-

Chapter 3 	 Topological Representation of a Circuit

Any computer program that generates a printed wiring board

layout must have a method of representing the layout within the

computer. This chapter describes how the topological representation

of a circuit is constructed from the comput .er input data. The

representation is later used to construct a topological model of

the layout. •The ways in which the circuit representation is

actually programmed are described in Chapter 6.

3.1 Requirements of the Topological Representation

The groups of data required for the construction of a layout

are the circuit diagram, the physical dimensions of the components

and the dimensions of the board. The circuit diagram basically

describes the types of components used and the way in which they

are interconnected. The information on the circuit diagram should

therefore be coded into a suitable format for input to the computer.

The first part of the layout method described here deals with

the construction of a topological model of the layout. In developing

this model, the circuit is investigated for planarity by examinipg

the way in which components are connected together. The topological

representation should therefore indicate the order in which components

are connected, withut being concerned with the physical co-ordinates

of components and conductors.

There'are two widely-used methods of representing, within a

computer, the interconnections of a graph. The first method is a

matrix representation of the graph. Usually, the rows and columns of

the matri represent the nodes and branches respectively. Each element

of the matrix is then marked to indicate the incidence, or non-incidence,

-21-

of a given node and branch. The second method of representing a

graph uses a ring data structure in which data blocks are used to

represent nodes and branches. Pointers between the data blocks

indicate the interconnections between nodes and branches.

The method of representation chosen for the layout algorithm is

the ring data structUre. Although an electronic circuit often has a

large number of nodes and branches, there are generally few branches

connected to each node. A matrix representation would therefore

require a large matrix in-which most of the elements were empty. A

data structure provides direct pointers from, say, a -branch to its.

two nodes. To obtain the same information from .a matrix, the whole

branch column of the matrix would haveto be searched. A further

advantage of. the data structure is that additional data such as

component name, type of branch, or display file may readily be

associated with each data block.

3.2 Elements of the Topological Representation

The graph of an electronic circuit is constructed from a

number of different types of nodes and branches. Circuit nodes

have a corresponding node in the graph but components have a

different representation -depending on whether they have two, or

more, pins. The circuit- elements-and their corresponding graph

representatiorE are described below.

3.2.1 	Circuit Node

A circuit node is a point of common electrical connection of two

or more components; The corresponding node in the graph has no

physical representation. It merely fulfils the function of listing

all - the components connected to a common-point, or to a given

-22-

conductor on the board.

3.2.2 Branch Component

A component with two connecting wires or pins such as a

resistor or a capacitor is termed a.branch component. It is

represented in the graph by a component branchand is connected

between two nodes. Each of the nodes is the abstract representation

of a connection. A component branch is therefore physically

equivalent to the component together with part of the conductor

paths at each end of the component.

3.2.3 	Sugraph Component

In representing acomponent with more than two pins, such as

a transistor or an integrated circuit; several problems arise. The

first problem is due to the physical dimensions of the component and

the fact that each component in is connected to a circuit node.

In constructing a planar graph of a circuit it may happen that a

number of branches, or conductors', have to pass between two particular

nodes. If the nodes are connected to two pins of a component, it is

quite probable that there - would be insufficient space-for the

conductors to physically pass between the pins. To prevent such'an

occurrence, each pin of the component is connected to its two

adjacent'pins by a pseudo branch. Also, each pin of the component'is'

represented by a sub,graphnodeso that every pseudo branch is connected

between two subgraph'nodes. The'pseudo branches initially prevent'any

conductors from passing between the component pins and they keep all

the 'pins of the component together in a closed planar region. Because

of these functions, pseudo branches may never be removed from the graph.

11

-23-

Assuming that multi-pin components are represented by a ring

of pseudo branches, a planar graph of the circuit could be constructed,

containing these components as subgraphs. A second problem which is

not resolved by some other methods is that all of the subgraph

components must have the same orientation in the planar graph.

The physical analogy is that all the components are mounted on the

same side of the board. Defining a component as a ring of pseudo

branches readily enables the orientation of a component to be

checked during the planarity algorithm.

The third problem in representing a multi-pin component lies

in the deletion of non-planar branches between closely connected

components. An example of two closely connected integrated circuits

is shown in Fig. 3.1. A connection has to be removed to make the

,,Non-planar connection

Fig. 3.1 	Closely connected components

graph planar. No pseudo branches can be removed however, because

the planarity of the component pins would be lost. Each subgraph

node has a link branch coniecting it to the corresponding circuit

node. The physical representation of a link branch is a length of

conductor connecting the component pin to the rest of the circuit

node. In the event of a non-planarity, one or more of the component

link branches may be removed. The circuit diagram of a transistor

udo branch

ink branch

Representation of a subgraph component Fig. 3.2

-24-

and its corresponding topological representation are shown in

Fig. 3.2 as an example.

The complete set of subgraph nodes, pseudo branches and link

branches for a component is termed a subgraph component, or subgraph.

The nodes and branches of asubgraph are represented by a set of

node and branch data blocks. They could be represented more

compactly by a single data block. The graph structure would then

no longer be compatible with circuit nodes and branch components

however, and programming would thus be more difficult.

3.2.4 	Edge connector

The edge connector of a printed wiring board consists of a

row of pins or terminals along one edge of the board. As no

conductors can pass between the edge pins, their corresponding

nodes in the graph must be adjacent to each other. This is ensured

by connecting the nodes into a path by a series of pseudo branches,

the order of nodes in the path being the same as the order of edge

pins on the board. A further pseudo branch is connected between

the first and last nodes of the path, thus forming it into a closed

loop. This pseudo branch therefore represents the outside edge of

-25-

of the board, apart from the edge connector. The closed loop of

pseudo branches serves as a boundary within which the topological model

must lie.

3.3 	Circuit Data Input

The first step in generating alayout is to prepare the circuit

data in a suitable format for input to the computer. Two groups of

data are required for the construction of the topological model of a

layout. The first is a library of component data which may be common

to all circuits laid out. The second is a list of components and

their interconnections for the particular circuit to be laid out.

3.3.1 Component Library

Whenconstructing a layout, certain' data is required for each

component, such as its physical dimensions and its number of connecting

pins. Most circuits contain several instances of eachdifferent type.

of component. The most economic•way to describe the components

therefore is to give each one a type'number then associate one full

description of a component with each different type number. In other

words, a library of component descriptions is generated. In a

manufacturing organisation this information would probably be stored

as part of a data bank which would hold a list of all the types of

components ever used together with their electrical and physical

characteristics.' For the purposes of the method described here, an

elementary component library is associated with the circuit data.

The data . for each type of component is stored in a master

component block. The master component blocks are held together in a

list and each one is given a unique name. For example, the blocks

representing watt resistors, watt resistors and transistors may

-26-

be called RES1, RES2 and TRAN respectively. The size of a component

is defined by a boundary rectangle. It allows space for the component

itself, space for connections and fixings and clearances for component

spacing. This simplifies board layout as component rectangles may

then be placed directhy adjacent to each other without further

computation of clearances. A master component block stores data on

the dimensions of the component rectangle, the number of component

pins and the co-ordinates of each pin relative to the component

rectangle. Several dummy master component blocks are used to

indicate certain functions during data input. These are described in

the next section0

3.3.2 	Preparation of Circuit Data

To prepare data from a circuit diagram, each electrical node

is first labelled with a unique positive integer. A simple example

is shown in Fig. 3.3(a). The connections of each component may

therefore be described by listing the nodes to which it is connected.

The correct orientation of component connections is ensured by

:adoptahgT a convention of node numbering. Two pin
I

components with a

marked pin of polarity such as diodes or electrolytic capacitors are

listed with the marked pin as the first node number. Multi-pin 	i

components have their pins ordered in a clockwise direction,

looking from the conductor side of the board. The first pin in the

nodelist corresponds to the first pin co-ordinate in the master

component block.

To code the data from a circuit d±âgram, each component is

described by its name and a list of its node numbers. An example of

data coding is illustrated in Fig. 3.3(b); the component library is

not shown. Components of the same type are listed consecutively in

RES

RI

R2

R3

R4

R5

R

CAP

Cl

C2

C
TRAN

TRI

TR
• EDGE

2
	

5

5

.3
	

5

6

3
	

7

4 6

3

-I

7

-I

6

I

5 	7

I 	I

(b) Data input format

-27-

19

(a) Circuit diagram

2

3

4

STOP

Fig. 3.3
	

Preparation of circuit data

a group. Each group is preceded by the name of its master component

block and is terminated by a dummy component with negative node

numbers. This method is used because of the difficulties of reading

in data under FORTRAN FORMAT statements. Two additional dummy master

component block names are used. The name EDGE indicates that the

following node numbers are the nodes of the edge connector, in the

correct order. Te list of edge nodes is terminated by a negative

node number. The name STOP indicates that all of the circuit data

has been specified. An example of a topological representation of

the circuit shown in Fig. 3.3 is illustrated in Fig. 3.4.

3.4 Data Input Subroutine

A FORTRAN subroutine called DATAIN has been developed to read

in the component library and circuit data and to construct the

corresponding data structure. Theflow diagram of the subroutine is

shown in - Fig. 3,5 and the type of data structure construc-ted is

described in detail in Chapter 6.

The subroutine starts by reading in the component lihtary data.

As each component type is read in, a new block is created and added

to the list of master component blocks. The master component name,

the number of pins and the component dimensions are stored in the

block. This is followed by a list of the pin co-ordinates. A

master component with one pin is-used to indicate the edge connector.

One with no pins is used to signify the end of the library data and

its name, STOP, indicates the end of the circuit data.

Following the component library, the name of the next component

group is read in. The component library is searched to find - the

master component block with the same name. The-block then gives the

-29-

Fig. 3.4 	Topological representation of circuit

-30-

Start

Read in component library data s create

list of master component blocks

Read name of next component group

Does the master component7—tof onstruct the group

have 2 pIns ? 	branch component

IN

	

Does the master component \Y 	JConstruct the group of

have more than 2 pins ? 	 subgraph components

IN

	

Does the master block Indicate Y 	Construct the edge

the edge connector ? 	J 	pseudo branches

IN

Does the master block Indicate

the end of data input ?

IN

There is no master block I 	 (Sto
with the same name I

Check that each node hasi ______

at least two branches I

Fig. 3.5 	Flow diagram of data input subroutine

-31-

number of pins of each component in the group. If no corresponding

master component block can be found, an error message is printed out

and the program stops.

For groups of two pin components, each component name and its

two node numbers are read in turn. A list of nodes is kept in the

data structure and this list is searched to find the two nodes of

each component. If either of the nodes does not yet exist in the list,

a new hode:block'&s:ct'eated andadded to the list. Thedata blocks

for a branch component are then created and linked to the existing

data structure in the manner described in Chapter 6. The procedure

is repeated with each component until the dummy component at the end

of the group is encountered. The subroutine then reads in the name

of the next component group.

For groups of components with more than two pins, the subroutine

reads in the name and appropriatenumber of nodes for each component.

Any new nodes are added to the node list. The required data blocks

of subgraph nodes, pseudo branches and link branches are then created

for the component and linked into the existing data structure The

subroutine is designed to dealwithsubgraph components of any number

of pins. The appropriate number of pins is merely obtained from the

component library. The procedure is repeated for each component in

the group until the dummy end component is encountered.

The component group name called EDGE indicates that the next

group of numbers is a list of edge connector nodes. The node numbers

are read into an array until the dummy end node is reached. Each node

is then connected to the next by a pseudo branch in the data structte.

The last node is connected to the first by a further pseudo branch.

The subroutine then reads in thenext component group name.

-32-

The component group name called STOP indicates that the circuit

data input is complete. An elementary check on the data is then

performed. Each node in the circuit node list is checked to ensure

that it has at least two connected branches. Any node which has only

one connected branch causes an error messageto be printed. This

check detects some coding and typing errors. Thedata structure now

contains all the data related to the interconnection of circuit

components.

-33-

Chapter 4 	Construction of Planar Graph

The type of board layout considered consists of a set of

components placed on one side of the board, a set'of conductor paths

on the second side and a set of connection pins along one edge of the

board. The main objective in' producing a board layout is to arrange

the components and their interconnecting conductors so that no

conductor paths intersect. It has already been shown that a graph

may be developed to represent the interconnections of a circuit.

This chapter describes an algorithm by which the branches of the

graph are ordered;, and some removed, so as to produce a planar

graph withno branch intersections. Chapter 5 then describes a

method by which the non-planar branches are inserted back into the

graph.

I

.l. Planar Graph'Constraints'Due to Board Layout

A planar graph is defined as one which maybe drawn ona plane

in such a way that its branches intersect only.at their end points.

Theplane'which is of interest in the board layout problem is the

conductor side of a printed wiring board. It therefore follows that

the graph representing a circuit must be planar to avoid the

intersection of conductors in the physical layout.

When using the graph of a circuit as the topological model of

its board layout, a number of problems arise.' The first major

problem is that the graph of a circuit is seldomplanar. A non-

planar graph can only be made planar by removing a number of

branches although there are uua1ly many alternatives in deciding

which branches to remove. A set of branches, preferably a minimum

number of branches, hastherefore to be identified and removed from

-34-

the graph in order to make it planar. The second major problem is

that a graph is a topological entity and that planarity is an

internal property of the graph. This means that a graph may be given

any number of geometrical representations by drawing it on a plane.

Having ensured that a graph is planar therefore, the problem still

remains in constructing a geometrical representation which has no

branch intersections.

The requirements of representing a board layout impose further

constraints on the processing of the original graph and on the

construction of a planar graph. These constraints are discussed

below.

Only component branches and link branches maybe removed from

the graph in order to make it planar. Pseudo branches must

remain in the graph to hold the pins of subgraph components

in their correct order and spacing.

All the subgraph components must be connected into the planar

graph in the same orientation. This corresponds to all the

components being placed on the same side of the printed

wiring board.

The nodes and pseudo branches of the edge connector represent

the outside edge of the board. They should therefore lie on

the outside edge of the planar graph.

The connection pins on each component are, connected together

..:inthè graph by either one component branch or several pseudo

branches. This prevents conductors from passing between

adjacent component pins in a planar graph representation of

the layout. In the physical'layout however, it is possible

-35-

for a limited number of conductors to pass betweenadjacent

pins, depending on the component and conductor dimensions.

This limitation on conductor paths in the planar graph

eliminates the problem of checking clearances between adjacent

pins although it usually causes a greater number of non-planar

branches to be removed. The constraint is later relaxed and

the non-planar branches re-inserted into the graph by the

method described in the next chapter.

4.2 Methods of Constructing a Planar Graph

Classical graph theory concentrates on finding the conditions

necessary for a graph to be planar rather than devising methods for

constructing such a graph. The elegant theorem due to Kuratowski

(16) states that a graph is planar if, and only if, it contains

neither of the two graphs shown in Fig. 4.1 as subgraphs. The

Fig. 4.1 	Kuratowski subgraphs

Kuratowski subgraphs may be well hidden within a graph so it is not

practicable to search for them in a graph of many nodes and branches.

Whitney (31) proves that a necessary and sufficient condition for a

graph to be .planar is that it has a dual graph. Again, this offers

no practical solution to the construction' of a planar graph.

-36-

A planar graph drawn on a plane without branch intersections

divides the plane into a number of non-overlapping regions. Each

region is bounded by a circuit, or closed path of branches.

MacLane's theorem (21) stated that a graph is planar if, and only

if, the graph contains a complete setof circuits such that each

branch appears in no more than two of the circuits. This theorem is

used in the planarity algorithm described in the next section.

Several other methods of constructing the graph of an electronic

circuit havebeen described in Chapter 2.3. These methods suffer

several disadvantages, however, in the practical case of producing a

board layout. The algorithm for constructing a planar graph

described by Bader works satisfactorily for branch components. It

is, however, difficult to implement with subgraph components due to

the need to preserve correct component orientations., In addition,

it is not possible to arrange all the nodes of the edge connector

on the outside edge of the graph.

Themethod due to Nicholson uses a permutation procedure to

minimise the number of crossings in a graph'. Each component,

however, is represented'by a node in the graph so that with multi-

pin components it is not possible to select the correct order of

connections to each component. Rowley's algorithm is particularly

suited to circuits containing multi-pin components although part

of the procedure involves setting up a matrix for all conflicting

branches. This can lead. to excessive computer storage and time

requirements for alargecircuit.

4 • 3 Principle of Planarity Algorithm

The objective of the planaiity algorithm is to construct a

planar subset of the graph representing an electronic circuit.

-37-

The planar graph should contain no branch intersections and should be

subjct to the constraints described in section 4.1. Non-planar

branches are removed from the graph as they are encountered and no

attempt is made to minimise the number of non-planar branches

removed. This approach simplifies the planarity algorithm and is

justified because non-planar branches are re-inserted into the

planar graph at a later stage.

An important assumption upon which the planarity algorithm

depends is that every node of the graph is of order two or more.

This means that the planar graphrnay be described by a set of closed

paths of branches, each path being the boundary of a planar region.

The following circuit and topological conditions show that the

assumption is valid for the graph representing a circuit.

Every circuit node, except the edge connector pins, connects

at least two components together.

Each edge connector node is connected by two pseudo branches

to its adjacent edge nodes.

Similarly, un-used pins on multi-pin components are connected

by pseudo branches to their adjacent subgraph nodes.

Separate circuits or components on the board have the edge

connector pseudo branches in common with the remainder of the

circuit.

4.3.1 Processing of Planar Graphs

Given a planar graph, G. the planarity algorithm is required to

re-arrange G into a second planar graph, H. The nodes and branches

of graph H are to be ordered so that a geometrical representation

of the graph may be drawn without branch intersections. Graphs G

and H have a one-to--one correspondence between their nodes and

branches. The difference is that additional information in graph

H enables the required geometrical representation to be drawn.

Graph H is constructed as a series of subsets of its nodes and

branches. An initial set of nodes and branches is chosen so that a

planar region is formed, with no branch crossings. Subsequent

subsets of the graph are constructed by adding further planar

regions to the previous subset such that no branch crossings are

introduced.

A path that is known to form a planar region with no branch

crossings is the set of pseudo branches representing the edge

connector and the outside edge of the board This path is termed

P1 and is used to form the initial subset of graph H, i.e.,

H1 = P1

When-the elements of this subset, or any subsequentsubset, are

subtracted from graph G, the nodes and branches remaining in G

are termed free nodes and free branches respectively. The outside

edge of path P1 forms the boundary of the first planar region of

graph-H. The - region on the inside edge of P 1 is termed the free

region as it contains all of the free nodes and branches from

graph'G which have not yet been defined as part of graph H. In the

general case of the nth subset of graph H,

Contents of Free Region = G - H n

Each branch on the edge of the free region has previously

been defined as part of a planar region which is adjacent -to the

outside edge of the free region. Applying MacLane's theorem to the

planar graph, there must be a second planar region, on the inside

-39-

edge of the free region, which is adjacent to the given branch.

The boundary of this second region is defined by a closed path, Pnq

which includes the given branch. This path will be comprised of a

nunther of free branches together with part of the free region edge.

The node at which the path leaves the edge of the free region is

termed the start node; the corresponding node where it returns to

the free region edge is termed the target node. -It follows that the

start and target nodes each lie on the edge of the free region and

each have at least one attached free branch.

To add a planar region to the graph H, an arbitrary node on

the edge of the free region, with -a free branch attached, is selected

as a start node. The next node on the edge of the free region with

a free branch attached is selected as the target node. Starting

from the free branches on the start node, a search is made to find

the shortest path through the free region to the target node, Pn+l•

The shortest path is defined as the one with a minimum number of

free branches. The path P +i,is then joined to the start and target

nodes to form a new planar region.- The - boundary of the new region

consists- of one side of the path .together with, the edge of the free

region-between the two nodes. The remainder of the free region edge

and the second side of the path are redefined as the new free region

edge. A new subset of the graph H is thus defined by:

= Hn + n+1

Repeating the procedure with each node on the edge of the free

region in turn yields further planar regions of the graph H. The

algorithm is terminated when there are no remaining free branches.

The free region itself then bQcomes the final region to be added to

the graph-. 	 .

-40-

4.3.2 Example of Planar Graph Construction

A simple example of the planarity algorithm operating upon a

planar graph is shown in Fig. 4.2. The initial geometrical

representation of the graph shown in Fig. 4.2(a) contains a branch

crossing. The objective of the algorithm is to produce a

geometrical representation of the graph with no branch crossings as

illustrated by Fig. 4.2(b).

IV

D4.-- ----- -

I 	 E

U 	I

/
/

\

/

/

A 	 (b)

Fig. 4.2 	Construction of planar graph

The path of pseudo branches representing the edge connector,

ABCA, is taken as the first planar subset of the graph. The outside

edge of the path forms the boundary of the first planar region,

region I. The inside edge of the path forms the boundary of the

initial free region. Node A is arbitrarily selected as the first

start node and node B as the target node. A search through the

free region for the shortest path from A to B gives the path ADB.

Region II is thus defined as the next planar region of the graph

and the edge of the free region is redefined as the path ADBCA.I

Node A remains the start node because it still has a free branch,

AE, attached. Node D is then selected as the new target node

Ll
nearest to the start node. A search through the free region gives

AED as the next path between start and target nodes, giving ADEA as

region III.

All of the branches connected to node A are now defined as

parts of the planar graph so a new start node, E, is arbitrarily

selected from the edge of the free region. The next node on the

edge of the free region with any free branches, node C, is chosen as

the new target node. The shortest path through the free region from

nodes E to C consists of the single branch EC. The edge of the free

region between the start and target nodes, DBC, together with branch

EC therefore form region IV. The edge of the free region is then

defined as CAEC. As there are no free branches remaining in the free

region, CAEC becomes the final region V. The branches Of the planar

graph are thus ordered so as to eliminate all branch crossings.

4.3.3 	Processing of Non-Planar Graphs j.

It will generally be found that the graph of a circuit contains

a number of non-planar branches. There are several different

strategies for removing such branches from a graph in order to make

it planar. One strategy used both by Bader (1) and by Rowley (29)

involves making an exhaustive search for all branch conflicts in the

graph. From the list of conflicting branches, an optimum set of

non-planar branches is selected such that the number of branches

removed is a minimum.

A second strategy, which is used here, deals with each branch.

conflict as it is encountered. When two branches are found to

conflict, one of them is immediately removed from the graph although

the result will not generally give a minimum set of non-planar

-42-

branches. A branch may be unnecessarily removed from 'the graph if all

the branches it conflicts with are themselves later removed. As

another algorithm is later used to insert non-planar branches back

into the graph, selection of an optimum set of non-planar branches is

not critical. Themain advantages of this strategy are its speed and

simplicity of computation. Each branch conflict is resolved as it is

found, instead of having to process a list of many conflicts. Also,

in searching the free region of the graph for further planar regions,

the number of free branches to examine becomes progressively smaller

as more regions are defined.

Any free branch, or path of free branches,. that crosses the free

region divides the edge of the free region into two parts, E1 and

at the nodes of connection. A conflict of branches occurs when a

second branch or path crossing the free region has one end connected

to part E1 and the 'other end connected to part E 2 . In such a case it

follows that the nodes, on the edge of the free region, adjacent to

the start node of the first path, will belong to the second path.

There cannot therefore be a planar path between a start node and

either of its two adjacent target nodes.

An example of conflicting branches is shown in Fig. 4.3.

Branches AC and BD are in conflict as no path exists within the free

region from the starting node A to either of its adjacent target

nodes B and D. Neither branch may be drawn around the outside edge

of the free region, ABCDA, as the outside has already been defined

as part of a planar graph. One of the two' branches therefore must

be removed in order to make the graph planar.

The algorithm for creating a planar subset of a non-planar

graph is an extension of that described in section 4.3.1. A search

Lt3

Fig. 4.3 	Non-planar branches

is made for planar paths from a start node to each of its two

adjacent target nodes in turn. Every time a new planar region is

defined, the free region is redefined, a new target is defined, and

the search procedure is repeated. Any free branches remaining on

the start node that do not yield a planar path after a search are

either non-planar branches or bridge branches. Non-planar branches

are immediately removed from the graph; the procedure for dealing

with bridge branches is described below.

A bridge branch is defined as a branch which is the only

connection between the edge of the free region and a subset of the

graph G which has not yet been defined in the graph H. This state

occurs when successive connections to the subset are removed as

non-planar until only the bridge branch connection remains. It is

essential that no subset of graph G becomes completely disconnected

from the remainder of the graph. If this were to happen, the search

procedure for constructing the planar graph would never encounter

the subset by searching from the edge of the free region. The

subset would thus not be defined, as part of the required planar

graph. This same reason also explains the fact, mentioned at the

beginning of section 4.3, that every node of the graph must be of

order two or more. A bridge branch is thus inserted into the planar

graph to prevent a subset from being completely disconnected from

the rest of the graph.

An example of the detection of non-planar branches and bridge

branches connected to a node is shown in Fig. 4.4. Node A is taken

Fig. 4•14
	

Detection of

non-planar and bridge branches

as the start node and its two adjacent target nodes on the edge of

the free region are B and D. The first search from node A to

target node B yields branch AB as a planar branch so it is inserted

into the graph. Two further searches to targets B and D do not

yield planar branches so the branches AC and AE on node A must be

either non-planar or bridge branches. In order to determine which

type they are a search is made from the end of each branch in turn

to see if a path exists to any other node on the edge of the free

region. If a path does exist, as in the case of branch AC, the

branch must be in conflict with another so it is removed as non-

planar. If a path does not exist, as in the case of AE, the branch

represents the only connection to a particular subset of the graph

L1.5

so it is retained in the graph as a bridge branch.

4.3.4 	Insertion of Subgraph Components

Each planar region of a graph is defined by an ordered ring of

branches around its boundary. The method of definition is described

in detail in Chapter 6. By convention, the branch order around

every region is described in ananticlockwise direction. A subgraph

component consists of a planar region bounded by a ring of pseudo

branches and by convention these are also defined in an anticlockwise

direction.

In searching through the free region of a graph for a planar

path, the target node is always arranged by convention to be in an

anticlockwise direction around the edge of the free region from the

start node. When a subgraph node is encountered, the search proceeds

only along the pseudo branch in a clockwise direction from the

subgraph node. The conventions of region definition and search

direction thus ensure that all subgraph components are inserted Into

the graph with the sameorièntation.

4.4 Description of Planarity Subroutine

A subroutine, called PLANAR, has been written to implement the

planarity algorithm; its flow diagram is shown in Fig. 4.5. The

subroutine starts by connecting the pseudo branches of the edge

connector into a closed path. The outside edge of this path bounds

the first planar region of the graph and the inside edge of the path

is the boundary of the initial free region. The method of linking the

branches into a region is detailed in Chapter 6. An arbitrary node

with free branches attached, on the edge of the free region, is

selected as the first start node. The next node with free branches

J____... jConstruct edge connector pseudo branches

into initial region and free region

Select a start node on the edge

of the free region

Select target node In on a/cw direction

and search for planar region

Add new region

to graph

Is there a planar path ?

IN

Select target node In a cw direction

and search for planar region

Add new region

to graph

Is there a planar path ?

IN

N Are the free branches on the

start node bridge branches £

V

Add the branches

to the non- 	 Connect the branches Into the graph

planar list

Are there any free branches remaining \,

in the free region ? 	
/

IN

End
	

Add free region to planar graph

Fig. 4.5 	Flow diagram of graph planarity program

147

in an anticlockwise direction from the start node is taken as the

target node. A search is then made for a planar path between the

start and target nodes.

4.4.1 Search Procedure for Planar Paths

The search procedure for finding a planar path is designed to

find the shortest path from start to target node. A tree search

method is employed, as illustrated by Fig. 4.6. The free branches

connected to the start node enable a set of the Free nodes adjacent

to the start node to be obtained. This set of free nodes represents

the first level of the tree search. The nodes in the first level of

the tree re connected by further free branches to another set of

free nodes which go to make up the second level of the tree. The

tree may thus be built up in successive levels until the target

nodeis reached. All the possible nodes in one level of the tree

are found before developing the next level. This ensures that the

path found to the target node is of minimum length.

Each nQde is allowed to appear in the search tree once only.

This prevents -any part of the search from looping continually

around a-closed ring of branches. 	Node H in Fig. 4.6(b) for

example, is reached from node G first so it is not listed as a

successor to node I. No planar path is allowed to cross the free

region and thus divide it into two separate regions, .apart from a

path between the start and target nodes. If a node on the edge of

the free region is encountered during the - tree search, node K for

example, that part of the search is not continued.

When a subgraph component is encountered, CFDC for example,

the tree search proceeds only in a clockwise direction from the

Target

A Start 	 (a) Graph

A_Start

-

I' 	x
I'
I'
I 	%

-

Target

- - - H - -

- - L - - -

(b) Search tree

Fig. 4.6 	Planar path search

-49-.

subgraph node, node C. The correct subgraph component orientation is

thus preserved in the graph. Similarly, only one pseudo branch of the

subgraph is allowed in the search path. This prevents any subgraph

nodes with free branches attached from becoming embedded within a

planar region. In the computer data structure representing the tree,

each node is given a pointer back to its predecessor in the tree.

When the target node is found, the path back to the start node may

thus be directly traced. If the tree is constructed as far as is

possible without reaching the target node, the branches on the start

node are either non-planar or bridge branches.

4.4.2 Region Construction

When a planar path is found between the start and target nodes

of a'graph, the branches of the path areconnected in the computer

data structure as two segments of region boundaries, corresponding to

the two sides of the path. The edge of the free region is divided

at the start and target nodes into two separate parts. The two

parts of the free region edge and two parts of the planar path are

joined to form a new planar region and a redefined free region edge.

If the planar path contains any subgraph nodes, the remainder of the

subgraph components are also added to the graph as new planar regions.

4.4.3 	Further Search Procedures

Each time a new planar region is added to the graph, a new

target node is found in an anticlockwise direction from the start

node. When no further planar paths can be found, the search is

continued by selecting target nodes in a clockwise direction from

the start node. In this case, the search for a planar path is

actually made from the target to the start node so as to preserve

-50-

the correct orientation of path search.

Any branches remaining on the start node after the planar path

search is exhausted are checked for non-planarity. A tree search is

made from the node at the other end of the branch under consideration.

If the search encounters any node on the edge of the free region, the

branch is non-planar and is removed from the graph. If the search is

exhausted before reaching a free region edge node, the branch is a

bridge branch and so is inserted into the planar graph.

The next node with free branches in an anticlockwise direction

from the start node is taken as the new start node and the search

for planar regions is continued. The process is terminated when

there areno free branches left in the free region. The free region

itself is then added to the planar graph as the final region. The

result of the planarity subroutine is thus a set of regions describing

a planar graph and a list of non-planar branches. The list of non-

planar branches may contain several planar branches, as the branches

with which they conflicted have also been removed from the graph.

-51-

Chapter 5 	Insertion of Non-Planar Branches

The planarity algorithm described in the previous chapter

processes the topological representation of an electrical circuit

into a planar graph and a list of non-planar branches. As these

branches still represent parts of the circuit they must be included

in the physia1 layout. An algorithm is described in this chapter

for inserting these non-planar branches back into the graph.

5.1 Statement of the Problem

In the average planar graph many of its branches are either

component or subgraph pseudo branches. Each of these branches may

have a dimension as'sociated with it, corresponding to the distance

between two pins of its component. It is possible for a limited

number of conductors to pass between two such pins, depending on the

dimensions of the component and the conductors. Correspondingly,

each branch in the graph may be crossed by a limited number of other

branches. The crossings represent a conductor on one side of the

board passing under part of a component on the other side. The

condition of planarity of the topological model may thus be partiaLLj

relaxed in order to allow the non-planar branches to be inserted

back into the graph.

The aim of the algorithm described here is to insert all the

non-planar branches of a graph into the planar subset of the graph by

allowing certaintypes of branch crossings. The resultant graph is

termed a pseudo planar graph as it may be drawn onto a planeto

represent a planar set of conductor paths even though the graph

contains some branch crossings. For some circuits it may not be

possible to insert all of the non-planar branches into the pseudo

planar graph. Two alternative procedures may then be used to deal

-5 2-

with these branches. The first alternative is to replace the

branch by an insulated piece of wire, called a wire lumper, to make

the required electrical connection. The second alternative, not

considered in the scope of this project, is to route the branch as a

conductor on the second side of the board.

5.2 Principles of Branch Insertion

A non-planar branch to be inserted into the pseido planar

graph may be.one of two types. The first type is a component branch

representing a two pin component. As the component is a part of the

circuit and layout, its branch must appear in the graph. The second

type of non-planar branch is a subgraph link branch. As this type

represents a conductor joining a subgraph component to the rest of

the circuit, it may be replaced by a wire jumper if an insertion path

cannot be found.in the graph. It is more important that component

branches are inserted into the graph because they cannot be replaced

by jumpers. They are therefore given precedence in the insertion

algorithm.

A non-planar branch is inserted into the pseudo planar graph

by finding a path which crosses a number of branches in the graph.

The main objective is to use a minimum number of crossings when

inserting each branch. This results in more room under component

and pseudo branches for inserting further non-planar branches and

it also helps to reduce conductor lengths in the physical layout.

The list of non-planar branches to be inserted into the graph may

contain several planar branches. These were originally removed

from the graph because they conflicted with other branches. Ata

later stage all the branches with which they conflicted were also

removed. When a planar branch is encountered in the list of

-53-

non-planar branches therefore, it is inserted back into the pseudo

planar graph without branch crossings.

A link branch is inserted into the graph by searching for a

path under component or pseudo branches from one of the branch nodes,

called the start node, to the other branch node, called the target

node. An example is shown in Fig. 5.1. It is assumed that branches

E

Fig. 5.1 	Insertion of conductor branch

AF and BF in the figure are component branches, DF is a link branch

and EC is the non-planar branch to be inserted. Branch EC is inserted

by crossing under branches AF and BF. Although a shorter path exists

across branch DF, two link branches or conductors cannot be crossed

on a single sided printed wiring board. In a purely topological

problem, EC could be routed around the outside edge of the graph

without crossing any branches. In the topological representation of

a board layout however, all branches must lie within the outside edge

of the graph.

-54-

A different procedure is adopted for inserting non-planar

component branches into the graph. A two pin component has a

clearance between its pins so it is able to "hop over" several

conductors on the board. A component branch may therefore be

inserted into the graph by crossing over several branches representing

conductor paths. The method by which this is implemented is

illustrated in Fig. 5.2. The non-planar branch HD may be inserted

by crossing component branches AJ, BJ and CJ as shown in Fig. 5.2(a).

B
	

B

H H

F 	(a) 	 F 	(b)

Fig. 5.2 	Insertion of component branch

The number of branches over which a component branch can cross

is li'mited by the dimensions of the component. An insertion path for

the component is therefore more likely to be found if the number of

crossings can be reduced. The method for reducing the number of

crossings to a minimum is depicted by Fig. 5.2(b). The node J in

Fig. 5.2(a) represents a point of common electrical connection of

several components. The function of the electrical circuit is

unchanged if the node is "split" into two separate nodes J and J'

as in Fig. 5.2(b), and joined by a branch JJ' termed a conductor

branch. The non-planar branch may then be inserted into the graph

with a minimum number of crossings as shown.

-55-

5.3 Insertion Path Searching

The graph produced by the planarity algorithm is defined by

a set of planar regions. In crossing a branch of the graph, a non-

planar path passes from one region to an adjacent one. Finding an

insertion path with a minimum number of branch crossings is thus

equivalent to finding a path that passes through a minimum number of

regions. A tree search through regions, similar to the method

described in Chapter 4.4.1 is therefore used to search for an

insertion path.

Each non-planar branch is initially connected to its start

and target nodes in the topolqgical representation of the circuit.

As an alternative it may later be reconnected to any node which is

electrically common with the start or target nodes. When starting

the search for an insertion path, every region which includes the

target node is marked as a target region. Similarly, regions

containing nodes electrically common with the target node are also

marked.

The tree search through regions is initiated by making a

list of all the regions around the start node and any of its

electrically common nodes. This list forms the initial level of the

tree. If any of its regions have already been marked as target

regions, the branch to be inserted is planar and may be inserted

directly into the graph without branch crossings. At all stages of

the path search for non-planar branches, the outside region of the

graph is ignored as no branch may cross over the perimeter of the

board.

-56-

5.3.1 Component Branch Search

To proceed with the tree search for a component branch path,

a region from the initial level of the tree is examined. Each branch

around the edge of the region is checked in turn. If the node at

either end of the branch isa connection node and has not yet been

included in the search it is further examined. A list of all the

regions around the node, excluding those already in the tree, is

obtained and added to the next level of the tree. These are the

regions which may be accessed by splitting the node and crossing the

component over the resultant conductor branch. The procedure is

repeated for each region in the initial level of the tree in order to

complete the list of regions in the next level.

The search procedure is repeated for successive levels of the

tree. Each level is fully developed before constructing the next so

that when an insertion path is found it is of minimum length. As

each new region is added to the tree a check is made to see if it has

been marked as a target region. The search procedure is completed

when a target region is encountered. As each node is examined during

the search it is given a pointer back to the region from which it was

found. Similarly each region is given a pointer to the node from

which it was found. This enables the required insertion path.to be

traced rapidly back through the tree to the start region when a target

region has been found.

The number of branches that a component may cross over is

limited by its physical dimensions. This in turn limits the number

of levels to which the tree search may be taken. If the maximum

allowable number of levels in the tree is reached before a target

region is found, the component cannot be inserted into the graph by

-57-

crossing over conductors. A possible method of then inserting the

component is discussed in Chapter 11.1.

5.3.2 	Link Branch Search

Every component and pseudo branch has a dimension associated

with it which indicates the space available for conductors to cross

under the component or subgraph. This dimension is initially set

during the DATAIN subroutine and may later be decremented by one

conductor •width each time a branch is crossed under the component.

To proceed with the tree search for a link branch path, a region

from the initial level of the tree is examined. Each branch

around the edge of the region is checked in turn. If it is a

component or pseudo branch it is further examined. If there is

still sufficient clearanceunder the branch, the region on the

other side is added to the next level of the tree. This assumes

that the region is not already in the tree. The procedure is

repeated for each region of the initial level in turn in order

to completely develop the next level of the tree.

The tree search is continued with successive levels until

a target region is reached. There is no limit to the number of

branches that a link branch may cross. During the construction of

the tree, each region is given a pointer back to the branch from

which it was developed. This enables the required path to be

traced directly through the tree when a target region is found.

If the tree search is exhausted before a target region is found,

the link branch is truly non-planar and cannot be inserted into the

pseudo planar graph.

-58-

5.'-i 	Path Construction

Having found the required insertion path for a non-planar

branch, the pseudo planar graph has to be modified to include the

branch. The initial step for the insertion of a component branch

is to split all the nodes which lie along the insertion path. By

using the pointers set up during the tree search, each node along

the path may be identified and split into two separate nodes in turn.

The branches on a node which is to be split are divided

into two groups. The groups are separated by the two regions

through which the component branch is to pass. A new node is

created and the branches of one group are connected to it. A

conductor branch is constructed between the original and the new

node and is inserted as an extra branch into the two regions.' The

region nearest the target node is given a pointer to the conductor

branch so that the path of the component branch may still be

traced. Having split the required nodes, the insertion of the

component branch proceeds as for a link branch.

To insert a link branch into the graph, one end of the

branch is firstly connected to the target node. The target

region gives a pointer to the first branch which is to be crossed.

This branch is then divided intotwo separate segments (The

representation of branch segments irz described in detail in

Chapter 6.2.3.) The first segment of the link branch is also

created. The segments of the two intersecting branches are linked

together so that the target region is divided into two separate'

regions. The two regions each contain the target node and have

the first link branch segment as a common boundary.

-59-

The insertion procedure is repeated along the path, dividing

each region and crossed branch into two parts and creating another

segment of the link branch. When the start region is reached, the

second end of the link branch is connected to the start node. The

start region is thus divided into two and the path is completed.

Each branch segment of the graph may later be subdivided when further

non-planar branches are inserted. The insertion procedure for

component branches is exactly the same as for link branches. It is

merely the type of branch which defines which of two crossing branches

is placed on the conductor side of the board.

An example of link branch insertion is shown in Fig. 5.3.

Targel

rt

Fig. 5.3
	

Insertion of link branch

The three original regions of the graph,I, II and III are ABFA,

BCEFB and CDEC respectively. The link branch to be inserted, AD,

is connected firstly to its target node, A. Branch BF is divided

into the segments BK1 and K1F. The first segment of the link branch,

AK1 , is formed and connected to the segments of BF so that region I

is divided into regions ABK1A and AX1FA. Region II is similarly

11-10

divided into two and region III is also divided by.connecting the

second end of AD to its start iiode. The path is thus completed with

two crossings K1 and K2 . As each component or pseudo branch is

crossed, its clearance value is decremented by one conductor width.

5.5 Branch Insertion Subroutine

A subroutine to perform the above described algorithm,

called PI-IASE2, has been written and is shown in flow diagram form by

Fig. 5.4. The list of noñ-planar branches is initially sorted so

that all component branches are in the first part of the list. The

first branch is taken from the non-planar list and the graph is

searched for a suitable insertion path. If a path is found the branch

is inserted by the previously described methods. If the branch is

found to be planar, it is inserted into the graph by connecting it

across the region in which its two nodes lie. The region is thus

divided into two separate regions.

Any branch for tqhich no path can be found is put into a

second list of non-planar branches. These branches are truly non-

planar and cannot be inserted into the pseudo planar graph. Non-

planar link branches are later replaced by wire jumpers. Non-planar

component branches may later be connected by one node into the graph,

the connection to the other node being made by a wire jumper.

Having processed one branch, the procedure is repeated with

the remaining branches from the non-planar list in turn until the

list is exhausted. The end result of the insertion subroutine is

then a pseudo planar graph which is the complete topological model of

a circuit layout. There may also be a list of non-planar connections

that have to be replaced by wire jumpers.

-61-

Start

Sort non-planar list into component

followed by link branches

Take next non-planar

branch from list

Search for branch path In graph

Is the branch plana)!

IN

Connect branch into

planar region

Has a component branch
	

Split the nodes along

path been found ?
	

the branch path

IN

Has a link branch 	 Insert branch

path been found ? J 	Into the graph

I r

I Add branch to second non-planar list I

!.(Have all non-planar branches been processed ?

Iv

End

Fig. 5.4 	Flow diagram of PHASE2 subroutine

-62-

Chapter 6 	Computer Implementation of Topology Algorithms

The algorithms for constructing the topological model of a

öircuit have been described in the previous chapters. In this chapter

the programming methods used to implement the algorithms are described.

The computer hardware configuration has already been outlined in

Chapter 1.

6.1 	Data Storage

The representation of an electrical circuit consists of a

large number of interconnected nodes, branches, subgraphs and planar

regions. In addition, the branches and subgraphs representing

components require component names and, at a later stage, physical

co-ordinates. The problem isto devise a system to store all of

this information ma compact and readily accessible form.

A data storage system similar to that described by Ross (27)

is used. A large one-dimensional array is assigned as a common area

in which to store all the data. The area within this array is

divided up into a large number of blocks. Each block consists of a

number of consecutive elements of the array and may be of any length.

A block is used to represent a node, a branch or any other element of

the graph. Interconnections of the blocks are represented by pointers.

A pointer to a block is merely the array index of the first element of

the block.

A free storage system is used to allocate blocks from the

array for use by the various subroutines. During the topological

algorithms it so happens that no block ever becomes redundant. An

elementary free storage system is therefore used although a more

complex one is described in Chapter 9.2 for use with the layout

-63-

algorithms. The storage system uses a pointer, set initially to the

beginning of the array, to indicate the start of the un-used part of

the array. When a new block is required, it is taken from the free

part of the array and the storage pointer is incremented by the

corresponding block length. After each block has been allocated,

the value of the storage pointer is checked to ensurethat the limit

of the array has not been exceeded.

6.2 	Data Structure

The graph of a typical circuit contains many hundreds of

interconnected blocks. It is important therefore to usea data

structure which is efficient in describing the interconnections.

There are a:number of general purpose data structure packages

available, such as ASP (17, 25), which may be used with FORTRAN

programs. Being general purpose packages however, they tend to

have large overheads in storage space when defining, block inter-

connections. A special purpose data structure has therefore been

designed for use withtthe planarity and layout algorithms described

here. It is organised with interrelated parts of the graph closely

conneôted by pointers so that one may move easily from one part of

the structure to another.

A general purpose data structure package usually contains

checks to ensure that each operation on a, block is a valid one.

The disadvantages of this are that extra storagespace is required

in each block to indicate its type and that the program requires

extra execution time for each operation to be checked. The data

structure developed here has no such checks and so saves on storage

space and computing time. The disadvantage is that the program

generally fails completely if an invalid operation is performed.

-64-

6.2.1 Interconnection of Nodes and Branches

The method of interconnecting nodes and branches in the data

structure is illustrated by Fig. 6.1. A simple graph is shown In

Fig. 6.1(a) and its resultant data structure is shown in Fig. 6.1(b).

The first element of each node block contains the name of the node,

each node having a unique name. The nodes of a circuit are allheld

in a node list. The second element in each node block is thus used

to point to the next node in the list. The list is terminated in the

final node block by a zero value pointer. Each node has a number of

branches connected to it. The third element in a node block thus

points to the first branch which is connected to it. The remainder

of each node block is used as a workspace in which to store various

markers and pointers during the course of computation.

The first element in a branch block is a marker describing

the type of the branch, for example a component, or pseudo, or link

branch. The next two elements of the branch point to the two node

blocks between which the branch is connected. The two following

elements of the branch block are used to form the list of branches

connected to a node. The first of the elements corresponds to the

first node pointer and the second element to the second node pointer.

Each of the list elements points to the next branch connected to the

node, or has zero value for the last branch in the list. The

remaining elements of the'block are used for workspace and for

connections to other parts of the data structure which are described

later.

As an example of the type of operation required on the data

structure, all the branches connected to node 2 in Fig. 6.1 are to

be found.' The branch pointer in the node'block N2 points to branch

-65-

NI 	BI 	N2 	B2 	N3

	

. 	 (c) Simple graph

Fig. 6.1 	Interconnection of nodes and branches

EMM

block B2 which is thus the first connected branch. As the first node

pointer of B2 points to N2, the corresponding first node list pointer

of B2 is taken. This points to branch Bl which is thus the second

branch connected to N2. In this case node 2 is the second node of

the branch so the second node list pointer of Bi is taken. The

pointer is a null one which indicates the end of the list so Bl and

B2 are the only branches connected to the node. The pointers are

arranged in this way so that new branches may be added to a node

without having to alter the length of its node block. The method

of interconnection enables one to readily find all the branches

connected to a node and vice versa.

6.2.2 	Subgraph and Branch Components

The method of defining the constituent parts of a subgraph

component is illustrated by Fig. 6.2. Parts of the structure have

been omitted from the diagram to avoid confusion. The nodes and

branches of the subgraph are interconnected in the same manner as

described in the previous section. This ensures that the parts of
/

the subgraph are compatible with the rest of the graph when constructing

planar regions.

The overall component is described by a subgraph block, Sl.

The first element of the block is a subgraph marker. The second

element is a pointer to the first subgraph node of the component, SN1.

The subgraph nodes are held in a list, in the same way as circuit

nodes. The difference is that the start of the list is stored in

the si.thgraph block and the last node has a pointer back to the

subgraph block. The subgraph nodes are thus joined in a ring

together with the subgraph block. In addition, the first element of

each node block has a marker plus a pointer back to the subgraph

-67-

(a) Subgraph component

N3 	PB2 	N2

Fig. 6.2 	Interconnection of subgraph nodes and branches

-67--

block. Given a subgraph node therefore, one may readily find the

subgraph component to which it belongs.

Every subgraph node has a list of the branches attached to

it; these are a link branch and two pseudo branches. The pseudo

branches each have two pointers to their appropriate subgraph

nodes. The link branch also has two node pointers. The first

pointer identifies a circuit node and the second points to the

corresponding subgraph node. The structure of a subgraph component

is thus defined completely in a manner which is compatible with the

remainder of the graph.

At. a later stage of the layout algorithm when components are

given physical co-ordinates, itis desirable that both the branch and

the subgraph component blocks are compatible. The form of a subgraph

block is shown in Fig. 6.3(a). This is the same block as the one

Subgraph marker

-. Node list

Component name

•Master comp. ptr.

X co-ordinate

V co-ordinate

Orientation

Workspace

Upper branch mkr.

Lower branch ptr.

Component name

,Master comp. ptr.

X co-ordinate

V co-ordinate

Orientation

Workspace

(a) Subgraph component block (b) Branch component block

Fig. •6.3 	Component data blocks

MUM

marked Si in Fig. 6.2(b). The third element of the block contains

the characters of the user name of the particular component, for

example TR1 or TR2. The fourth element is a pointer to a master

component block in the component library. The master block saves

repetition of information common to every component of a particular

type; its contents are discussed in Chapter 3.3.1. Further elements

in the subgraph block store the physical co-ordinates and orientation

of the component and provide working space for the layout algorithm.

The data structure for a branch component should be compatible

with the subgraph block just described. It should also be compatible

with the method of interconnecting nodes and branches described in

the previous section. These two requirements both use the same area

of a block and so aremutually exclusive within the same block. The

data for a branch component is therefore divided between two blocks

as shown in Fig. 6.3(b). The upper block is identical to the subgraph

block apart from the first two elements. The first element contains

amarker describing the type of block; the second contains a pointer

to the lower branch block. The lower block describes the interconnections

of the branch into the graph and corresponds to either of the blocks

marked Bi or B2 in Fig. 6.1(b). It also has a pointer back to the

upper branch block.

6.2.3 	Branch Segments and Planar Regions

The pseudo planar graph of a circuit is defined by a set of

planar regions. Certain branches of the graph may each be d.ivided

into a number of branch segments by other crossing branches, in the

manner described in Chapter 5.4. In developing a data structure to

represent this type of graph, two problems arise. The first is to

S .

define the correct sequence of branch segments-around the edge of a

region. This sequence'escribes the order in which branches are

connected so as to avoid branch intersections in the planar graph.

The correct sequence is also necessary at the layout stage so as to

give the correct order of component connections. The second problem

is to define the correct sequence of segments from one end of a

branch to the other. This is essential in preventing the conductors

under a component from intersecting each other.

A pseudo planar graph and its method of representation are

illustrated by Fig. 6.4. In this example two of the branches, Nl to

N2 and N3 to N4, intersect and divide each other into two segments as

shown in Fig. 6.4(a). The linking between branches and their

associated planar regions is performed by two-element blocks called

tie blocks. The interconnections between branch and tie blocks are

shown in Fig. 6.4(b). Every branch segment is defined, by a pair of

tie blocks; one for each region adjacent to the segment. If a branch

is divided into several segments, it is defined byalist of tie

block pairs. The order of tie block pairs corresponds to the order

of segments on the branch. An element in the branch block contains

a pointer to the first ti& block The first element in the tie

block points to the next tie blok and so on. The final tie block

'then points back to the branch block so that given a tie block, its

corresponding branch may be found.

All the planar regions of a graph are represented by a list

of region blocks in the data structure. The description of a planar

region is illustrated in Fig. 6.4(c). The first element of a region

block contains a region marker plus a unique name for the region.

The second element points to the first tie block of the region.

-70 -

7

N

16 	

TS

T2/

RI

NI

\ j

2

N4

connections

Pseudo planar graph

Branch marker

T2 	 13
ISeament rina 	..1

Branch connections

Fig. 6.11 	Interconnection_of branches and regions

LI

--71-

The tie blocks are connected in a ring together with the region

block, by the second element of each block pointing to the next tie

block. The final block then points back to the region block. Each

tdé block in the ring belongs to a different branch segment such

that the order of blocks corresponds to the order of branch segments

around the planar region. The third element of the region block

contains a pointer to the last tie block of the ring so that the two

end blocks of the ring may be readily identified. The fourth element

of the region block points to the next block in the list of regions.

The correct ordering of the segments of a branch is maintained

by adopting a convention of interconnection ordering. Referring back

to Fig. 6.4(a), it can be seen that all the regions are connected in

an anticiockwise direction. The position of the region block within

its ring of tie blocks is not important. If Ni is the first node of

branch Ni to N2, it can be seen that the tie biockson one side of the

branch point towards Ni whilst those on the other side point towards

N2. The tie blocks are therefore arranged on the. branch ring so that

the first one of every pair points towards the first node, Nl,

whilst the second points away from Ni. In addition, the first tie

block in the branch ring belongs to the branch segment nearest to

the first node. The dotted lines in Fig. 6.4(a) show the order in

which the tie bl6cks are attached to the branch. The convention of

ordering thus enables the branch segments to be kept in the correct

order.

6.3 Computer Language

The board layout program involves a great deal of data

structureprocessing. One requirement of the program is that it

-72-

should be readily transferable from one computer installation to

another. There is no widely used data structure processing language

so it was decided to use FORTRAN IV (10) together with a general

purpose macro processor ML/l (4), for the layout program. The ICL

4130 described in Chapter 14 has a magnetic tape based FORTRAN

system which enables programs to be compiled and run from magnetic

tapes. It a±so enables precompiled subroutines to be stored on

magnetic tape which is a useful feature when developing a large

program.

The general purpose macro processor is used for the

implementation of the data structure within the FORTRAN language.

Some of its facilities are described in Appendix A. Statements

describing operations on the data structure are written as macro

calls. When completed, the program is processed by the macro

processor so that all the user-defined statements, or macro calls,

are replaced by FORTRAN statements. The program may then be compiled

and run as a normal FORTRAN program.

An example of the use'of the macro processor is described

here. It is assumed that a variable, PTR, contains the index in the

one-dimensional data array, IRAY, of a subgraph component block.

The fifth and sixth elements of this block contain the X and Y

co-ordinates of the component. The co-ordinates of the component

may be obtained by using the macro calls:

X = COMPX(PTR)

and .Y = COMPY(PTR)

The definitionsof the macro calls describe the replacement text for

the calls so that after processing they are replaced by their

equivalent FORTRAN statements, i.e.

-73.-

X = IRAY(PTR+4)

and Y = IRAY(PTR+5).

The above example could be implemented by the use of a

FORTRAN function statement. Thereason for using the macro processor

is that data structure statements also need to appear on the left

hand side of an assignment, for example:

COMPX(PTR) = x

This type of statement cannot be implemented by a FORTRAN function,

hence the use of the macro processor.

It is clear that a program written with macro calls is far

easier to understand than its equivalent FORTRAN text. Changing the

order of elements in a block or changing the length of a block during

the development of the program is also facilitated. Only the macro

definitions need to be altered as the macro processor will automatically

apply the alterations to the program during processing.

7L

Chapter 7 	Placement and Routing of Board Layout

The algorithms for automatically constructing a board layout

from the topological model ofa circuit are described in this chapter.

A later chapter describes the modifications necessary to allow

graphical interaction with the layout program.

7.1 Consideration of Layout Methods

The majority of methods for generating printed wiring board

layouts split the problem into two separate stages. Component

positions are computed first and the components are fixed at their

appropriate co-ordinates. The conductor routing stage then becomes

a problem of finding paths to connect together sets of fixed-position

pins in the required order. This approach conveniently allows one

to divide the layout algorithmc into two lesser independent problems.

The main disadvantage is that components are placed with little or

no regard to the subsequent routing of conductors. If the components

could later be repositioned in congested areas of the board, some

further conductors might be routed where therewas otherwise

insufficient space between components. A further disadvantage is

that considerable computing time may be wasted in searching for

conductor paths that are topologically impossible to route.

The advantage, of constructing a topological model initially

is that the relative positions of all components and conductors are

known before layout commences. This means that components can

always be placed so as to allow sufficient clearance for intervening

conductors. In addition, conductor routes can be constructed in

steps from one component pin to the next rather than having to

search for a path over a large area of the board.

-75-

7.1.1 Oblectives of Board Layout Method

During the generation of a board layout, a number of objectives

have to be considered. The following objectives are true whether the

layout is developed from a topological model or by any other method:

All the circuit components and conductor paths must be placed

within the available board space. This may present some

difficultk when a board is densely populated with components.

In addition to the board'iarea required by the components

themselves, further space is required between them for routing

the conductors.

Every conductor should be of minimuinlength. For high frequency

circuits this reduces the effects of stray capacitance upon the

performance of.the circuits. For all layouts, minimum length

conductors reduce the amount of bbard space required for routing

and enable more. compact layouts to be generated.

The spacing between adjacent components and between adjacent

conductors must be greater than certain specified minimum

values. Clearances between adjacent components are necessary

in order to allow for such things as tolerances in component

positioning, insulation between the components and heat

dissipation of some components. A minimum value of spacing

between the centre lines of parallel conductors must be

specified to allow for the width of conductors, insulation

space between conductors and manufacturing tolerances in the

production of printed wiring boards.

As well as the essential conditions described above, there

are often a number of constraints which are peculiar to each

particular layout. For example, the adjustment screw of a

--76-

potentiometer should face towards. the edge of the board, or the

input and output connections of a high gain amplifier should be

kept apart so as to reduce the effects of inductive and

capacitive coupling

7.1.2 Force-Field Method of Layout Construction

A method of board layout studied initially for this project

made use of a mechanical force analogue similar to the ACCEL program

described in Chapter 2. Using the topological model of a circuit,

components and conductors were initially placed so that no conductor

paths intersected. The object was then to alter the placements so

as to give a compact layout whilst preserving planarity. Each

conductor was considered to exert a force, proportional to its

length, upon its two attached components. The purpose of this

force was to bring closely connected components together and reduce

conductor lengths0 Each component exerted a force of repulsion,

inversely proportional to distance, on all adjacent components.

The force was used to prevent adjacent components from over-lapping.

The conductors were each divided into a number of segments.

Forces of attraction and repulsion were similarly exerted between

adjacent conductor segments so as to reduce the length of each

conductor, without allowing it to cross any other conductor. The

algorithm proceeded in an iterative manner, moving every component

and conductor segment a distance proportional to the net force upon

it. The algorithm terminated when all the components and conductors

reached stable positions within the avai1ableboard space.

A program was written to make a simplified study of the

roblem. The main drawback encountered was that each conductor had

-77-

to be divided into many segments to ensure that no parts of adjacent

conductors crossed. The problems associated with the storage of

large amounts of data, together with the time requiredto perform

many iterations of the program, made this approach unsuitable for

large board layouts The results of the program were also critically

dependent on the relative values of attraction and repulsion forces.

An inductive method of construcfing board layouts was therefore

developed, described in the following sections.

7.2 Principle of Layout Algorithm

The method used to construct the board layout of a circuit

from its topological model builds up the layout in a logical series

of steps from a known starting point. The type of board considered

is a rectangular board with an edge connector along one side. A

list of all the components connected to the edge connector ëan be

obtained from the topological model These components may be placed

in a strip across the width of the board, parallel and adjacent to

the edge connector. The topological model then gives a list of the

components connected to those already on the board. The layout

may thus be constructed by placing components in a series of

parallel strips across the board, working from the edge connector

to the opposite side of the board.

At any time during the layout construction, a boundary line

may be drawn across the board separating the part of the board

occupied by components from the unoccupied part. This is illustrated

by the dotted line shown in Fig. 7.1. The boundary of the unoccupied

part of the board is thus divided into a number of slots.. The lower

edge of each slot is coincident with the upper side of a placed

component. The two sides of each slot are coincident with either the

IME

A
	

B

- 	 ------------- -

edge connector

Fig. 7.1 	Board layout slots

sides of components or the sides of the board. The width of the two

slots shown in Fig. 7.1 are indicated by the measurements A and B.

The board layout is constructed by placing components into

successive slots of the unoccupied part of the board. This is in

preference to using parallel strips across the whole width of the

board due to the irregular shape of the placed component boundary.

The initial slot of the layout is coincident with the lower edge

and two sides of the board. Thereafter, the next slot chosen for

component placement is the lowest slot (the one nearest to the

edge connector), working from left to right across the board. As

components are placed in a slot, the boundary of the unoccupied

part of the board is updated, thus creating new slots.

The processing of a slot is performed in two stages. The

first stage consists of node development and sorting. Around the

edges of the slot are conductors, or circuit nodes, from the

-79-

occupied part of the board. Reference is made back to the topological

model to obtain a list of all the components and conductors connected

to these nodes. The list is then sorted to determine the optimum

set of components to place in the slot. The second stage of slot

development consists of component placement and conductor routing.

The physical co-ordinates and orientations of the components are

calculated. The conductors are then routed from the edges of the

slots to the appropriate component pins.

7.2.1 Aims of Layout Algorithm

When placing components into a slot, the main objective is

to pack in as many components and conductors as possible. Before

construction of the layout commences, there is little indication of

the final component and conductor density of the board. Slots are

therefore closely packed to ensure that the layout will fit dnto

the board. If the board is not densely populated with components

there will be a large strip of unoccupied space across its upper

width when the layout is completed. The component and conductor

co-ordinates may readily be multiplied by a scale factor in the Y

direction so as to occupy the whole board if desired.

The method of constructing the board layout is also aimed

at producing minimal conductor lengths. In deciding the contents of

a slot, the components chosen are those most closely connected to the

existing part of the layout. The interconnecting conductors between

components thus tend to be of minimal length. The correct clearances

between adjacent components and conductors are also to be maintained

by the layout algorithm. They may readily be computed to their

correct values because the layout is constructed in a series of

successive slots. Special constraints such as those mentioned in

:.

section 7.1.1(d) are difficult to program for a general purpose

layout algorithm. They are therefore dealt with by the interactive

methods described in Chapter 8.

7.3 Slot Development and Sorting

This section describes the processing required in order to

choose the optimum set of components and conductors to be placed in

one slot during the construction of a layout. The slot is initially

assumed to be empty and along its lower edge are the ends of a

number of uncompleted conductor paths. These paths come from

ccmponent pins or parts of conductor paths which have already been

placed on the board atalower level. An example is shown in Fig. 7.2;

slot
boundc

Fig. 7.2 	Development of slot nodes

the component Cl has already been placed in the layout. The three

conductor paths from a lower level are initially routed up to the

points marked A, B and C on the lower slot boundary.

IME

The conductor paths in the layout may be of two different

types and it is appropriate here to describe the difference between

them. The first type of path is the physical representation of a

circuit node in the topological model. It directly connects together

two or more component pins without crossing under any other components.

Two examples are shown by conductor paths A and C in Fig. 7.2. The

second type of path corresponds to a branch segment in the topological

model. The branch concerned may be either a subgraph link branch or

a conductor branch. The path is one which, when routed further in the

layout, crosses under a component. An example is given by path B in

Fig. 7.2. These two types of conductor paths are termed nodes and

conductors respectively.

The data for processing the contents of a slot is stored in

blocks, similar to those described in Chapter 6.1. The blocks are

organised into two lists called the base list and the working list.

The base list contains fnformation on all of the uncompleted

conductor paths at the lower edge of the slot. The working list is

used for storing and processing information on -all of the possible

contents of the slot.

There are four different types of block which may be used in

the base and working lists0 These are:

Branch block which holds data related to a branch component.

Subgraph block which holds data related to a subgraph component.

Node block which relates a conductor path to all or part of a

circuit node.

Conductor block which relates a conductor path, to a branch

segment in the topological model.

Each block contains a pointer back to an appropriate part of the

IBM

topological model so as to identify the physical layout with the

topological model.

7.3.1 Development of Nodes and Conductors

The initial step in finding the optimum contents of a slot

involves the development of all the nodes and conductors along the

lower edge of the slot. These elements are stored in the correct

physical order in the base list of the slot. The development of a

node or conductor is defined as creating a list of all the possible

components and conductors which may be connected to the elment.

This list then forms part of the working list of the slot. Examples

of development are shown in Fig. 7.2. Node A develops into components

C2 and C3, conductor B develops into a further conductor and node C

develops into component C4.

One difficulty in describing a node in the physical layout

is that several parts of the same node may appear in different

parts of the layout. A part of a node is defined as a conductor

path connected to one or more components of a given circuit node.

An example of two parts of a node in the same slot is given in

Fig. 7.3. The topological model of the node and its connected

components are shown in Fig. 7.3(a) whilst a possible physical

representation is shown in Fig. 7.3(b). It is essential to uniquely

identify each part of a node so that the parts may be developed into

the correct sequence of components and conductors.

Each part of a node is uniquely identified by pointers to

three different elements in the topological model. These are the

corresponding circuit node and tko bound branches which are connected

to it. The order of branches around a node is defined in the

-83-

,C2

I 	'
p 	Lq -

C3
r
1C2 I

C5

C3

I 	I

C4

(a) Topological model 	 (b) Physical layout

Fig. 7.3 	Development of a node

topological model so there is a corresponding order of components

and conductors in the physical layout. The two bound branches are

defined as the first and the last branches connected to that part of

the node which is already placed in the layout. The remaining

branches connected to the node part, if any, are thus defined as

those which lie between the two bound branches. Two examples of

parts of nodes are shown in Fig. 7.3(b). The bound branches of

part A are both the component Cl. The first and second bound

branches of part B are the components C5 and C14 respectively.

The development of a base node, or node in the base list

of the slot, proceeds in a clockwise order of branches around the

node. The first branch to be developed is the one following the

first bound branch. If the developed branch is a component branch,

the corresponding block in the topological model is checked. If

the component has not yet been placed in the layout a branch block

is added to the end of the working list. Otherwise, a node block

is added to the working list. This represents apart of the node

am
which will be routed as a conductor path until it connects with the

already - placed component. An example of node development is

illustrated by node A in Fig. 7.3(b). Following the first boundi

branch Cl, the components C2 and C3 are developed. The remaining

components, C4 and C5, have already been placed so node C is added

to the working list.

If the developed branch is a link branch, the topological

model is checked to see whether it crosses under any other branch.

If there are branch crossings, a conductor block is added to the

working list with a pointer to the appropriate segment of the link

branch. If there are no crossings the link branch must be connected

directly to its subgraph component. The corresponding component

block is therefore checked as before to decide whether to add a

subgraph block or a node block to the working list.

The developed branch may be a conductor branch (produced by

splitting a node during the construction of the pseudo planar graph).

In this case there will always be a branch crossing so a conductor

block is added to the end of the working list. The developed branch

may also be a pseudo branch belonging to the edge connector. This

means that the base node is part of an edge connector node. In

this case a node block is added to the working list. The node will

be routed as a conductor path until it is joined to another part of

the same node which is already connected to the edge pin. The

devëldpment of the base node is continued with each branch in turn,

in a clockwise order around the node, until the second bound branch

is encountered.

A conductor block in the baselist may be developed in a

similar manner to a base node. Each conductor block contains a

pointer to a tie block in the topological model. The conductor path

ME

in the layout may thus be identified with a particular branch segment

and the direction in which the branch is being traversed. To develop

a conductor bock the topological model is checked to find the

element which follows the current branch segment. This element may

be either a branch crossing or a node. In the case of a branch

crossing, a duplicate conductor block is added to the end of the

working list. The block is given an additional pointer to the

component which it is to cross. This indicates the destination of

the conductor and is used in a later part of the algorithm.

When the current conductor segment is followed by a node

there are two possible results. If the node belongs to a subgraph,

the conductor block may be developed into a subgraph block, assuming

that the component has not already been placed in the layout. If the

node is a circuit node, the conductor block in the base list is

replaced by a node block which has the conductor as its two bound

branches. The node is then developed as a normal base node.

Each node or conductor block of the base list is developed

in turn. The working list then contains all the possible components,

nodes and conductors. that could be placed in the slot. These elements

are also in the correct physical order within the list. It is

possible that a component may appear more than once in the working

list, a§ shown in Fig. 7.3(b). These multiple instances of components

are removed in a later stage of the processing.

7.3,2 Orientation and Spacing of Corponents

All the components in a layout have the possibility of four

different orientations. These correspond to each side of the

component rectangle lying parallel to and facing the lower edge of

the slot. Before the spacing of components in a slot can be

calculated, the component orientations must be determined. In

addition it is necessary to know the number of conductors crossing

under each component. This enables sufficient spacing to be -

allowed between adjacent components for these conductors to be

routed to a higher level if necessary.

Every component in the working list is developed from a

base node or conductor. The component pin to which the base node

connects is termed the source pin. Each component is orientated so

that its source pin is on the lower edge of the component, nearest to

the base node. This reduces the length of conductors from the lower

edge of the slot. As an example, the orientation of an integrated

circuit component is illustrated by Fig. 7.11. The preferred

(a)
0 0 0 0 0

III
III 	 I 	I

I 	I

	

9 	9 	91' -II
I 	 • 	I
I 	I 	I 	I 	I

L...._...j 	I 	I 	I 	L..._J
I 	 I 	I 	I

	

L - - - - - - - -J 	 L ------- J

-

Fig. 7•4 	Orientatiob of a subgraph component

orientation is shown in Fig. 7.4(a) whilst Fig. 7.4(b) shows the

extra conductor routing required if the component source pin is not

orientated towards the base node 1. If the source pin lies on a

corner of the component there is a choice of two possible orientations.

In such a case, the component is orientated towards an adjacent

conductor which crosses under 114, if one exists.

(a)
0

C2 H 1-

o 0

ci 	
:
C2

o o

(b)

one

When the layout algorithm is operating automatically, each

subgraph remains fixed in its oiientation once this has been

determined. This avoids the necessity of having to provide extra

conductor routing such as that shown in Fig. 7. 14(b). Each branch

component is initially orientated with a shorter edge parallel with

the bottom of the slot. This enables the maximum number of components

to be placed in the slot. If there is space to spare in the slot,

each branch component may later be re-orientated so that a longer

edge is parallel with the bottom of the slot.

When calculating the spacing required for conductors to pass

between adjacent components, it is assumed that conductors pass

under components only at their crossing points. For example, components

are spaced as shown in Fig. 7.5(a) as opposed to Fig. 7.5(b). This

Fig. 7.5 	Spacing of components

results in a slightly greater spacing than is necessary but avoids

having to compute the positions of all the pins of the two adjacent

components.

An algorithm has been developed to determine the orientation

of a component and the spacing required for conductors which cross

under, or are connected to it. The first operation of the algorithm

is to identify the source pin of the component. A branch component

IRIVE

may then be orientated with its source pin lowermost in the slot.

For a subgraph component it is necessary to know on which of the four

sides the source pin lies. This is determined by examining four

pointers which are stored in the master component block. These

pointers indicate the four pins which are nearest to the corners of

component. Given the source pin therefore, the corresponding side of

the component may be determined and hence the appropriate orientation.

The spacing required for conductors around a branch component

is calculated by counting the number of conductors which cross under

it. This gives the left and right hand spacing required in the X

direction. No spacing is necessary in the Y direction below the

component. Neither is spacing required above as the top of the

component will form the lower edge of a later slot. An example of

conductor spacing is shown in Fig. 7.6.

I 	 I

II
I 	i0 	1 I

I I 	 LH. X spacing - 2 conductor widths
L --J 	

LH:Y 	 =0

RH.Y 	•0

RH.X 	 -2

Fig. 7.6 	Branch component conductor spacing

The spacing required around a subgraph component is computed

in several stages. Firstly, the pin at the top left hand corner of

the component is obtained. The number of nodes and pseudo branch

crossings is then counted from this pin down to the pin at the

bottom left hand corner. From the corner, the number of nodes and

crossings is counted as far as the source pin. The second figure

gives the left hand Y spacing required and the sum of the two

-89-

figures gives the left hand X spacing. Continuing the count to the

bottom then the top right hand corner pins gives the corresponding

values for the right hand side of the component. An example of

conductor spacing is shown in Fig. 7.7.

I, 	
I 	Ii;I

I ______________
II 	0 	0 	0

L - o

I
I
$ 	a_JIll
I 	 Ii
I 	 I

•o
I 	I 	 I

I 	I 	 I
I. ------I I 	 I

L ----------

LH. X spacing 2 conductor widths

LH.Y 	 =0

RH.Y

RH.X 	' 	 =4

Fg. 7.7 	Subgraph component conductor spacing

7.3.3 Counting of Slot Contents

Having developed thebase list of a slot, the working list

contains all possible components and conductors that could be placed

in the slot. The next stage is the calculation of the total width

of all these elements so that it may be compared with the actual

width of the slot. In addition, some initial sorting of the working

list is performed. This sorting is intended to remove multiple

instances of components and unnecessary conductor paths.

The slot space occupied by a component is assumed to include

space for conductors crossing under or connected to the component as

well as the width of the component itself. In many cases, the

conductors which are to cross under the component have already been

developed from a lower level so that the working list contains their

conductor blocks adjacent to the component block. These conductors

are termed adjacent crossing conductors. The sum of block widths in

I .

the working list would thus effectively include each of these

conductor widths twice in the total. To avoid this, the destinations

of conductors on either side of a component are checked before adding

the component width to the total. Any adjacent crossing conductors

are counted and each is given a special marker. The left and right

hand spacings of the component are then reduced by the appropriate,

number of conductor widths..

The widths of all components, their left and right hand

spacings, and all conductors are added together to give the total

width of all the slot elements. At the same time a check is made for

multiple instances of each component in the working list. When more

than one instance of a component is found, the one with the greatest

number of adjacent crossings is retained in order to minimise

conductor lengths. The remaining instances are deleted from the

working list and the total width of the slot contents is reduced

accordingly.

When deleting a component from the working list it must be

replaced by a node block. This preserves the connection from the

base node to a further instance of the component. The bound branches

of the replacement node are obtained by reference to the base node

and any adjacent components connected to the same base node. If

the working list already contains an instance of the node, adjacent

to the component to bedeleted, the bounds of the existing node

block are merely updated.

It frequently occurs that a base node develops into several

conductors. If these conductors do not cross under any components in

the slot they are routed up towards a higher level slot. This would

result in several parallel paths from one base node. To prevent

-91-

this, all conductors in the working list which have been developed

from a base nodeand which have not been marked as crossing under

adjacent components are replaced by their corresponding base node.

Whenever two adjacent instances of a node then occur in the working

list, the two node blocks are combined into one. The bound branches

of the new node block are updated and the total width of slot contents

is decremented by one conductor width.

The working list now contains one instance only of each

component. All unnecessary parallel conductor paths have been

removed and the total width of the potential slot contents is known.

7.34 Sotting of Slot Contents

The total width of the potential slot contents is compared

with the actual width of the slot. There are three possible results,

each with its corresponding course of action:

The width of potential slot contents is greater than the slot

width. Some components must therefore be removed from the

working list..

The slot is exactly filled by its contents. The algorithm may

then proceed to the placement and routing stage.

The slot width is greater, than the potential contents. The

spare space may be filled by reorientating some of the components.

A sorting algorithm has been developed to decrease the contents

of the working list. The basic strategy is to keep thelarger

components in the list and to delete the smaller ones. ' This is

based on the assumption that the smaller components may be more

easily planed in later slots, especially if the later slots haveless

width than the 'current slot .

-92-

The first step is to take the value of the actual slot width

and subtract from it the width of all nodes and conductors in the

working list. This gives a figure for the maximum possible space

available for components. In actual fact the available space is less

than this because components are replaced by nodes when they are

deleted. The insertion of these extra nodes into the working list

gives rise to some difficulty in calculating the exact space

available in the slot. When several components are developed from

one base node there are many different combinations in which

components, and nodes from deleted components, may occur. Fig. 7.8

shows just one sequence by which three components may be successively

deleted from the working list.

I?cEI1r1 	Tc;L
(a) 	 (b) 	 (c) 	 (d)

Fig. 7.8 	Deletion of components from the working list

During the sorting procedure components may be marked to

indicate that they are to be placed in the slot. The working list

is searched for the largest component which has not yet been so

marked. If any component is found that has greater width than the

available space it is immediately deleted. Having found the largest

component it is temporarily marked so as to keep it in the working

list. The total width of the slot contents is then counted,

replacing all unmarked components by the width of their base node.

uoq. sr 1.uauodwo3.oqI 'AT2UTPaOOOP PaOnP@a s-t eods 1.OTS eads

04 .pU SO1.3flPUO3 2UTSSOaO ST SPIPMO1. p 	U0TJ0-01 ST 1.UOUOdWOO

1.UPTflS01 941. 'qo12eS 94 pOOlJdWOO 2UTAPH 	04IS aaqZang TT

u1 paxouT UGq4 5T .i 	xeueT..xdoJddp UP UaAT2 9T 1.OTS 941. UT

GTqPTTPAP eodsoxeds 841. upqz aa4paa2 sT uo P1.U0T.10-o1 01. eflp 41.PTM

ut OSPOJOUT8SO4M qoaes eq ;o es Aup 4P pm-to; 1.uouoduloo y

• sio1.onpuoz 2UTSSOaD uaopCpp ;o ..xequinu ZsaZPaa2 oq. q;Ttk 1.uouodwoo

qouq 044 pu; 01. PaqDaPGS U0q4 ST 4T Gql 1.STT UT)10M 941. JO

poq Zuauoduioo 2UTpuodsaaaoo oql UT PO1.S sT anTPAp91.PTnoTPzeqL

puet.xo-ox eq o OJOM 1.t ;i ejtnbei ptno 1.ueuoduloo qouq ipPe

1--4 LnpTM PJ1.X0 aql 2uTZPTnOTPO Aq S1.JP1.S W41TJOTP 041,

p0424UOTJO-ea UO4M peiTnbe

ods UT OSPOJ3UT ;Sa:~P9a2 o4. 9AP4 4OT4M S1.UOUOdUIOO 01. U0AT ST

aouee;ed puoo@S pe3npo..x sq2Ue[J043flPUOO pUP pesPelouT eq uo

AiTSUOP UT)[opd 10TS o4. 'SJO1.3flpUOO UTSS0JD s4T SPM91. 1U0U0cIU10O

P UT1.P1.UeTJ0eJ Acj 	5J01.OflpUO3 2UTSSOJO 1-Ue3PçpP 41TM S1.UOUOdUIOO

o; 1.SJT; UoAT 5T eouee;e 	51.OTS J9Wl .io; poq 41. uo eods

09J; ;o POJP 	P SOAPO1 PUP 1.OTS 1.UOJJflO 0tfl. Ut UOT1.PSTTT1.n

eods 41. sOSPOJOUT STlqj •40TS 41. ;o wo1.1.oq 41. 1.flTM TOTTPJPd

OJP SOpIS J0U0T JT941. 1.P41. OS S1.UOUOdUIOD qouPJq.e1.P1.uetJ0eJ

01 ST.9SPO 5141. ur 11.PJ1S 041, S1.Ue1Uo3 1015 041. ;o 41.PTM 041.

OSPOJOUT 0q, pedoleAep ueeq sq u1q1.tJofP 2UTqJOS puozes y

1-T w0; P91.9T9P

JO 1-°TS 941 UT 1.uouiop1d Jo; 0)jJPU1 Jeq1.to ueoq oIq s1.ueuodwoo

041 TTV rp.un pazpadaa ST eJnpe3oJd 43JP05 041, 	0A02 pouoT1.U0U1

soT1.TnoT;;Tp eq. 01. enp pO3PTd 5T 1.ueuodtuoo P oLuT. qoPe peunoz eq 01.

S.1 S1U91UO3 ;OTS 041. ;o 41.PTM T1-°1- 941, 	1-STT 041. U10ag P01.OTOP ST

iuouodwoo 941- '41-PTM 1-OTS TPfl1.°P aqj UP41- aa4paa2 ST iPPTM TP1.01- 041 ;i

-€6-

-94-

marked so as to be ignored in further searches. The procedur&;

is repeated until either the slot is completely filled or there are

no further branches with adjacent crossing conductors.

The algorithm continues if there is still space to spare in

the slot. The remaining unmarked branch components in the working

list are examined to find the onewhich will give the greatest

increase in width when re-orientated. The component thus found is

re-orientated and the spare slot space is decreased accordingly.

The search procedure is then repeated until either all the branch

components have been re-orientated or the slot space is completely

filled.

At this stage the working list is completely processed with

reference to its contents. The components in the list are orientated

for the most efficient use of the slot space'and all the components

and conductors in the list maybe placed within the actual iidth of

the slot.

7.4 Placement and Routing

The components and conductors to be placed in the slot are

held in the working list in the borrect physicl order. They have

resulted from the development and sorting procedures described in

the previous section. Thenext stage of the layout algorithm

involves the assignment of physical co-ordinates to the contents of

the slot. Conductors may then be routed from. the base nodes to the

appropriate.component pins and to the end of conductors held in the

working list.

-95-

7.'i.l 	Component and Conductor Placement

The conductor blocks in the working list represent conductors

which are to be routed from a base node at the bottom of the slot,

through the slot and up to a later slot at a higher level. Each

conductor end is assigned a physical co-ordinate so that it may be

projected upwards to a higher level without meeting an obstruction.

The conductor ends are therefore assigned co-ordinates in exactly the

same manner as components.

The X co-ordinates are assigned by working across the slot

from left to right. The initial X co-ordinate is set to the left

hand edge of the slot. The first component or conductor is then

positioned at this co-ordinate. In the case of a component, due

allowance is made for the space required by crossing conductors.

The X co-ordinate is then increased by the total width of the

element just placed. This enables the procedure to be repeated

with the remaining components and conductors in the slot.

When assigning the Y co-ordinates of the slot contents,

several points must be taken into consideration. The first is

illustrated by the example in Fig. 7.9, In routing a conductor

path from a base node to its appropriate conductor:end, it may

have to pass over several other base nodes. The conductor end

must therefore be given sufficient Y clearance from the bottom of,

the slot to enable all the conductor paths to be routed without

intersections. Similarly, components require clearance from the

bo+tom of the slot in order to prevent unwanted conductor crossings.

It may be observed from Fig. 7.9 that nodes B, C, D and E

have to be routed around node F. This node is therefore the basic

obstruction to the routing of the other nodes and it causes a

..

01 	
0

LAA.O
Fig. 7.9 	Placement of components and conductor ends

"wave front" of conductor corners to the left of itself. Each

corner point is one conductor width to the left and above the

previous corner. This fact is used in calculating the Y

displacement of components and conductors.

To calculate the required Y displacement of a component

or conductor, the right hand X co-ordinate of the element together

with its base node are first obtained. The next base node to the

right is then examined and its co-ordinates obtained. The position

of the "wave front" caused by this node may thus be calculated.

The procedure is repeated with successive base nodes to the right

until either the co-ordinates of the. "wave front" lie:, to the right

of the current component or the end of the base list is reached.

The number of base nodes examined indicates the required number of

conductor-width displacements of the component in the Y direction.

The whole procedure is then repeated on the left hand side of the

current component or conductor. The larger of the two figures gives

the required Y displacement.

-.97-

Before placing a component in the slot, a further Y

displacement may be necessary due to crossing conductors along the

lower edge of the component. If the component has both a left and

right hand Y displacement for crossing conductors, the larger of the

two is taken. This is then added to the Y displacement described

above to give the total displacement of the component. An example

of such component placement is shown in Fig. 7.10. When the total

0 1 	
]

Fig. 7.10 	Placement of components

displacement of each component in the slot has been calculated, it

is assigned a Y co-ordinate and added to a list of placed components.

During the placement of elements in a slot, it frequently

occurs that the last few elements are conductors followed by spare

space at the right hand side of the slot. Conductor ends that are

placed to the right of their respective base nodes have to be

routed around components as shown in Fig. 7.11 (a). Conductor

ends that are placed to the left of their respective base nodes

have no such obstacles to avoid. In addition, if these conductors

have to be routed to the right in a later slot they will follow an

un-necessarily long path as shown in Fig. 7.11 (b).

When the components and conductor ends have been assigned

co-ordinates, the working list is scanned from the right hand side.

one

-o

(b)

9° -u-- 	III I 	I

I 	I
I 	I
I 	I
I 	I
I 	I

(ci (a)

Fig. 7.11
	

Placement of conductors at RH. side of slot

If a conductor end is found which lies to the left of its base node,

it is repositioned to the same co-ordinates as its base node. This

results in shorter conductor paths as shown in Fig. 7.11 (c). The

scanning of the working list is continued until a component block is

encountered, or a conductor which is routed to the right from its

base node.

7.4.2 Placement of Crossing Conductors

At the stage now reached in the processing, the components

have been placed in the slot. The conductors which cross under or

are connected to these components may therefore be placed in the

layout. The routing procedure is performed in two stages. Firstly,

a list of all the nodes and crossing conductors around a given

component is constructed by referring to the topological model.

The actual crossing conductors are then routed. In the second stage,

the nodes and conductors are routed out around the component and

their list is connected into the working list.

To process a subgraph component, the first pseudo branch of

the component is obtained. By referring to the topological model,

the number of crossings of this branch, if any, may be determined.

MM

By further reference to the component position and its master block

in the component library, the co-ordinates of the two end points of

the pseudo branch may be calculated. The co-ordinates of the required

number of crossing points, equally spaced along the branch, may thus

be calculated. At the same time, a list of blocks is constructed,

containing a node block fpr the first node of the pseudo branch and

a conductor block for each of the crossing conductors.

The procedure is repeated for each pseudo branch in turn,

adding node or conductor blocks to the end of the list as they are

encountered. The two ends of the list are then joined to form a

ring, for reasons explained below. The ring thus contains all the

nodes and crossing points, with co-ordinates, in the same order as

would be obtained by traversing the perimeter of the component

rectangle. An example of component crossing points is shown in

Fig. 7.12. The pins of the component are labelled A to F and the

	

cc 	DS

R.

	

B 	E G

Fe.

Fig. 7.12 	Subgraph component with crossing conductors

crossing points are labelled P to T. The order of blocks in the

ring would thus be A P B Q C D R E S T F.

The next step is to route the crossing paths under the

component, for example paths Q to R, B to S and P to T in Fig. 7.12.

Each block in the ring is examined in turn. When a conductor block

-100-

is encountered the topological model is checked to find the node or

crossing conductor to which it is connected. The ring is then

searched to find the corresponding node or conductor block. The

co-ordinates of the two points may thus be obtained and a conductor

path routed between them0 The procedure is repeated for the

remaining conductor blocks in the ring so that all the crossing

paths are routed under the component.

Branch components are processed in a similar manner. A

ring of nodes and crossing conductors is constructed as before.

In this case the conductor blocks may be matched in pairs, corresponding

to a crossing conductor appearing on two sides of the component.

The co-ordinates of the two blocks in each pair are identical so no

conductor routing is required under the component.

The conductor crossing procedure is repeated for every

component in the working list so that each;has a ring of node and

conductor blocks associated with itself. The next stage of

processing involves routing the node and conductor paths around

the component as part of the layout procedure Also the ring of

blocks associated with each component has to be connected into

the working list.

The conductor routing algorithm described: later is based

partly on the assumption that conductors may always be projected

up to a higher Y level without encountering any obstruction. When

a component is placed it is necessary to route its connected nodes

and crossing conductors so that this assumption is true. An example

of routing is shown in Fig. 7,13. Nodes and conductors on the sides

of the component are routed outwards to the left or right. Those

-101-

I 	 I

Fig. 7.13 	Routing of component nodes

along the bottom edge of the component are routed downwards then

outwards as shown in the diagram.

A further complication occurs when the component has

adjacent crossing conductors or nodes as illustrated in Fig. 7.14.

J 	I 	I
I 	I

I 	 J 	I
I 	I 	 I

TTIET,1'
Fig. 7.14 	Routing of adjacent component nodes

Nodes on the lower edge of the component do not need to be

projected outwards. Conductor paths are routed up towards them

from the base level at a later stage of the procedure. Nodes on

the side edges of the component however, have to be projected

outwards to different X co-ordinates as shown. This prevents

-102-

intersections when the conductor paths are routed up from the base

level.

The procedure for routing the nodes and conductors outwards

from a. component starts by searching the ring of blocks for the one

corresponding to the component source pin. The blocks in the ring

to the left of the source pin are then examined in turn. Any

adjacent connected nodes on the lower edge of the component are

passed over. The remaining nodes on the lower edge, if any, are

routed downwards by the required amount so that they may later be

routed sideways without intersection. The reason for forming the

blocks into a ring is that the block corresponding to the source

pin may occur at any point in the list of nodes and crossingL

conductors. The routing procedure has to examine bloc}z both to the

left and to the right of the source pin. It is thus more easily

programmed if the blocks are connected into a ring instead of a

straight list.

The nodes which have just been routed downwards, together

with those on the left hand side of the component, are examined in

turn. Each node is routed out to the left of the component so that

its X co-ordinate differs by one conductor width from that of the

previous node The difference is negative if the node is to be

connected to one in the base list and positive if the node is to be

routed up to a later slot level. As each node is routed the

co-ordinate of its end point is updated. The whole procedure is

then repeated for nodes andconductors tb the right of the sourcepin.

At this point, the blocks representing adjacent conductors

and nodes of a component have been duplicated by the various layout

algorithms. One instance of each block appears in the working list,

-103-

developed from a block in the base list. The other instance appears

in the ring of blocks associated with the component. To remove one

instance of each block from the data structure, the co-ordinates of

the blocks in the working list are first re-assigned to the co-

ordinates of the corresponding blocks in the component ring. The

duplicate blocks are then deleted from the component ring.

For each component in the slot, the ring of blocks is split

at the source pin block so that a straight list is formed. This

list is then.inserted into the working list adjacent to the component

block. The working list thus contains all the nodes and crossing

conductors around each component in addition to the elements which

it previously contained. Furthermore, the order of these nodes and

conductors still corresponds to the order of those encountered in

scanning across the slot from left to right..

7.4.3 	Processing of Base List Elements

The working lis.t of the slot includes at this stage a number

of node and conductor blocks which have been developed from the base

list. . It also includes a source node block for each component in

the slot. The conductor routing procedure routes paths from each

element in the base list to one or more of these elements in the

working list. Before the routing can proceed however, the

appropriate blocks to which each base element is to be connected :o

must be identified. In addition, pairs.of elements in the base

list may correspond..to two parts of the samenodeor conductor.

These parts must be identified so that they may beconn,ected together.

Node and conductor blocks in the working list which are

connected to a base node are termed the target blocks of the base

	

peqJosep eq o .ieuuPui ei., UT pesse3oJd ieq.xn; 	Aet.p. PUP spoq

esq OM4 9qZ ur Z9S ST Je{aPux 	SJ; puno; eq PTflOM STL

UT cj PUP 0 spoq eq. 'atduixe up sy ioonpuoo Jo epou eurs eqj

OZ 2uT2uOT9q puno; exP OmZ TTIun Zq2Ta eq4 o. poq :xeu eqi. 4JTM

peduioo St po - q esq eq. paqo oj s.es snOAeJd eq

UflOJP IIPeSaUIL 9aP SUeIUee espq Pe1OOUUOO go S8S eASSeOOflS jpqz

sioonpuoz pup sepou esq go uojoeuuo 	STL •Ti

tt t.t ±tt
WPJ2PTp eqz wo; peou eq iui 	TL 	r.i ut UMOS ST sueweie

esq peoeuuoo ;o 	 otd 	epou euxps aqZ o. 2uuoeq

S)O ot.t. exoui eq Kpui exeq. epou P go eso eq. UI JOznpUOo

JO epou euips eq. o. 2utuoeq s.uemere ;o sjrpd io; palloaqo 5T ZSTT

esq eq. 'epou esq qoe go spoq za2api eqj punoj 2UTAPH

stq. ;p pei.noi

ou eP snqj pup epou esq P 9AP4 IOU OP 2UTa Iuauodwoo P uio..x

pajaasuT uaeq 9APt4 qoTqM 1-SçT BuTNaOm 9qZ Ut S1OOflUOO PUP S8PON

spoq Z92aP4 ;o IsTT pePçOoSSP ue SP4 euo iIeAe TT4un uxnz UT epou

esq qoe ..xo; peedei ueq. ST enpeoo.id eqj, epou esq zxau eqz

o4 peoeuuoo ST qOTqM PLM04 ST 1.ueweTe UP rP.UTh p@nUTZUOO s -j: 1-STI

Ut)jJOM etfl. go 2UTUUPOS eu epou.esPq eqj qM peroossP se2i.

o ZSTT P OZ P9PPP St IT puno T (oq za2apj qoe sy epou esq

ZSaTj etj o. peioeuuoo s.ueweTe eq TTP put; o1 Zqa o. 199T UIOJ;

9UUPD5 ueq. 5T ZSTT uTNJoM euj 	Stf eq. UT epou IX9U 9qZ JO epui

ST eou P puP uei. ST 4STT esq etqj go epou 4SaTj eqj 	epou

-trOT-

-105-

below.

The process of comparing each base block with the next is

repeated. If however, a marked block is encountered when looking

for the next block, it is passed over and the following block is

examined. Referring to Fig. 7,15 again as an example, it is

assumed .that blocks C and D have already been marked. When the

next block following B is searched for, blocks C andD will be

passed over so that blocks B and E are compared and marked as part

of the same node. During the following search, blocks C, D andE

will be passed over when finding the next block after B.• Thus

block F wilibe identified as another part of the same node. The

comparison procedure is continually repeated, identifying another

paii, of connected blocks at each pass throughthe base list. It is

completed when a complete search is • made through the base list

without finding another connected pair of blocks.

The processing of a connected pair of base blocks involves

the checking and modification of several elements of data. Consider

first the connection of two parts of a conductor, such as blocks C

and D shown in Fig. 7.15. Each conductor block in the base list has

a corresponding block in the working list to which apath will be

routed by the conductor routing algorithm. The two conductor blocks

in the working list are therefore modified so that their correspond-

ing baseblocks will be connected. The co-ordinates of both the

blocks in the workinglist are re-assigned to the .co-ordinates of

the left hand hase block. The conductor routing algorithms will

thus construct a path from the right to the left hand base block.'

Theconnection of two parts of a node is more complex as

not all the parts of the node may yet exist in the layout. The

-106-

co-ordinates of the two working list blocks are updated in the same

manner as the conductor blocks described above. In addition, the

bound branches of the two working list node blocks are checked.

The left hand bound branch of the left hand part of the node is

examined first. The topological model is referenced to find the

next branch on the node in a clockwise direction. If this is the

same as the right hand bound branch of the right hand working

block the node is complete. If the node is not yet complete the

bound branches of the remaining part are stored in the left hand

working block.

An example of the connection of two parts of a base node is

shown in Fig. 7.16. Part (a) shows the topological representation

H 	r1
Li

L A ------ ----'B]

(a)

Fig. 7.16 	Connection of two parts of a node

of the node and its attached components whilst part (b) shows the

partial layout of the node and components. It is assumed that the

base blocks A and B have been recognised as two parts of the same

node. The left hand bound branch of block A is then found to be

component Cl. Referring to the topological model, the next branch

-107-

in a clock*ise direction on the node is component C5. The component

does not correspond to the right hand bound branch of block B, which

is component CLI.. This indicates that a further connection has to be

made to the node, in this case component C5. When the connections to

a node are thus not complete, the base blocks are specially marked.

This prevents any further connections from being nested around these

base blocks.

Routing of Conductors

The blocks in the base list have now been prepared for the

actual routing of conductors. Each base block has a list of the

working blocks to which it is to be connected and each working

block has been assigned its appropriate co-ordinates. The basic

principle of the conductor routing algorithm is : that each conductor

is routed towards its target X co-ordinate and then up to its

target Y co-ordinate. The conductors are constructed by operatingin

strips parallel to the bottom edge of the slot and one conductor

width wide. If a conductor meets an obstacle during routing, such.

as another conductor, it is projected up to the next strip level and

the routing is attempted again at the next level.

An example of the method of conductor routing is shown in

Fig. 7.17. It can be seen that the resultant conductor paths are

orthogonally routed, i.e all: parts of each path'are parallel with

either axis - of the rectangular board perimeter. The paths so

produced are not generally the shortest possible between a base

block and its targets. - This method of routing however, has two

major advantages in the - construction of conductor paths. The first

is that the tedious calculation of clearances between adjacent

-108-

L
A 	B 	C

prp
f ~-J- -~- i

Fig. 7.17 	Routing of conductors

conductors at different angles is avoided. The second advantage is

that the components are already placed to allow sufficient clearance

for orthogonally routed conductors. No checking of component

positions is therefore necessary during routing.

During the routing of conductors, it is necessary to know

the current end point of each conductor path so that intersections

may be avoided. A base node may be routed both to the left and to

the right from its initial position as illustrated by node A in

Fig. 7.17. To store the current conductor end points therefore,

each base node block has two base limit elements. These store the

X co-ordinates of the end points on either side of the base node

during routing. Initially the two base limits are set to the X

co-ordinate of the base node itself.

When a conductor path has been successfully routed to a

target block in. the working list, there are two possible ways of

dealing with the block. If it represents a specific point such as

the source pin of a component, the routing to that point is complete.

The block is therefore deleted from the working list. The other

-109-

possibility is that the target block represents the end point of a

node or conductor which is later to be routed up to a higher slot.

In this case the block is retained in the working list so that it

may be included in the base list of the later slot.

The conductor routing algorithm starts by routing up to the

lower edge of the slot any base'nbdes which are below this level.

The first level of routing is then carried out, taking successive

base nodes across the slot from left to right. The node to be

routed next is selected from the base list. Its list of targets is

searched to find the one nearest tothe base node and on its left

hand side. The base block to the left of the current. block, if any,

is then examined to find its right hand base limit. This is compared

with the chosen target X co-ordinate to check for possible obstruction

of the conductor path.

If the path to the target block is not obstructed, a

conductor is routed first horizontally then vertically from thebase

node to the target. This is illustrated by the components to the

left bfflodeA in Fig. 7.17. The target block is removed from the

list of base node targets and is also deleted from the working list

if necessary. The left hand base limit of the base node is then

updated to theX co-ordinate of the target. A different procedure

is employed if the path tothe target block is obstructed. A

horizontal conductor is routed from the base node to within one

conductor width of the obstruction. It is then routed up one

conductor width to the next strip level and the base limit is

updated to the X co-ordinate of the current conductor end. The

routing of th' path is continued later at the next stipIibecie1.

-110-

Any further target blocks to the left of the base node are

routed in turn, assuming there are no obstructions. Each new

conductor path starts at the current co-ordinate of the left hand

base limit as shown in Fig. 7.18. The routing of conductor paths to

Target

KI

_

Fig. 7.18 	Conductor routing to targets

successive targets continues until either an obstruction is

encountered or there are no further targets to the left of the

base node. The routing procedure is then performed in a similar

manner for targets on the right hand side of the base node. The

same routing process is then carried out for each base node in

turn across the slot.

At the end of one pass across the slot, some of the base

nodes may have an empty target list. All the targets have been

successfully connected to each of these nodes so they are deleted

from the base list. The remaining base nodes have all been

obstructed at some stage of their conductor path routing. Base

nodes which have been routed in one direction only, such as nodes

B, C and D in Fig. 7.17, have both their base limits set to the X

co-ordinate of the current conductor end. The conductor routing

level is then incremented by one conductor width and the routing

procedure is repeated with each of the remaining base nodes in turn.

The whole procedure is repeated at successive routing levels until

no blocks remain in the base list.

-ill-

The processing of one slot is completed at this stage.

The components and their crossing conductors have been placed in

position and all conductors within the slot have been routed. The

slot base list is empty and the working list contains the component

blocks and any remaining nodes or conductors which are to beurouted

up to a later slot. The processing of the remainder of the working

list is described in the next section.

7.5 Overall Layout Algorithm

This section describes the algorithm for the overall control

of the layout process. It deals basically with the organisation and

selection of successive slots, each of which is processed in the

manner previously described.

7.5.1 	Selection of Slots

The width and co-ordinates of successive slots are determined

by the components which have already been placed on the board. This

principle, is described earlier in section 7.2. Tofacilitate the

computation of these slot dimensions and' co-ordinates,.a list of

components placed on the board at the current working level is

constructed. 'The order of components in the list corresponds to

their order across the board. The list also contains the X

co-ordinates of the two sides and Y co-ordinate of the top edge of

each component. An example of component positions is shown in

Fig. 7.19. Components Cl to C7 are placed components at the

current iorking level from which the position of the current slot

has been calculated. Components CS to C10 are part of the current

slot and'will be added to the placed component list at a later stage.

-112-

I 	 I
j._-.Current slot

I 	p
1 	C8i
II p 	p
' 	 C9 	 .

	

I 	I
I 	I

_

C 6IF]
Current Working level

Fig. 7.19 	Placed component list and selection of slots

The co-ordinates of the next slot to be processed are

found by examining the placed component list. The list is first

searched to find the component with the lowest upper edge. This

determines the bottom edge, or working level, of the slot. The

left and right hand X co-ordinates of the slot are then coincident

with the two component sides or board edges which project above the

working level on either side of the lowest component. If there are

several possible slots at the same level, the leftmost slot is

chosen first. The choosing of slot boundaries is illustrated by

Fig. 7.19. Components C3, C4, C6 and C7 are all at the current

working level. Component C3 is taken first, being the leftmost

component. This then gives the positions of the slot sides as the

sides of components C2 and C5.

When all the components have been positioned in the current

slot, the placed component list is updated. The list is first

-113-

searched to find the two components which lie on either side of the

slot. The intervening components thus lie below the current working

level and so are deleted from the list. The newly placed components

are then inserted into the samepart:of the list. In the example of

Fig. 7.19, components C3 and C4 lie below the current slot. When

they are deleted from the list, components C8, C9 and ClO are

inserted between components C2 and C5.

7.5.2 	Description of Flow Diagram

The flow diagram for the overall layout algorithm is shown in

Fig. 7.20. The algorithm tarts with several initialisation procedures.

These include the initialisation of the free storage system described

in Chapter 9.2 and the setting up of dummy end blocks for the base,

working and placed componert lists. The board dimension data is then

read in. It consists of the board length and width together with the

X co-ordinate of each edge connector pin across the lower edge of the

board. The initial base list is then constructed by referring to the

topological model of the layout. The outside edge of the graph

gives the list of edge connector nodes in the correct order. The

bound branches of these base nodes are given by the two pseudo

branches-connected to each node.

The boundary of the initial slot is made coincident with the

sides and lower edge of the board. The base list is then developed

in the manner described in section 7.3.1 to form-the working list.

The contents of the working list are -then processed and sorted as 	-

previously described. The components, if any, are positioned in the

slot and their crossing conductors are routed under the components.

The placed component list is then updated and the corresponding

component blocks deleted from the working list.

-114-

Initialise free storage system. Set up working

lists. Read in board dimension data

Generate Initial base list

IDevelop base list & put results Into working list

Orientate components & count width of working list

Increase or decrease width of working list if necessary

Place components & conductor ends. Route

crossing conductors under components

Update placed component list

Construct lists of base node targets

Route all conductors In the slot

Display the oboard layout

I Update base list & find next slot position

En -lhelayoutcompIete.

Fig. 7.20 	Flow diagram of layout algorithm

-115-

Before proceeding, a check is made for a set of conditions

which may occur in a similar way to those illustrated in Fig. 7.21.

Fig. 7.21 	Conflict of conductors in slots

The. current slot is bounded by components Cl and C2. Component C3

is placed in the slot, displaced upwards by a number of conductors

as shown. A later slot will then be bounded by components C2 and C3

as shown by the dotted line in the diagram. The left hand corner of

the later slot will contain some conductors from the current slot so

that conflict of component and conductor placement may occur. To

prevent this happening, a dummy component is inserted into the

placed component list to coincide with the offending conductor at

the right hand side of the current slot. This action is only

necessary if the highest Y co-ordinate of the end conductor is

greater than the working level of the later slot.

The layout algorithm then proceeds to the insertion of

conductor paths. The list of targets for each base node is first

constructed then all the conductor paths of the slot are routed.

Having completed the placement of components and conductors in the

current slot, a display of the current board layout is generated.

The display is used for the interaction procedures to be described

later and its method of generation is described in Chapter 8.2.

-116-

At this stage a check is made for a set of conditions.

which may occur such as those illustrated in Fig. 7.22. The

I 	 I
I 	 I

Fig. 7.22
	

Conflict of conductors in slots

current slot is bounded by components Cl and C2 and several of the

base nodes are connected together as shown. A later slot will be

bounded by components Cl and C3 with its working level ai the top

edge of component C2. The routed conductors of the current slot

will thus lie within the boundary of the later slot. As slots are

assumed to be initially empty, some conflict of conductor routing

may occur. The solution to this problem is to update the upper

level of all component blocks between and including the current

slot limits. The upper levels in the placed component list are

set equal to or greater than the highest level of conductor routing

so that the later slot will lie above these conductors.

At this stage of the layout algorithm the working list of

the current slot contains only the blocks of nodes and conductors

which are to be routed up to a later slot. The base list, although

not explained previously, contains all such nodes and conductors

across the board at the current-working level. Only a section of

the list is used at any one time to form the base list of a slot.

-117-

The working list of the current slot is therefore inserted into the

overall base list so that the nodes may be developed in a later slot.

As the nodes are ordered from left to right across the board, the

correct point of insertion of the working list may readily be

determined.

The layout algorithm continues by examining the placed

component list to find the position of the next slot. Having found

its co-ordinates., the base list is searched to find the set of base

nodes which lie between the sides of the slot. This set then forms

the base list of the next slot so that the whole procedure of

processing a slot may be repeated. The layout algorithm is completed

when all components have been placed and all node and conductor

interconnections completed. This state is detected when the base

list of all nodes across the board is empty. The layout is then

complete and is ready for output by the method to be described in

Chapter 9.

-118-

Chapter 8 	 Interaction with Board Layout

Interaction is defined as the close communication between a

computer program and the user, whilst the program is running. In

terms of the board layout problem this means that the user can

observe and alter the course of the program during the computation

of a'layout. Interaction thus enables the layout algorithm to be

supplemented by the skill of the user and should result in layouts

which are an improvement upon those produced by purely automatic

methods.

The man-ffiachine communication devices used are a graphical

display for computer output, and alight pen and Teletype keyboard

for input. Interaction with the layout program is feasible only if

a graphical display is available to present the necessarily large

quantities of visual data rapidly. Other forms of output either

give insufficient detail, as in the case of a Teletype, or take an

excessive time to produce useable data, as in the case of a

mechanical plotter.

8.1 Objectives of Interaction

There are two aspects of the layout program in which

interaction may be most usefully employed. They are situtithns

in which the exact definition, and hence programming, of the problem

is verydifficult. The user, however, has the ability to examine

the overall state of the layout and to intuitively find a solution

to the particular part.of the layout problem. He may then modify

the layout accordingly by the use of interaction.

The first use for interaction is in satisfying special

requirements for particular board layouts. Some boards may require

-119-

certain components to be specially positioned. For example, the

adjustment screw of a potentiometer or variable capacitor should be

accessible from the front edge of the board. Other boards may

require certain critical components to be closely grouped together

so that they may be attached to a heat sink and maintained at

equal temperatures. Other boards again may require the input and

output conductors of a high gain or high frequency amplifier to be

kept as far apart as possible so as to reduce the effects of stray

capacitance.

Conditions such as those just described are difficult to

incorporate into a general purpose layout program. The obvious

approach is to use an automatic layout algorithm to do most of the

work in producing a board layout. The user then interacts with the

algorithm in the areas where special conditions have to be satisfied.

The second use for interaction is in the improvement of an

automatically-produced layout. The layout algorithm optimises the

placement and routing of a succession of slots, or subsets, of the

layout. The optimum placement for each slot however, may not be the

optimum for the whole board. Interaction enables the user to assess

and modify the overall appearance of the layout. By re-positioning

a number of components it may be possible to improve the component

packing density and reduce the total conductor length.

8.2 Generation of Display

The display of the current state of a board layout is an

essential stage in the process of interaction so it is generated

after each slot has been processed. A partially completed layout

is shown in Fig. 8.1 The board outline is shown as a rectangle

-120-

P. 	a 	 0 	 Li 	 N 	 F

Cl h u
UFM7

I 	3I
1jIu1 	 ___

II 	
1 	

iI 	I
It. 	I 	ii 	lt

LJ 	 U
N A IO9E

48.1 Display of board layout

-121-

with the edge connector pins across the bottom edge. Each component

is shown as a bounding rectangle labelled with the component name.

Conductor paths are shown by. lines representing the centre line of

each path. On the display, components and conductors are drawn at

different intensities so that they may be readily distinguished.

Across the top of the display screen are a number of characters, or

light buttons, that may be used to control the modes of interaction.

The display software, described in Appendix B, enables the

display file to be divided up into a number of segments. Each

segment may then be uniquely identified in the graphical display by

pointing at it with the light pen. In addition, every segment may

be assigned an integer number by the user, termed the user name.

Each component and light button to be displayed is therefore

generated as a separate segment so that it may be uniquely identified.

In the case of a component, the user name is then used to provide a

pointer back to the appropriate component block in the data structure.

The generation of display file is cQmmenced by positioning

the seven characters for the light buttons across the top of the

screen. The user names for these light buttons are set to the

integers one to seven so that they may later be identified and

processed when seen by the light pen. The remainder of the display

file to be generated has all, of its dimensions, multiplied by a

display scale factor. This factor is read in as part of the board

data and is used to ensure'that the layout fi]Jls the display screen.

The next part of the display to be generated is the

rectangle representing the board perimeter.]he'pins of the 'edge

connector are then plotted in representational form across the

-122-

bottom edge of the board as shown in Fig. 8.1. In practice there is

usually a standard mask which surrounds the actual board layout.

This mask defines the board outline, the pins of the edge connector

and any further information necessary.

Each component to be displayed is generated as a display

subroutine so as to conserve display file space. Furthermore, the

component will have one of four possible orientations. Every

master component block in the component library therefore has four

elements allocated for display. The elements contain pointers to

the display subroutines for each of the four orientations if they

have been generated; otherwise they contain a zero pointer.

To display a component, the beam position is set to the

appropriate co-ordinate. The orientation of the component is

obtained and the corresponding element of the master component

block is checked. If that particular orientation has not yet been

plotted, the required display subroutine is generated and its

address stored in the master component block. The component is

then plotted as a separate display segment together with its

component name. The component name may consist of up to four

characters, evenly spaced about the centre point of the component

rectangle. This explains why names of less than four characters

appear to be offset to the left. The user name of thedisplay

segment is then set as a pointer back to the component block in

the topological model0

When all the component subroutines have been generated, the

conductor paths are plotted. The conductors are held in a list and

each one is represented by a list of change points, described in more

-12 3-

detail in Chapter 9,1, As there is no interaction with conductors

they are all generated in one display segment. The display of a

conductor is generated as a co-ordinate point at its start followed

by a string of vectors describing the conductor path.

When the display file has been completely generated it is

transmitted over the link to the PDP-7 computer. The display file

is then shown on the graphical display so that the user may examine

it and operate upon it with the light pen.

8.3 Interaction Facilities Provided

The light buttons on the display provide the user with a

number of modes of interaction, which are described below. The

modes of interaction are concerned with the movement of components

only as these control the overall form of the layout. The automatic

part of the algorithm then deals with the correct clearances and

routing of conductors. A state diagram of the interaction subroutine

is shown in Fig. 8.2. It illustrates the ways in which the user may

change from one state, or mode, to another. The letters by each

state indicate the light buttons to be activated in order to change

to further states of the program.

8.3.1 	DELETE Mode

The DELETE mode enables the user to delete a component from

the slot in which it is placed. The component is removed from the

slot and replaced by its source node. The source node will then be

projected up to the level of later slots until there is a slot with

sufficient space to accommodate the component. The effect of

deletion therefore is to move components up to a higher level in

the layout. The slot from which the component is deleted will have

Enter) 	
RESET

_____ 	 mode

101

mode mode

mode

MJ WKDELEiE o p & Yes

Mark component & Mark component & r Delete UNCHANGE

position tracking type In orientation component mode

cross In new slot

Imode

IFY
Exit Exit

mode

H

fr.S.2 	State diagram of interact ion subroutine

-125-

spare space corresponding to the component width. The layout

algorithm will automatically attempt to fill this space by

inserting further components or re-orientating the existing

components in the slot.

To operate the DELETE mode, the user points the light pen

at the light button "D". The light button character is then

displayed at twice the scale to indicate which mode the program is

in. The user then points at the component to be deleted, which

immediately disappears from the display. The modification may then

be implemented by entering the MODIFY mode described below.

8.3.2 	ORIENTATE Mode

The ORIENTATE mode enables the user to alter the orientation

of components in the layout. There are some restrictions on the

number of orientations that each component may have' and these are

described later. The ORIENTATE mode is operated by pointing the

light pen first at the light button 0t1 then at the component to be

moved0 The display software returns a,pointer to the appropriate

segment of the display file. From this the user name may be

obtained, which in turn gives a pointer to the component block in

the data structure.

A marker cross is displayed at one corner of the component

to indicate s.hich one is to be re-orientated, In addition, a

small marker arrow appears, pointing in the positive Y direction to

indicate the current orientation. By typing C or A on the' Teletype

keyboard the orientation marker is, rotated through 900 in a clockwise

or anticlockwise direction respectively. If the new orientation is

not allowable for that component, the marker disappears until typing

-126-

of further C or A characters brings the marker- into an allowable

orientation again. When the new orientation has been decided

upon, it is implemented by entering the MODIFY mode. Again, the

layout algorithm will automatically attempt to fill the current

slot to capacity with other compOnents in addition to the

re-orientated one.

The restrictions on allowable component orientations are

due mainly to the conductor r.outing subroutines. These will not

deal with conductors which have to be routed down one side of the

component, across the bottom and out to the other side such as

those shown in Fig. 8.3. This is due to the method of component

Fig. 8.3 Non-allowable component orientation

orientation discussed in Chapter 7.3.2. Every component

therefore has a number of allowable orientations out of a possible

four. Branch components have three allowable orientations, the

non-allowable one being with the source pin on the upper edge of

the component. Subgraph components are only allowed an orientation

with the source pin on the lower edge of the component. This

normally allows one orientation only. Two are allowable if the

source pin is at 	corner of the component. During the component

orientation subroutine a marker is automatically set to indicate

-127-

the allowable orientations. This enables the allowable orientations

to be rapidly checked during the interaction subroutine.

8.3.3 	PULL Mode

The PULL mode enables the user to pull a component down

from a slot to a lower level slot, subject to some restriction. The

component to be pulled down is identified by pointing the light pen

first at the light button "F" and then at the component. The

component is marked by a cross on the display, as shown on component

R6 in Fig. 8,1, and a tracking cross appears on the screen. As the

tracking cross is moved over the display, a set of three lines

indicate the perimeter of the slot in which the cross is positioned.

The tracking cross is placed in the slot into which the component is

to be pulled. The modification is then implemented by entering the

MODIFY mode. When the component is pulled down, one or more other

components will necessarily be deleted automatically from the lower

slot in order to make room for the new component.

The restriction on pulling down a component is that the base

list of the lower slot must contain at least one of the nodes to

which the component is connected. The reason for this is that every

new component added to the layout is connected to an existing part

of the layout. If a component were to be placed in a slot with no

connecting base node, there would be no way of knowing which way to

route the conductors around the component.

The display of slot boundaries around the tracking cross

may also serve a useful purpose prior to the re-orientation of a

component. It may be used'to check visually whether there is

sufficient room in a slot to turn the component. The slot display

-128-

is implemented by means of a list of slot dimensions which is built

up with the layout. The list may be rapidly scanned and compared

with the tracking cross co-ordinates to find the appropriate slot

boundaries.

8.3,4 	MODIFY Mode

The MODIFY mode is used to initiate the changes required by

any one of the above three modes. The purpose of having a separate

mode to initiate the modifications is to give the user a safeguard

against errors If he points the light pen at the wrong component

by mistake, he can recover from the error before the modification is

actually carried out.

Modifications to a slot will alter its placed component

profile and will consequently alter the pattern of higher level

slots. All parts of the layout above the modified slot must

therefore be deleted and later reconstructed with a new set of

slots. This is also the reason why only one modification is

carried out at a time. If two modifications were to be made in

different slots, one slot would probably be at a higher level than

the other. As all the layout above the lower slot would be deleted,

the modification to the higher slot would then no longer be valid.

Part of the data structure contains a list of all the

modifications or changes made to the layout0 Each block in the list

contains a pointer to a component, the change required and the

co-ordinates of the modified slot0 The list is ordered in increasing

slot level, Each time a change is made, a new block is constructed

and inserted into the appropriate place in the list. Any changes in

higher level slots are then deleted from the list as they are no

-129-

longer valid. The actual implementation of the change is then

carried out, described in detail in Section 8.4.

8.3.5 	RESET, UNCHANGE and FINISH Modes

The RESET mode is the base state in whichthe program waits

for further control from the user. After a slot has been produced

automatically or has been modified, the display is updated and the

program returns to RESET mode. The other use of this mode is when

the user makes an error in pointing the light pen at a component

during PULL, ORIENTATE or DELETE mode. The RESET mode restores the

program to its state before the modification was attempted. Marker

crosses, slot boundaries, etc. are removed from the display or

deleted components are displayed again.

The UNCHANGE mode cycles the layout program automatically

through the placement and routing of the next slot. When the slot

is completed, the display is updated and the program returns to

RESET mode. By repeated entry of the UNCHANGE mode, the whole

board layout may be constructed automatically.

It is not always obvious to the user when a layout has been

completed. Each time that the UNCHANGE mode is entered therefore,

a check is made to see if the layout is complete. If it is, the

program enters the FINISH mode. Further modifications may be made

if required by returning to RESET mode followed by the required mode.

If, however, the light pen is pointed at the FINISH mode light

button, the layout is completed and the program is ready for the

output of results.

-130-

8.4 Modifications - to Layout Algorithm for Interaction

The automatic layout algorithm described in Chapter 7 must

obviously be modified in order to include interaction facilities.

The modifications take the form of four extra subroutines added to

the layout program, the basic subroutines remaining substantially

unchanged. Two of the interactive subroutines have already been

described. These are the display generation subroutine, described

in Section 8.2, and the light pen servicing subroutine, described

in Section 83. The two further subroutines to be described deal

with the cutting ba4 of a layout to the level of the latest change

and with the actual incorporation of the change into a slot.

8.4.1 Reconstruction of Layout

The base and working lists of the layout agorithm hold

detailed information on the state of the layout at the current

working level. Once the components have been placed and the

conductors routed at this level, the information becomes largely

redundant. The redundant base and working blocks are therefore

returned to free storage before moving on to the next slot, so as

to conserve storage space. It is thus extremely difficult to

recall the state of the layout at any level below the current

working level. One may find which conductor paths exist at a

given level but there is no way of determining to which nodes or

conductors they correspond.

The problem of cutting back the layout to the level of a

modified slot is approached from a different direction. The entire

layout is deleted so that no part remains except for a list of the

changes made at the current and lower levels. The layout is then.

reconstructed, incorporating the changes, up to the level of the

-131-

latest changes The layout procedure may then continue from this

point. Reconstruction of the layout every time a change is made is

not the most economical way of using computer time. This point is

further discussed in Chapter 114.

The subroutine for cutting back the layout to the level of

the latest change starts by adding a new block to the list of

changes. The required contents of the block are described in

Section 8.3.14, The blocks in'the base list, working list, placed

component list and other lists of the layout algorithm are all

returned to free storage, except for the list of changes. The

layout is then reconstructed automatically from the initial base'

list of edge connector nodes, as described in Chapter 7. Any

changes required in the slots are incorporated by the methods to be

described below. During the reconstruction, the generation of display

'file is suppressed. When the currently modified slot is reached,

the display is regenerated and the program is ready to proceed under

interactive control again.

8.4.2 	Insertion of Slot Modifications

The fourth subroutine required for the interaction facilities

deals with the actual incorporation of changes into a slot. It

operates between the stage of counting and'the stage of sorting the

contents of the slot, when the layout is being reconstructed. After

the total width of all possible contents of the slot have been

counted, its co-ordinates are compared with those in the next block

of the list of changes. As previously mentioned, each block in the,

list of changes contains the co-ordinates of a slot to be modified.

If there are no changes to be made in the 'current slot the algorithm

-132-

proceeds with the sorting of slot contents as described in

Chapter 7.3.4.

When the current slot co-ordinates do coincide with those of

the next change block, the component whose position is to be modified

is obtained from the change block. The working list is then searched

to find the corresponding block. If the component is to be deleted

from the slot, its block is deleted from the working list and the

total width of slot contents is updated. If the component is to be

re-orientated, its orientation and width data are re-computed. Its

block is marked to indicate thatthe orientation must remain unchanged

and the total width of the slot contents is updated. If the component

is to be pulled down into the slot, its block is marked to indicate

that it rhust remain in the slot. In the case where the user tries

to pull a component down into an incorrect slot, the component

block will not be found in the working list so a corresponding

error message is printed out.

When a modification has been incorporated into the working

list, the nextblock in the change list is examined in case there

is more than one modification to be made in the same slot. When

alithe modifications have been included, the resultant total

width of all possible slot contents is compared with the actual

width of the slot. Depending on the result, either one of the

two subroutines described in Chapter 7.3.4 may be called in order

to increaseor decrease the width of the potential slot contents.

The subroUtine for increasing the width of slot contents

is modified slightly so that appropriately marked components are

not re-orientated to take up a greater width. The subroutine for

-133-

decreasing the width of slot contents is modified so that all the

marked components remain in the slot. These measures ensure that

the user's modifications are not altered by the automatic part of

the layout algorithm. It may occur that the user tries to pull

down or re-orientate too many components in a slot. If the width

of the slot contents cannot be reduced to less than the actual slot

width, an appropriate error message is printed out.

When all the modifications have been made in a slot and

when the slot contents have been adjusted to the correct slot

width, the layout algorithm proceeds to the placement and routing

stage. If then continus automatically, processing each slot in

turn and including further modifications where appropriate. The

automatic reconstruction of the layout is completed when the

currently modified slot is reached. The program is then ready

to proceed under further interactive commands.

'I

13L1.

Chapter 9 	Computer Implementation of Layout Algorithm

This chapter describes further programming methods used to

implement the layout algorithm. It also indicates the ways in which

the programming and form of output of the algorithm have been

affected by the available computer hardware and software. The

methods of data storage described are extensions of those outlined

in Chapter 6.

9.1 Data Structure

The layout algorithm generates and uses many items of data

during the construction of a layout. The form and quantity of this

data constantly changes as the layout progresses. A data structure

is therefore necessary to store the information in the correct order

and in a readily accessible form. Much of the data is obtained

from the data structure representing the topological model of the

layout, described in Chapter 6.

The main additional features required for the layout

algorithm are three lists. These are the base list, the working

list and the placed component list. An example of one of these

lists is shown in Fig. 9.1. During the construction of the layout

I 	 I
I 	 I

Fig. 9.1 Two-way list used for layout program

-135-

it is frequently necessary to know what elements lie on either

side of a given component or conductor in one of the lists. The

blocks in each list are therefore given two-way pointers as shown

in the diagram so that the lists may readily be traversed in

either direction.

Every block in the three lists is given a marker to describe

the type of element it represents. The base and working lists may

contain four different types of element. These are node, conductor,

branch component and subgraph blocks. The placed component list

contains only placed component blocks. As blocks are constantly

being added to and deleted from the lists the problem arises of

knowing which blocks represent the ends of the lists. This problem

is solved by connecting dummy blocks to the two ends of each list.

The same blocks thus remain at each end of the list and when the

list is empty, one of its dummy blocks becomes connected directly

to the other.

The fourth element of every block in the base and working

lists contains a pointer to part of the data structure of the

topological model. This enables each block to be uniquely

identified. Node, branch and subgraph blocks contain pointers to

their corresponding blocks in the topologicalmodel. Each conductor

block contains a pointer to the tie block in the topological model

that represents the corresponding segment of the conductor. The

remainder of every block contains data that is obtained and used

during the layout algorithm. This includes such items as the total

width of a component and its crossing conductors, the source node

of a component, the bound branches of a node and so on.

-136-

A further type of data structure is required to describe

the conductor paths of the physical layout. The structure is

illustrated by Fig. 9.2. Each conductor path consists of a

Fig. 9.2 Rpresentation of two conductor paths

line start block together with a number of line point blocks.

The line start block contains the starting co-ordinate of the path

and a pointer to the list of line point blocks. The line ioint

blocks hold the co-ordinates .of the path at each point where it

changes direction, including the end point. They also each hold

a pointer to the next block of the path.

All the conductor paths of a layout are held in one list.

Each line start block therefore contains a pointer to the next

block in the list. In addition, each block contains a pointer

to the last line point of its conductor path. This enables an

extra point to be added to the end of the path without having to

-137-

to search through the whole list of line points. It should be

noted from the diagram that the two co-ordinates of every block are

packed into one word. This saves a considerable amount of storage

space in the data structure as a typical layout contains a large

number of line point blocks.

If often occurs that a conductor path has to be routed 4p

through several successive slot levels befQre its destination is

reached.. It is preferable that one càntinuous path be defined,

rather than have a new line start for each part of the path in

successive slots. In order to obtain a continuous path the node

or conductor block in the base list which represents thepathis

given a pointer to the line start block. When the path is routed

from the base to the working block, the line startpointer is also

passed on to the working block. As this block is later inserted

into the base list of a higher slot, the line start is effectively

passed up to the next slot level. A further measure is taken to

conserve storage sace when extending a conductor path. If the

path is to be extended in the vertical direction, the Y co-ordinate

of the final point is updated rather than create a new line poiiit

block.

In programming the layout algorithm, the data structure

manipulations are described extensively by use of the ML/l macro

generator. A further set of macro calls are defined and used in

the same way as outlined in Chapter 6.3.

9.2 	Free Storage: System

The data storagesystem used for the layout algorithm is an

extension of that used for the topological algorithm.. The data is

-138-

stored in a number of blocks which are allocated from one large

array, as described in Chapter 6.1. During the working of the

layout algorithm however, a large number of data blocks are created

and used. When part of the layout has been constructed many of

these blocks become redundant. Furthermore, when interaction is

used and the layout is modified, most of the layout data structure

becomes redundant. A free storage system is therefore added to the

basic data storage system so that redundant blocks may be used again

by the layout algorithm.

There are a number of ways of arranging a free storage

system. Some systems allocate data blocks by dividing up the next

largest block. If any blocks returned to free store are adjacent,

they are merged into one larger block. Other systems move up all

allocated blocks below a returned block so that all the free store

is at one end of the data array. Further systems may use a

combination of these techniques. The particular system used here

is simplified by the fact that the layout algorithm uses only eight

different types of block. Every instance of a particular type of

block is alwaysof the same length sothat there are never morethan

eight different block lengths in the storage system.

The free storage system is shown in diagrammatic form by

Fig. 9.3. The basic part of the system is a store block which

contains eight elements, corresponding to the eight different types

of data block required. Every data block contains'a marker which

described its type. These markers are actually the integers from

one to eight, so that each type of block may be associated with

one element in the store block. All the free blocks ofa particular

type are thus held in a list. The corresponding element of the

-139-

Store block

- 	 Fig. 9.3 	Free storage system

store block then contains 'a pointer to the start of this list as

shown in the diagram.

When a data block of a particular type is required from

free store, the corresponding element of the store block is examined.

If the element contains a pointer to a list of free blocks the

first block is removed from the list and made available to the

program. If the element contains a zero-value pointer the blocks

of that type have either all been allocated or have not' yet been

created. In either case a new block is created from the un-used

part of the data array in the manner described in Chapter 6.1.

To return a block to free storage, its type marker is first obtained.

The corresponding element of the store block then indicates the list

to which the data block should be added. 	'

9.3 Measurement System of Layout

The system of describing co-ordinates, for the laybut

algorithm is partly influenced by the FORTRAN compiler available

for the ICL 4130 computer. One feature of the compiler is that

l'-tO

an array of integer numbers requires one store word per number

whereas an array of real numbers requires two words per number.

The data array for the layout algorithm is of considerable length

so that there is insufficient store space to allow a real array.

As the layout co-ordinates are stored in the data array, they must

be held in integer form.

Before commencing the layout, a basic unit of measurement

is defined by the user. A typical unit could be 0.025 1 t. All

dimensions and co-ordinates of the layout are then expressed in

terms of an integral number of these units. The computer word

length is 24 bits which allows the maximum value of an integer to

be approximately 8 x 106. This gives more than sufficient resolution

for a small basicmeasurement unit together with a. large board size.

The reference point of the board from which all co-ordinates are

measured is the bottom left hand corner of the board. This assumes

that the edge connector lies along the positive X axis.

Every master component in the component library has a

reference point and a reference orientation so that its pin co-

ordinates may be defined. The reference orientation is such that

the longest axis of the component lies parallel to the Y axis, with

the reference point at the bottom.left hand corner of the component.

The pin co-ordinates may then be defined relative to this reference

point. When a component is placed in the layout its position is

defined by its orientation and the co-ordinates of its reference

point. The relative pin positions are then found by rotation about

the component reference point.

1Lt1

The co-ordinates of the conductor paths define the position

of the centre line of each path. The minimum distance between centre

lines is specified.by the user. This distance allows for the width

of conductors and the spacing between them. The present version of

the layout algorithm permits only one value of conductor width and

spacing for the whole layout.

9.4 Output of Board Layout

The basic data describing a board layout is held as a set of

integer co-ordinates within the data structure of the computer

program. The user generally requires the description of a layout in

the form of one or more diagrams showing the placement of components

and the routing of conductor paths. The methods of output used at

present are described below and some further possibilities of data

presentation are discussed in Chapter 11,6.

The display of a board layout is used as the basis of data

output for the layout algorithm. The generation of the display file

has already been described in Chapter 8.2. The various ways of

observing and storing this information are illustrated by Fig. 9.11.

The display software (11) also enables the display file to be either

punched out on paper tape or transmitted over the high speed link to

the PDP-7 computer. Corresponding software in the PDP-7 enables the

display file to be read in from paper tape or from the.link and then

displayed on the Type 340 display.

The display file may be stored from the PDP-7 core onto

magnetic tape for subsequent display or plotting. A plotter

softwarepackage (12) is available to drive the Calcomp plotter from

the display file data so as to produce a hard copy of the display.

-l2-

Magnetic tape 	 Plotter 	 Display

Fig. 9•4 Outputs of board layout program

For present applications the component positions and conductor paths

are drawn on the same diagram as shown, for example, in Fig. 8.1.

The program may readily be modified so as to produce two separate

diagrams of component placement and conductor routing if required.

On completion of a board layout further data is output for

the purpose of comparing several different layouts of the same

circuit. The total length of all conductors on the board is

computed and printed out, together with the overall height of the

board actually used by the layout algorithm.

lLi.3

Chapter 10 	Results of Layout Procedures

This chapter describes the results of the planarity and

layout algorithms. Three circuits are given and their layout

diagrams shown. These are then compared with the results obtained

by interaction. All the layout diagrams are grouped together at

the end of the chapter so that they may readily be compared.

10,1 Description of Circuits

Three different circuits are used to illustrate the results

of the layout procedures. They are labelled A, B and C and are shown

in Figs. 10.1, 10.2, and 10.3 respectively. They aretypical of the

smaller type of industrial circuits that are laid out on single sided

boards.

Circuit A has been used for most of the development and

testing of the algorithms so detailed data is available for all

stages of its layout construction. The circuit is used to show the

results of the planar graph and pseudo-planar graph algorithms.

The circuit layouts also illustrate the improvements that may be

madeby the use of interaction.

Circuit B, of similar size to A, is again used. to illustrate

the layouts obtainable by automatic and interactive means. In

addition, a manually-designed layout of this circuit is given. The

computer and the manually generated layouts are compared and the

different techniques disçussed.

Circuit C has approximately twice the number of components

of the previous -two circuits. It is used to illustrate the effects

on computer time and storage space of larger circuits. It alsosshows

the improvements that are possible by the use of interaction.

A

Fig. 10.1 Circuit diagram of circuit A

H

01

7

DI Dc 07

Fig. 10.2 Circuit diagram of circuit B

Fig. 10.3. Circuit diagram of circuit C

H

0•)

-147-

10.2 Construction of Pseudo-Planar Graph

The construction of the pseudo-planar graph of a circuit is

an essential part of the layout procedure. As the planarity,

algorithm is completely automatic, and the results are then used in

the generation of the physical layout, the graph is not normally

output from the computer0 When output of the graph is required, it

is printed out in the form of a list of regions. Each region is

itself a list of the branch segments which form the boundary of the

region. Although this form of data is ideally suited to the

planarity algorithm, it results in a difficult task when constructing

a diagram of the graph. The comparison of planar and pseudo-planar

graphs has therefore been made for one circuit only.

10.2.1 Construction of Planar Graph

The initial planar graph of circuit A is shown in Fig. 10.4.

The circled numbers are the circuit nodes, corresponding to those

labelled in Fig. 10.1 Subgraph nodes are labelled by theIr

transistor number folowéd by a letter A, B or C denoting the

collector, base or emitter of the transistor respectively. Component

branches are labelled with their appropriate component name. The

branches shown dotted are those which have been removed from the

total graph in order to make it planar. The outside edge of the

graph is composed of the edge pseudo branches and the edge connector

nodes, labelled from 1 to 6. The first region of the graph is then

that which 1ies outside the boundary of the graph.

The first starting node taken in the construction of the

planar graph is node 1 and the first target is node 2. The search

fora planar path between these two nodes yields the components RI,

Cl and TR2. These components, together with the edge pseudo branch

1-2 therefore form the boundary of the second planar region. The

remaining two pseudo branches of subgraph component TR2 are then

added to the graph as a further planar region. The next target

in an anticlockwise direction from the start node is thus node 2B.

Another planar path is then found, adding component R4 to the graph.

The following target is node 9. As no planar path exists between

this node and the starting node 1, the search direction is changed

to a clockwise direction from the start node.

Two further planar regions are added to the graph by

searching for planar paths from node 1 to node 6. The following

target is then node 13. No path exists from node 1 to node 13,

however, without touching the edge of the free region at some other

oint and hence dividing the free region into two parts. The

remaining branch on the start node, branch R9, is thus deemed to be

non-planar as it conflicts with component branch Rll and link branch

14C. The algorithm continues by taking further nodes in turn as

starting nodes0 Thesenodes are 9, 8, 7, 1A, 11, 3, 4 and 5 in that

order. The planar graph is then complete as shown in the diagram.

It can be seen from the planar graph that the two branches

with which R9 conflicted, Rll and link 1+C, have also been removed

from the graph at a later stage. Branch R9 could thus be included

in the planar graph. Similarly there are two other brancheswhich

could be included. These are link branch 3C and either component

branch R5 or R60 The planarity algorithm thus does not necessarily

select the optimum planar subset of a graph. This is not critical

however as the planar branches removed from the graph are recognised

and re-inserted during the next stage of the algori1hm.

-148-

Non-planar branches

Fig. 10.4 Planar graph of circuit A

lL9

The insertion of component branch R12 into the graph

illustrates a difficulty in the construction of a physical layout

from a topological model. The branch constitutes the shortest

possible path, or path of minimum number of branches, between nodes

1 and 6. The edge pseudo branch 1-6 however, represents the outside

edge of the board. To connect component R12 into the layout

therefore, its connecting conductors must be routed around three

sides of the board. This iliustra€es the problem that the shortest

distance in the graph does not necessarily represent the shortest

distance in the layout.

10.2.2 	Insertion of Non-Planar Branches

The completed p,seudo planar graph of circuit A is shown in

Fig. 10,5. It is substantially the same as Fig. 10.4 except that

the non-planar branches have now been assigned fixed paths in the

graph. These branches are still s1own as dotted lines so that they

may readily be recognised. The nodes labelled with numbers greater

than 1000 are new nodes formed by the "node splitting" process of

inserting non-planar component branches.

The effects of the "node splitting" algorithm can clearly

be seen in the diagram. Part of node 1, for example, is split into

node 1001 so that component branch R6 may be inserted into the graph.

Part of node 3 is split into node 1002 for the insertion of branch

R8. It is then split again into node 1003 for the insertion of R2.

Thenumber of parts into which a node may be split is limited only

by the number of branches connected to it. It may also be observed

that the three planarbranches mentioned above have been recognised

and inserted into the graph.

-150-

----. Non-planar branches inserted

Fig. 10.5 Pseudo-planar graph of circuit A

-151-

A further point to note from the diagram is that non-planar

branches R6 and link 4C are crossed. Branch R6, being a component

branch, is inserted into the graph first. Although it crosses one

branch in splitting node 1 there is still space for further crossings

under the component. When the link branch is later inserted, the

insertion algorithm is concerned only with the amount of space under

component and pseudo branches already in the graph. Hence a non-

planar component branch may later be crossed by several non-planar

link branches.

10.2.3 	Comparison of Circuits

The relative sizes, storage requirements and computing times

of the three circuits used are compared in Table 1 below. The

computing time given is the approximate time required to read in the

data, set up the data structure and construct the pseudo-planar

graph of the circuit. The storage requirement is the number of

words of the data array used in the construction of the pseudo-

planar graph.

Circuit A B C

No. of components 21 26 38

No. of circuit nodes iLl. 16 32

Storage 	(words) 1345 1731 3157

Computing time (secs.) 5 5 11

Table 1 	Comparison of Circuit Sizes and Computing Times

A further point arises from the construction of a pseudo-

planar graph. If the algorithm is started from another node on the

edge connector it generally produces a different graph of the same

-152-

circuit. This occurs naturally as no attempt is made to search for

the optimum planar graph of the circuit. The computing time required

- 	to generate a pseudo-planar graph is short, as can be seen from

Table 1, It is therefore feasible to start at a different node and

generate a different graph of the circuit if, for any reason, the

first graph is unsatisfactory.

10.3 Construction of Lyouts

The layouts constructed automatically by the layout algorithm,

with no alterations by the user, are discussed here. The results of.

interaction are described in the next section.

10.3.1 	Lajrout of Circuit A

The layout of circuit A is shown in Fig0 10.6 and clearly

illustrates a number of features of the layout algorithm. The

packing density of components on the lower part of the board is

good and conductor lengths are short0 This is due to the fact that

the first components selected for placement are those closely

connected to the edge connector. The.next components selected are

then those most closely connected to the existing part of the

layout. This strategy produces a compact layout as intended.

The upper part of the board has a lower component density

and contains a number of long parallel conductor paths. This is

mainly due to connecting up ends of node and conductor paths which

have already been started at lower levels of the layout. When

processing base nodes in the higher slots, they frequently develop

into components which have already been placed on the board or into

conductors which have to cross under these components. The upper

part of the board therefore contains a higher ratio of conductors

-153-

to components in order to preserve the circuit topology. This

weakness of the algorithm can,, however, be improved by the use of

interaction.

The circuit contains one extremely long conductor. This is

the link branch which connects component TR4 to TR3 and R7 and which

crosses under Rb, R9 and R6. This length of conductor path is

undesirable in a practical layout because it increases the board

space required for routing and may introduce excessive stray

capacitance between adjacent conductors. It illustrates the fact

that a short path in the graph does not necessarily represent a

short path in the layout. The path is necessary in. the layout,

however, in order to preserve the circuit topology. A draughtsman

laying out the circuit would either re-arrange the component

positions or insert a wire jumper in order to reduce the conductor

length.

Part of the board space is un-used in the slot bounded by

the board edge and component Cl, and above components RiO, R9 and

Ri. Development of the base nodes of this slot yields either'

components which have already been placed or conductors which are

to cross under other components. No components can therefore be

placed in the slot so the available space is wasted. It is obvious

from the diagram though, that componnt TR2 could be placed in this'

slot even though its source node lies outside the slot boundary.

An'extension of the principle of the PULL mode of interaction could

thus be used to automatically pull components down into empty slots

and hence improve the component packing density.

The crossing conductor between components RiO and R9 is the

cause of frequent.comment. The actual component-crossing parts of

-154-

the conductor are inserted at the same time as the components. At

a later slot level (across the tops of the components) the conductors

are routed up to that level before they are recognised as two parts

of the same conductor and joined. The same procedure is absolutely

necessary however in the case of the conductor connecting Rll and

TR4. If the two parts of this conductor are not routed to a level

above TR4, the conductor will clash with the crossing under TRLI..

Unnecessary bends in conductors such as that between RiO and R9

could be avoided by further programming. This would check for the

absence of components between the two parts of the conductor before

routing the conductor path.

10.3.2 Layout of Circuit B

The automatically produced layout of circuit B is shown in

Fig. 10.8. Most of the observations on circuit A also apply to this

circuit. One point that is immediately obvious is that the layout

has "fallen off" the top edge of the board. Although such a layout

could not be built it shows a useful property of the layout algorithm.

The algorithm will continue over the edge of the board and still show

the state of the layout. It will not, as some layout programs do,

go into an error state when there are too many components to fit

onto the board.

There are two possible courses of action when the layout

exceeds the board size. If the layout is mostly on the board it

may probably be arranged wholly on the board by the use of interaction.

If a large proportion of the layout is off the board, the required

component density is too high. The circuit must therefore be

placed on a larger board or partitioned onto two separate boards.

-155-

Unlike the previous layout, circuit B is laid out on a

board whose width is less than its length. A considerable area of

the board space is thus taken up by conductors routed up to

components at higher slot levels. In the limiting case the board

width would be almost entirely taken up by conductors and there

would be no room for further components to be placed. This

situation can be partially remedied by interaction and can be

eliminated by using a wider board.

The layout algorithm optimises the contents of each slot

in turn. This may not however give the optimum overall layout as

is illustrated by component R2 at the top of the layout. R2 is

placed in the slot across the top of R14 and bounded by the edge

of the board and component R16. There is only sufficient room in

this slot to place R2 in a vertical orientation. If placement had

been delayed to the later slot across the top of R16, the component

could have been horizontally orientated. This would then have

reduced the overall height of the layout. This is atypical case

where interaction can be used to improve a layout.

10.3.3 Layput of Circuit C

The automatically produced layout of circuit .0 is shown in

Fig. 10.11 and illustrates the layout of a larger circuit. It can

be seen that the component packing density on the left hand side of

the board is good. The components-are closely interconnected with

few crossing conductors. In comparison the right hand side of the

board is largely taken up by a number of parallel conductor paths.

Closer examination of the layout reveals,that there are

three or four conductors which follow parallel paths under components 	-

VR1, RlL, R19, R22, R26, R23 and R25 in that order. These are the

-15 6-

conductors which occupy most of the right hand side of the board.

The paths are necessary in order to preserve the circuit topology

and they once again demonstrate the problem involved in translating

a topological model into a physical layout. The excessive space

requirements may be reduced by the use of interaction. In the

case of a manually produced layout, the conductor paths would

probably be avoided by the use of wire jumpers.

The diagram shows that the spacing between adjacent

components with crossing conductors is greater than necessary.

Examples of this are components Rl, R2 and R3 on the left and

components *25 and R23 on the right hand side of the bottom slot.

The reason for the unnecessarily long crossing conductor paths

- has already been explained for circuit A. If the lengths of these

paths are reduced by further programmed checks as suggested, the

same information can be used to reduce the spacing between the

adjacent components. This would then improve the component packing

density of the layout..

The diagram shows that the orthogonal routing of conductors

could be improved in some cases. For example, the conductor paths

from the top and right hand sides of Rlli could each have several

change points removed by routing the conductors vertically as far

as possible then horizontally. Sborage space for the conductor

paths would be reduced also. Conversely, the same treatment could

not be applied to the conductors below components R8, R17, R13 and

R14. The cnductor routing can thus be improved at the cost of

further computational checks during routing or by allowing interaction

with the conductor paths..

-157-

lO.3.'4 Comparison of Computer Requirements

The computing times and storage requirements for the three

layouts are compared in Table 2 below. To obtain the computing

•times, the generation of display and the interaction subroutines

have been suppressed. This has been done to eliminate the user

interaction time and the time taken to completely regenerate and

transmit the display file for every slot. The time given is thus

that required to automatically generate the complete layout from an

existing topological data structure. It does not include the time

taken for the output of results as this is dependent on the form

of output used.

The storage requirement for each circuit is the number of

words of the data array used by the layout algorithm. This comprises

storage for the topological model, the layout, its conductor paths

and the data blocks used for the base, working and other lists.

Circuit A B C

Computing time 	(secs.)

Storage space 	(words)

8

2995

13

4258

26

8243

Table 2 	Comparison of computing times and storage space

10.4 Results of Interaction

In this section the results of interaction with the three

board layouts are discussed and compared with the automatically

produced layouts. It should be emphasised that the modified layouts

are not unique. A completely different, possibly better, layout may

be obtained for each circuit by carrying out different modifications.

-158-

10.4.1 Interaction With Circuit A

The modified layout of circuit A is shown in Fig.- 10.7.

Comparing it with the automatic layout of Fig. 10.6, it can be seen

that the component packing density has been improved. A number of

long parallel conductor paths have also been eliminated from the

layout.

The basic strategy of interaction in this case is the

observation that six of the parallel conductors across the top of

the automatic layout are developed from the edge pin 1 and components

R9 and RiO. The two components are themselves developed from edge

pin 1. If the components were on the right hand side of theboard,

only one conductor from edge pin 1 would have to be routed across

the top of the layout. The other five conductor paths would then

be drastically reduced in length..

To produce the modified layout, components R9 and RlO are

deleted from the first slot. The layout algorithm compensates for

the change in slot contents by automatically re-orientating the

components in the bottom slot as shown. Continuing with the layout

algorithm, the next slot to be processed is that across the top of

R12 and bounded by TR4 and the edge of the board. It-so happens

that R9 is placed in this slot by the program. The user then

continues to use the automatic facility of the algorithm to produce

the remainder of the layout. 	 -

From the layout of Fig. 10.6 it can be seen that some

conductor paths could be shortened by rotating component TR4 through

900 anticlockwise. The automatic algorithm has not done this

because TR4 has a choice of twO - possible orientations. The

information available at the time of assigning the orientations is

-159-

not sufficient to choose the better of the two. The modification

has therefore been made by the use of interaction as shown in

Fig. 10.7.

Although this circuit gives a simplified example of

interaction, it illustrates how significant improvements can be made

to a layout by a few modifications in conjunction with the automatic

algorithm. The user's ability to look ahead from a slot to later

parts of the layout enables the overall layout to be optimised, rather

than the contents of each slot. Actual figures on the improvements

to the layout are given in Table 3 below.

Due to the increased packing .density of the layout after

interaction, a large blank space is left at the top of the board.

Theie are a number of ways of dealing with this, depending on the

user's requirements. The layout may readily be expanded in the Y

direction so as to fill the whole board space. Alternatively it

may be left as it i, or re-laid out on a smaller board..

10.4.2, Interaction With Circuit B

The modified layout of circuit B is shown in Fig. 10.9 and

may be compared with the automatic layout of Fig. 10.8. It can be

seen that interaction has reduced the layout size to bring it well

within the bounds of the board. Two basic interaction strategies

are used for this layout. The first, as for circuit A, involves

recognising that some components developed from a base node produce

a number of conductors which are routed up to higher slot levels.

These components, such as TR4 in the bottom slot of Fig. 10.8, are

thus moved up to a higher level so as to reduce their connected

conductor lengths 	 .

-160-

Removal of TR4 from the bottom slot leaves room for further

components in the slot (D3, Cl and Rl) and consequently gives a

greater packing density0 The layout is continued and components

such as TR4 are moved upwards to higher levels until most of their

nodes can be connected to adjacent conductors. The moving of a

component up to a higher level consists of deleting it from all the

slots it appears in until the required level is reached. This is

sometimes tedious and could possibly be improved by having a further

mode of interaction to pull components upwards.

The second interaction strategy involves arranging the

desired orientations of components. An example is given by components

R13 and R15 in Fig. 10.9. Previously the components were orientated

vertically in the slot across the top of R8 and TR2, and bounded by

C3 Sand R2. This gave a greater height to the layout and left spare

space in higher slots to the left of the components. The two

components arere-arranged by deleting R13 from the slot. This

leaves sufficient space for P15 to be orientated horizontally. R13

is then orientated horizontally in a higher slot. The same technique

is also used to move component C2 from the right hand side of the

board to the top of the layout.

One important point noted during interaction is that

modifications to a layout should be made at lower levels first. If

this is not done, a later modification at a low level will delete

the layout and modifications above that level. In some cases, such

as pulling a component down to a lower level, this is unavoidable

and means that the higher level changes will have to be made again.

-161-

I0. 1 l..3 	Interaction With Circuit C

The modified layout of circuit C is shown in Fig. 10.12.

Comparing it with the automatic layout of Fig. 10.11 it can be seen

that interaction has made a considerable improvement to the layout.

The techniques used to improve the layout are similar to those

described for the previous two circuits. An additional strategy has

also been used, based on the observation mentioned in section 10.3.3
c

that a number of components are crossed by the same three or four

conductors. The lengths of these conductors can be considerably

reduced by arranging that the crossed components are adjacent to

each other. The results of this strategy can be seen in the centre

and right hand side of the layout.

At higher levels of working on the layout, the time taken to

make a modification becomes quite noticeable. This is due to the

fact that the layout and the display are completely regenerated up

to the level of the modification. Possible improvements to this

situation are discussed in Chapter llLf. The modified layout still

contains a number of long parallel conductor paths. It is possible

that with further interaction some of these paths may be reduced in

length. It is a general point, however, that the improvements to a

layout are ultimately limited by the circuit topology..

104 Comparison of Interaction Results

The "goodness" of a layout is difficult to specify. It

depends partly on the overall appearance of the layout and partly on

the user's special requirements. Often, two completely different

layouts of the same circuit may be equally satisfactory. For this

reason two simple criteria are used for comparing layouts generated

-162-

with and without interaction. These are the total conductor length

of the layout and the overall height of the board used by the

layout algorithm. The comparison of circuits is made in Table 3

below.

Circuit A B C

Conductor length without interaction 2446 5548 11802

Conductor length with interaction 1185 3714 6972

Percentage reduction in length 51% 33% 41%

Layout height without interaction 82 174 152

Layout height with interaction 62 130 114

Percentage reduction in height 24% 25% 25%

Table 3 	Improvement of layouts with interaction

The storage requirement of each of the three circuits is

approximately the same as that given in Tble 2. The storage space

used cannot be measured accurately as it is dependent on the amount

of interaction carried out to generate the layout.

10.5 Comparison With Manually-Generated Layout

The modified layout of circuit B shown in Fig. 10.9 is

compared with a manually-generated layout of the same circuit,

shown in Fig. 10.10. The main difference between the two is that the

manual layout makes far more use of the space under components for

conductor rouiing. This is in contrast to the topological method

which uses component crossings only as a last resort when inserting

branches into the graph. The consequent results are that the computer

layout requires a larger board area with a greater proportion of the

space taken up by conductor paths.

-16 3-

A further difference is that the manual layout has all the

components placed in the same orientation. This is usually done to

assist the manufacture of the board and to give it a more pleasing

appearance. The computer layout tends to pack the components in a

number of different orientations so as to make better use of the

available board space. A similarity between the two layouts is the

number of parallel conductors across the top of the board. Both

approaches have similar problems of preserving the planarity of

conductor paths on a single-sided board.

The overwhelming advantage of the computer method is the

time taken to produce the layout. A draughtsman would take several

hours to produce the completed layout diagram. The computer method
to

takes minutes produce an initial layout with perhaps half an hour of

interaction time to improve the layout. In addition, the output of

the program may be used to drive a mechanical plotter to produce the

finished drawings of the required accuracy. For a large layout the

corresponding saving in time can be several weeks.

li

H
0

C•)

rt
0

rt

C-) U liii H
C)

rt

0

C-)
Fl-

rt

C-)

im

N A IOSE

N A ROSE

I-
0

(0

C)

0

0)
01

t-.
03

rt

0

P .
rt

0

I-"

(0
cl

-166-

N A fOE

Fig. 10.8 	Automatic layout of circuit B

-16 7-

I..!'
j Ii!]LI

t'4 A IOE

Fig. 10.9 	Layout of circuit B modified by interaction

I
LTR4+TR13 TR2

}frL

Fig. 10.10 Manually-produced layout of.circuit B

Lii

flrj Jaiiiiv:
- - - - - - - - --- - - - - - - - - - - - - - - - - - -

H
I .

0

I-
N)

FPI 0

N A IOSE

-171-

Chapter 11 	Discussion of Method and Improvements

It is clear from the previous chapters that a feasible

method has been developed for the design of printed wiring boards .

There are a number of improvements and alterations that should be

made to the method to make it more useful to the industrial user,

for whom it is intendeth These include changes both to the basic

algorithms and to the ways in which they are organised in the

computer system. Many of the alterations: are dependent on the

type of hardware available to the user and the type of board layouts

which he wishes to design

11.1 Improvements to Topological Algorithm

The layouts illustrated in Chapter 10 show that the present

topological algorithrr produces graphs which are quite adequate for

the type of board layouts considered. One possible improvement lies

in the method of searching for paths to insert non-planar link

branches into the pseudo-planar graph. At present a search is made

from the regions around the start node of the branch to a region

containing the target node When several non-planar branches have

a common start or target node, the search method can. result in

conductors following parallel paths under components as shown in

Fig 11,1(a). Examples of this can beuseen in the crossing conductors

of components R19 and R25 in Fig0 1012.

The suggested improment to the algorithm is that the

search tree should also include regions which contain link branches

that are already connected to the start or target node. The branch

to be. inserted may then be connected to one of these link branches

so as to avoid parallel conductor paths under components to the

-172-

P O P

(a) 	 (b)

Fig. 11.1 Improvement to conductor routing

start or target node. The method is illustrated by Fig. 11.1(b).

Link branch PQ is already in the graph and a search for path RQ

yields a target region containing the branch PQ. In this target

region PQ may be divided in two by the insertion of an extra node,

N. The conductor path RN is then inserted as shown. This reduces

the board area required for conductor routing and leaves more space

under càmponents for the insertion of further non-planar branches.

Non-planar cOmponent branches are inserted into the graph

by splitting nodes and "hopping over" the conductors joining the

two parts of each node. The number of nodes that can be split is

limited by the physical dimensions of the component. At present,

if the limit of nodes split is reached befoxe a path to the target

node has been found, the component is removed from the graph as

non-planar. A possible improvement is to add a conductor branch

to one end of the component at this stage. The path search may

then be continued by crossing this conductor under other components.

-173-

Some components such as potentiometers, indicator lamps or

test points may have to be mounted adjacent to one edge of the board

for accessibility. At present the user can move such components

towards the edge of the layout by interaction. He cannot guarantee

to place them on the very edge of the layout due to the existing

circuit topology. One way of solving this problem is to define a-

special pseudo branch in the graph which connects the component in

question to one of the two end edge connector nodes. If the pseudo

branch cannot bedeleted as non-planar and cannot be crossed by

conductors, the component will automatically be placed in the graph

adjacent to the outside edge. The pseudo branch may laier be

removed when the pseudo planar graph is complete.

A limitation of the present program is that the connections

of components to the edge connector pins have to be completely

specified before the layout is started. If often occurs that a

circuit may have several input or output nodes whose order of

connection to the edge connector is not critical. In such cases

the layout can frequently be- improved and some non-planarities

eliminated by re-arranging the order of nodes connected to the

edge pins

A possible solution to the edge connector problem is

illustrated in Fig. 11.2- Three components, Cl, C2 and C3 which

form part of a circuit are to be connected to three edge connector

pins, 1, 2and 3. An arbitrary assignment of component-to-edge

pin connections may produce non-planarities as shown in Fig. 11.2(a).

This can be prevented by temporarily connecting the components and

edge pins to a common node, -N, as shown in Fig. 11.2(b). The-

-174-

(a) 	 (b) 	 (c)

Fig. 11.2 	Connection of components to edge connector

circuit data structure is then operated upon by the planarity

algorithm.

The components and edge pins are connected to the same

temporary node so their order of connection to it will be

determined by the' planarity algorithm. There will also be no

non-planarity for that part of the circuit. When the planar

graph is completed, the component-to-edge pin connections can be

re-assigned and the temporary node removed as shown in Fig. 11.2(c).

The same technique can also be used for integrated circuit components

with multiple inputs.

The present planar graph algorithm is initialised with the

assumption that the board to be laid out has an edge connector.

It can be modified if necessary to deal with boards which have no

edge connector. In this case, a search is made through the total

graph to find a closed path of branches. This path is taken as the

outside edge of the graph and all its branches are marked so that

they cannot be crossed by conductors. The planarity algorithm then

-175-

proceeds as before. The laying out of such a graph is discussed in

the next section.

11.2 	Improvements to Layout Algorithm

Examination of the layouts in Chapter 10 shows that a number

of improvements to the layout algorithm are possible. One of the

more obvious improvements is to conductor paths such as those

shown in Fig. 11.3(a). The reason for such paths has already been

 0

: 	 : 	 : 	 :

0

(b)
	

(c)

Fig. 11.3 Improvement to conductor paths

explained in Chapter 10.3.1 and the shortening of them is a

straightforward task. The list of placed components is searched

to ensure that none lie in \ the space between the two components.

If the space is clear, the crossing conductors may then be routed

as shown in Fig. 11.3(b). Ideally the two components should also

be placed adjacent to each other so as to conserve board space.

This involves further checking to ensure that the components are

not at different levels or of different sizes such as those shown

in Fig. 11.3(c).

A further improvement involves the routing of conductors

under components. At present conductors are allowed under components

only at crosèing points. All other conductors are routed around the

components as shown in Fig. 11.4(a). The proposed improvement is to

-176-

(a) 	 (b)

Fig. 11.4 Improvement to component spacing

allow conductor routing under components as shown in Fig. 11.4(b).

This would enable the closer spacing of components and hence

improve the board packing density. To implement this change it is

necessary to compute the pin positions of all adjacent components

so as to ensure that there is sufficient space for conductors

between the pins. The user must decide in this case whether the

saving in board space justifies the extra computation time required.

At present the layout program uses a standard conductor

width for the whole layout. This is generally the way in which

boards are designed but occasionally some conductors need to be

of greater width to carry increased current. There are several

possible solutions to this problem. One is to assign a conductor

width to each circuit node at the data input stage. The corresponding

width is then used during the layout construction. A second method

is to define two or more parallel conductors between the appropriate

points. During the layout stage the parallel paths are merged to

form one conductor. of the required width.

Many of the orthogonally routed conductor paths produced by

the layout algorithm could be considerably reduced in length if

diagonal routing were allowed. This has not been done at present

-17 7-

due to the problem of having to rigorously check the: clearances

between diagonally routed conductors whilst constructing a layout.

One possible way of reducing conductor lengths is to allow interactions

with conductor paths; this is discussed in the next section. Another

possibility is to complete the layout then operate upon the data

structure with a further program. This program would merely "round

off" and shorten the existing conductor paths.

The problem of laying out boards with no edge connector has

already been mentioned in the previous section. It may be dealt with

in a straightforward manner. Instead of developing the initial

working list of the layout from the edge connector nodes, the list

is filled with components from the outside edge of the graph.

These components are positioned in- the first slot along the lower

edge of the board. The layout algorithm may then proceed in the

normal way to complete the layout.

A further extension to the layout algorithm would be to

allow for obstacles in the layout. The obstacles could be such

things as handles or fixing holes on the board. The program would

require some form of "look ahead" capability when positioning

components. It would ensure that conductors from the completed

part of the layout- 'could be routed around the obstacle and up to

a-higher level as shown in Fige 11.5. If this feature - were

implemented it could also be used to deal with irregular shaped

boards. The board shape would be defined as a rectangle with parts

masked off by obstacles as shown in the example of Fig. 11.6.

-178-

Fig. 11.5 	Avoidance of obstacles on board

Fig. 11.6 	Definition of irregular shaped board

Further imprcvements to the basic layout algorithm lie in

the experience gained from using the interactive display. It is

hoped that the insight gained from some of the interaction

techniques can be incorporated into the automatic algorithm to

improve its performance. One such technique already proposed is

that components with many nodes and crossing conductors rcuted up

to higher levels should themselves be moved up to higher slot

levels. This wculd reduce the lengths of conductors attached to

these components and improve the component packing density.

-179-

A further facility that could be added to the layout'

algorithm concerns the non-planar branches removed from the pseudo

planar graph. At present a list of these branches, if any, is

printed out when the pseudo planar graph is completed. The user

later has to find the appropriate conductor paths in the layout to

which wire jumpers may be connected. It would be a useful facility

if the layout algorithm were to find the shortest distance between

each pdirof nodes to be connected and indicate'the required paths

for the wire jumpers.

11.3 Improvements to Interaction

There 'are a number of improvements, that can be made to the

interactive facilities available, some fairly simple and others of

a more fundamental nature. One improvement immediately obvious to

the user is the reduction in time needed to make a modification to

the layout. Modifications near the top of circuit C in C '

Fig. 10.12, for example, take from 10 to 15 seconds to be implemented.

This is because the whole current layout has to be deleted then

reconstructed up to the modification. This method has been used

for the ease of programming although it is obviously not the most

efficient way of using computer time. Methods for improving the

interaction time are discussed in the next section.

It has been found from experience that a user may spend,

say, half an hour interacting with a layout to obtain a satisfactory

solution. On examining a hard copy of the display, a number of

further improvements to the layout often become apparent. Before

these improvements can be made in a later interaction session the

whole procedure of modifying the layout has to be repeated. One

solution to this difficulty is to store the list of changes made to

the layout on magnetic or paper tape. At the start of the next

session, the list of changes can be read in and the whole modified

layout built up automatically.

For large layouts there will be problems in displaying the

whole board with sufficient detail to allow interaction. The most

obvious solution is to "scissor" the display so that only a portion

of the layout is seen, magnified to fill the whole screen. The

display may then be considered as a "window" which can be moved by

interactio'n over a much larger diagram of the whole layout. This

facility should be implemented in the display software as it does

not affect the basic layout algorithm.

The question of display software leads on to the problem of

allowing interaction with the conductor' paths of a layout. In a.

large layout there are many hundreds of conductor path change points.

If every one is to be identifiable by the light pen it must be

represented by a separate segment of display file. The storage

requirement for, the display file will then be considerably increased.

A way out of this difficulty, again, is to scissor the display so

that only a small portion of the layout is seen at any one time.

This will result in a corresponding decrease in the length of the

display file.

At present the user can alter the orientation of any

component and put it into a particular slot by means of interaction.

From then on the layout algorithm automatically positions the

component in the slot, with clearances for adjacent conductors.

All elements are placed in order from the left so that any spare

-181- 	 -

space is always on the right hand side of the slot.

A useful additional mode of interaction would be the

ability to provide manual placement of components and conductors

within a slot. This would allow the user to override the automatic

algorithm. He could then place components towards the right hand

side of the slot if desired, or pack them more closely by allowing

overlap with conductors as shown in Fig. 11.4(b).

Experience of using interaction has shown that however much

a layout is modified there are usually some long conductor paths

that cannot be shortened. Component R12 in Figs. 10.6 and 10.7 is

a good example; its connections must always be routed around the

outside edge of the layout. The reason for this is that the circuit

topology remains unchanged by interactive modifications to the

layout. Again, it has already been noted that a short conductor

path in the topological model does not necessarily give a short

path in the layout.

The two points just noted could be improved by having a
11

deeper level of interaction which would allow the user to modify

the topology of the layout. Conductor paths could then be redefined

so that although they crossed under more components their physical

lengths were shorter. The modifications to the topology would have

to be made by indicating which components in the layout were to be

crossed by each new conductor path. Although it is possible to

interact directly with the graph, it is difficult to visualise the

layout from a diagram of the topological model. It would also be

necessary to generate a display of the graph which is a considerable

tak in itself.

-182-

11.4 Improvements to Computer Organisation

There are a number of ways in which the layout program may

be improved to make better use of the computer time and storage.

These have not been implemented at present because of insufficient

programming effort available and the fact that some of the computer

facilities have been improved since the program was written. Several

of the improvements discussed are intended for the present 4130 -

PDP-7 system and might not be applicable to a different computer

system.

An important improvement that could be made is in the time

taken to make a modification to the layout by interaction. The

4130 computer now has a dic-based FORTRAN system which was not

previously available. The disc system enables data to be stored

and later retrieved at a high rate whilst the program is in operation.

The proposed modification is that the current stateof the

layout is recorded at the completion of each slot processing. When

the contents of a slot are modified, the layout can be cut back to

the previous slot level instead of having to rebuild the whole

layout as at present. The problem still exists for PULL mode where

a component can be pulled down below the previous slot level. In

this case the reconstruction time could still be reduced by saving

the state of the:layout at selected lower levels.

When adding the contents of the latest slot to the layout,

the curi'ent program completely regenerates the display file in order

to show the latest slot. This means that as the working level of

the layout increases and the display file becomes longer, the

algorithm will take correspondingly more time to progress from one

-183-

slot to the next. The reason for using this method is that conductors

are routed upwards through successive slots as continuous paths. With

the present program there is no way of telling which part of a path

has already been displayed. The whole display file is therefore

deleted and then regenerated.

The display software allows the user to build up a display

file as a series of segments. Later additions can be generated as

separate segments and added onto the end of the existing display

file. The use of markers or extra elements in the conductor path

data structure could be used to indicate which parts of each

conductor have already been displayed. Only additions to the

display need then be generated and transmitted over the link,

thus speeding up the layout program.

With the layout of very large circuits the program will

run into problems of storage. space for the data structure and

display file. There are several possible solutions depending on

the amount of storage space required. A number of elements in the

data structure such as branch type markers and orientation markers
N

are small integers so that several of them could be packed into one

24 bit computer word. This would decrease the storage requirements

of the data structure and has already been done in the case of

conductor path change points.

A more drastic approach would be to divide either the

program or the data structure into several sections. The sections

would be,' swapped between the disc and the core store during the

running'of the program. Only the required sections of program and

data would then be held in the core store at any one time. Whichever

l8L

method is used, the program will take longer to run due to the extra

unpacking of integers or the swapping of sections. The storage

requirements of the display file can be alleviated by displaying

only part of the layout at a time. This should be fairly easy to

do if scissoring is available as part of the display software.

11.5 Extension to Double Sided Boards

The present version of the program deals with single sided

boards as these have been most widely used up to now. Industry is

making increasing use of double sided boards so it would be

advantageous to extend the program to deal with such boards. Major

changes would be necessary both to the topological and to the

layout algorithms.

To extend the program to double sided boards, the topological

data structure has to be modified so that conductors can be assigned

to one or other side of the board. Component and pseudo branches

have to be duplicated for the two sides of the board because every

component pin hole appears on both sides of the board, at a defined

distance from the remaining pins of its component. The suggested

approach is that the graph of the circuit is operated on by the

planárity algorithm toproduce a planar graph for one side of the

board. The resultant non-planar branches together with the components

already in the first planar graph are then operated upon to produce

a second planar graph for the other side of the board.

When the first planar graph is subtracted from the total

graph some parts of the remaining graph may become disconnected from

one another. The second pass of the planarity algorithm must

therefore be able to deal with a graph which is composed of several

-185-

isolated subgraphs. Following the two passes of the planarity

algorithm there may still be a. 2few non-planar branches. These can

be inserted into either of the two planar graphs by the methods

described in Chapter 5.

The layout part of the algorithm also requires modification

for double sided boards. Two base and two working lists are required

for the two sides of the board. Only one slot profile list is

required as components are placed onone side of the board only.

The sizes and positions of successive slots are calculated from the

slot profile list as before but in each slot, two base lists are

developed simultaneously. Components and conductor paths are then

placed in the slot in a similar manner to the present program. The

display generation subroutine also requires modification so that the

conductor paths on either side of the board can be distinguished.

The modifications suggested will require considerable re-organisation

of the program but should be rewarded by its increased usefulness.

11.6 Integration With an Industrial Environment

The current program has been developed to a state where it

is possible to design a layout for a given circuit and set of

components. The program output is in the form of one diagram which

contains the essential information needed to construct a printed

wiring board. There are a number of ways in which the program can

be modified, mainly at the input and output stages, to provide more

de€ailed and accurate data for the actual manufacture of boards.

These modifications have not been implemented because they are

dependent upon the individual uset"s requirements and computer system.

The first such modification that could be made to the program

is the form of data input. At present there are possible sources of

error in labelling the nodes on a circuit diagram, in extracting the

component connection data from the diagram and in punching the data

onto paper tape. A possible solution is to use the light pen and

graphical display to draw the circuit diagram directly as input (32).

At the same time the program can build up the corresponding

topological data structure. This method has the advantage that any

errors in the circuit description are far more easily detected from

a graphical display than from a written table of data.

In some cases the user may initially employ a circuit

analysis program to predict the performance of a circuit. The

interconnection data of the circiit may then be fed directly into

the layout program. This removes the possibility of errors at the

input stage of the layout program. The user, can be confident that

Xhe layout produced corresponds to the original circuit analysed.

The present program also requires a component library to be read in

for each board layout. Where the user has a data bank of standard

components, this may replace the function of the component library.

On the output side of the layout program there are a number

of possible improvements, depending on the equipment available to

the user. The layout diagrams shown in Chapter 10 may be divided

into two separate diagrams. One diagram would show the conductor

paths so that a mask could be produced for etching the conductor

pattern onto the printed wiring board. The second diagram would

show the placement of components on the board and would be used when

assembling the board.

-18 7-

The data structure representing the layout is flexible in

use and may be processed by other programs to produce the typeof

output data required. One possibility is to producea data tape

for driving a mechanical plotter fitted with a light source and

light sensitive paper. This would enable etching masks to be

produced directly. A further possibility is to produce a data

tape to operate a numerically-controlled machine for drilling the

component:pin holes in the board.

11.7 Discussion of General Points

As can be seen from the results in Chapter 10, the program

produces a layout in which components are packed onto the board so

as to make the best use of the available board space. The method

is ideally suited to circuits which contain a number of different

types of component such as resistors, capacitors, transistors and

integrated circuits. The program in its present form is not suitable

for circuits which contain mostly integrated circuits in a fixed

matrix of positions on the board. Such boards place considerable

constraints upon the algorithm and so are more appropriately laid

out by one of the methods described in Chapter 2.

The data structures described in Chapters 6 and 9 use a

variety of configurations, such as one-way lists, two-way lists and

rings. These different types of structure are easily implemented

by the use of the macro generator (Appendix A). It has been found

that by matching a type of structure to the particular problem being

solved, the programming is simplified and the storage space is

efficiently used. This contrasts with other data structure systems

in which only one configuration and hierarchy pf elements is allowed.

The main disadvantage of using a mixed type of data structure is

that programming errors, such as obtaining a pointer to a non-

existent block, can be difficult to trace unless comprehensive

checking procedures are used.

The current program has been developed for the design of

printed wiring boards. Some of the algorithms used may be applied

to other design problems. An obvious application is the design of

integrated circuits where similar problems are encountered, although

on a different physical scale. The relevant problems are those of

arranging a number of components of varying sizes and shapes upon a

plane surface and routing interconnections between them. Although

it is not strictly necessary, it is preferable that the interconnection

pattern is planar. The algorithms may also be used in other

applications where it is necessary to design a set of paths between

interconnected objects. One such possibility (14, 15) is the

optimum layout of the rooms and corridors of a building.

Chapter 12 	 Conclusion

The results shown in earlier chapters indicate that a

feasible method has been developed for the layout of printed wiring

boards by computer. Thelayouts considered are of single sided

boards containing discrete components of various sizes. The initial

topological approach to the layout problem. compars favourably with

the more conventional method of component placement followed by

conductor routing. As placement and routing are performed

simultaneously, congestion of parts of the board by conductor paths

is avoided. The automatic part of the layout algorithm produces

useable layouts although it tends to form some long parallel

conductor paths.

The results also show that significant improvements to a

layout can be obtained by the use of interaction. The graphical

display and light pen ensure close communication between the user and

the layout program. Man-machine interaction thus enables the skill

of the user to be combined with the speed and accuracy of the layout

algorithm so as to rapidly produce a suitable layout. As the user

only interacts with the highest level of the program, he is relieved

of the detail of inserting conductor paths and checking component and

conductor clearances. In addition, the algorithm ensures that the

resultant layout corresponds exactly to the input data.

The algorithm produces results comparable with a manual

layout, method and in very much less time. It is thus suitable for use

within an industrial environment. At present the results produced

indicate the positions of components and the paths of conductors.

Further improvements and modifications are required before production

quality drawings may be output directly by computer.

_lgo.-.

Acknowledgements

The research work for this thesis was carried out in the

Computer Aided Design Project of the Department of Computer Science.

I am indebted to Dr. J.V. Oldfield who supervised the workand

provided invaluable advice, assistance and criticism. Thanks are

due to the other members of staff of the Project for facilities and

assistance provided and to Mrs. P.S. Piper for typing this thesis.

I am grateful to Jaroslav Jandos for very helpful ideas and profitable

discussions on data structures and free storage systems.

The research work was supported by the Science Research

Council and Associated Electrical Industi±es (New Parks) Ltd. on

an Industrial Studentship. The interactive computing facilities

were provided as part of a Science Research Council grant (Ref.

B/SR/1718). Thanks are due also to the Department of Machine

Intelligence and Perception for the use of the ICL 4130 computer.

-191-

Appendix A
	

Use of Macro Processor

The ML/l macro processor has been used for the programming

of data structure operations within the FORTRAN language. It enables

programs to be more easily written and understood and allows data

structure definitions to be readily altered during program develop-

ment. Only the facilities of ML/l which have actually been used

are described here. For a more detailed description of these and

other facilities, the ML/1 Users Manual (LI.) should be consulted.

The ML/l macro 1anguage provides general purpose macro

processing -facilities which can be used to process any piece of

text. The processor requires an environment which defines the

macro calls that are to be used. The input and processing of a

piece of text is termed the evaluation of the text and the resultant

output is termed the output text. The processor allows macro calls

to appear anywhere in the text and allows any number of parameters

to be associated with each call. The macro calls are of two types.

Operation macros are defined as part of the system and are used to

set up the environment. The three operation macros which have been

used are MCSKIP, MCINS and MCDEF. Substitution macros are those

defined by the user for specifying the way in whiàh the text is to

be evaluated.

MPV T P

The operation macro MCSKIP allows parts of the source text

to be skipped over during the evaluation of text. The macro defines

a pair of delimiters, or skip names, which may appear in any number

of places in the source text. The piece of text between each pair

of delimiters may be copied over to the output text. Any macro

-192-

calls within this piece of text, however, will also be copied over

and will not be evaluated.

The parameters of the MCSKIP macro are three optional

characters followed by the skip names. The optional characters are:-

M - indicates that the two skip names are to be matched in

pairs.

T - indicates that the text within the skip is to be copied

to the output.

D - indicates that the skip nanes are also to be copied.

The MCSKIP macro has been used in this application as part

of the definition of substitution macros, described later. The

macro call used is:

MCSKIP MT, < >;

The skip names are < and > and the final semicolon is the delimiter

of the macro call itself. This call defines a matched pair of skip

names such that the text between each pair will be copied over to

the output text but the skip names themselves will not be copied.

MCINS

When defining a substitution macro, it is necessary to

indicate whereabouts in the replacement text the parameters of the

macro call are to go. This is done by using an insert to indicate

the relevant place for each parameter. The insert call itself has

one associated parameter to define which parameter of the substitution

macro call is to be inserted.

An insert is defined by use of the MCINS operation macro.

The definition consists of an insert name followed by a delimiter

which indicates the end of the insert parameter. As the insert

-193--

is associated with the definition of substitution macros, its

insert name must be a string of characters which will not appear

anywhere else in the source text.

As an example, the insert used for this particular application

is described here. The insert is defined by:

MCINS XX. .;

where XX is the insert name and . is its delimiter. An example of

an insert call is then:

XX A2.

where the parameter of the call is A2. The 2 indicates that the

second parameter of a substitution macro call is to be inserted

into the output text. The A indicates that. all leading and trailing

spaces around the parameter are to be suppressed.

MCDE.F

The operation macro MCDEF enables the user to set up a 	 -

substitution macro. The definition of a macro consists of three

parts, a macro name, a delimiter structure and a replacement text.

The macro name is the string of characters by which the macro call

is identified. The delimiter structure defines the order and type

of delimiters which separate the parameters of the macro call. The

replacement text defines the output text and parameters which are

to replace the original macro call.

An example of a typical macro definition is shown below.

This particular macro is Used to refer to the contents of the head

of a data block. It is called with one parameter which is a pointer

to the first word, or head, of the block. The data array to which

the block belongs is called IRAY. The macro definition is thus:

-l9+-

MCDEF HEAD() AS <IRAY(XX A2.)>,

When the macro is called with one parameter, for example POINTER, it

produces the following substitution:

HEAD(POINTER) - IRAY(P0INTER)

Referring again to the definition above, the macro name of

this definition is HEAD. The first and second delimiters of the

definition are (and) respectively. The word AS then acts as a

separator between the delimiter structure and the replacement text.

By convention, each parameter of a macro call precedes its

relevant delimiter so in the above example it is the second

parameter which is to be inserted into the replacement text.

When the processor is actually evaluating a macro call, it

first evaluates the arguments of the macro definition. This allows

for the case in which the macro definition contains a call to

another macro. For this reason, the replacement text of a macro

is enclosed by a matched skip so that it is not evaluated during

the definition of the macro.

Use of a Macro Processor

To use the macro processor, a paper tape is first prepared

containing all the macro definitions which will be required. The

processor program tape is then read into the PDP-7 computer,

followed by the macro definition tape. This sets up the environment

so that the processor is ready to evaluate any number of source

tapes. As,each source tape is read in and evaluated, the source

text is copied over to an output paper tape until a macro name is

identified. The appropriate replacement text is output then the

evaluation of source text continues.

-195-

Three examples of the use of macros are shown below. The

first example is a macro that refers to the first node to which a

branch is connected. The macro definition is:

MCDEF BNODE1() AS <IRAY(XX A2.+l)>;

The resultant substitution is:

BNODE1 (BPTR) - 	IRAY(HPTRi-1)

The second.example is a macro which refers to the X co-ordinate of

the Nth pin of a master component block in the component library.

Its definition is:

MCDEF MCORDX(•) AS <IRAY(XX A2.+11+XX A3.-t-.XX A3.)>.

and its resultant substitution is:

MCORDX(MPTR,N) -- IRAY(MPTR+ll+N-i-N)

The third example shows how the marker in the head of a

component branch block may be defined as an integer number. The

definition is:

MCDEF MARKCB AS <1000000>;

A statement containing two macro calls:

HEAD (BRANCH) = MARKCB

will result in the following FORTRAN statement:

IRAY(BRANCH) = 1000000

All the operations on the data structure for the layout algorithm

are defined in a similar manner by the use of macro calls.

-196-

Appendix B 	Display Software

The interactive display software enables the user to generate

a graphical display and to use it for interaction with his program.

The software is organised into two parts, one part residing in the

ICL 4130 computer and the other part in the PDP-7 computer. The set

of subroutines in the 4130 may be called from the user's FORTRAN

program. These subroutines generate and operate upon a display file

which is held in a large array. When a new display file is generated,

or modifications are made to an existing display file, the relevant

parts of the file are transmitted over the high speed link to the

PDP-7 computer.

The software in the PDP-7 includes a Link Executive program

which controls the data transfers in both directions over the link.

Whenever a display file or modification is received from the 4130,

the display file in the PDP-7 is immediately updated so that the

change is seen on the Type 340 display. The software also services

the display tracking cross and handles interrupts from the light pen

and Teletype keyboard. When an interrupt occurs, the relevant data

is assembled into a four-word attention block. This block may then

be transmitted back over the link to the 4130 when requested by a

call from the user's FORTRAN program.

The FORTRAN display and interaction subroutines associated

with the user's program are described below. Only those facilities

which have actually been used for the layout algorithm are described.

For a more detailed description of these and other facilities, the

system description (11) should be consulted.

-19 7-

1. Generation of Display File

The first subroutine that must be called before generating a

display file has the calling sequence:

CALL DEFPIC(IFILE, LIMIT)

The subroutine passes over to the display software the name of the

array which is to hold the display file, IFILE. The maximum

allowable size of this array is defined by the value of LIMIT.

The second subroutine which must be called has the calling sequence:

CALL SENTER

This subroutine initialises all the display subroutines and causes a

set of character definitions to be read in from magnetic tape. The

characters are defined as display subroutines because no character

generator is. available.

The basic subroutine for plotting points on the display has

the calling sequence:

CALL MOVETO(IX,IY,VIS,ISCALE,INTENS)

where IX and IY are the required co-ordinates of the point. VIS is

a logical variable which determines whether or not the point is

visible. The value of ISCALE sets the scale of the following display

file and the value of INTENS sets the display intensity.

The basic subroutine for drawing straight lines has the

calling sequence:

CALL LINE(IDELX,IDELy,vIS) 	 -

where IDELX and IDELY are the required X and Y displacements from

the current beam position. The logical variable VIS determines

whether or not the line is visible.

The software has facilities for generating and calling display

subroutines. A display subroutine may be generated at any point in

the display file but its definition must be complete before a call

is made to the subroutine. Every display subroutine is assigned a

unique system name by the software. The system name is, in fact,

the index of the display file array at the first element of the

subroutine.

A display subroutine definition is commenced by the calling

sequence:

CALL DEFSUB(NAMSUB)

The value of the variable NAMSUB is set to the system name of the

subroutine by the display software. The lines and characters

defining the subroutine are then generated by calls to the appropriate

routines. The definition of the display subroutine is concluded

by the calling sequence:

CALL ENDSUB(NAMSUB)

Whenever an instance of the display subroutine is then required, it

is obtained by calling:

CALL CALSUB(NAMSUB)

Two functions are available for generating alphanumeric

characters. The first one displays a single character and is

called by:

NAME = CHAR41(NCODE)

where. NCODE is an integer code for the character to be plotted.

The character is defined as a display subroutine so its system name

is assigned to the variable NAME. This means that copies of the

character can then be displayed by calling it as a display subroutine

with the parameter NAME. The second function enables a string of

-199-

characters to be plotted. It is called by:

NAME = TEXT(IARR,N)

where NAME •serves the same purpose as before. IARR is the name of

an array which contains the codes for the characters to be plotted,

packed four to a word. N is the number of characters to be plotted.

When the whole display file has been generated it is

terminated by the calling sequence:

CALL DEFPIC(IFILE,MEDIUM)

where IFILE is the display file array. MEDIUM is an integer variable,

the value of which determines tihether the display file is transmitted

over the link to the PDP-7 or is punched out on paper tape.

2. Display File Editing

The display software enables the display file to be divided

into a number of segments. These segments are linked together in a

simple list so that each segment may be displayed in turn. When

extra segments are added to the list, or existing segments deleted,

only the differences in the display file are transmitted to the

PDP-7. This considerably reduces the amount of data sent over the

link when making small'changes to a large .display file.

Every segment has a three word header block followed by a

section of display file. The header block contains a pointer to

the next segment in the list, a system name and a user name. The

system nameis merely the array index of the first word of the

segment. The user name is an integer value which the user may

associate with the segment.

The display software automatically creates the first segment

at the start of the display file. When another segment is required,

-200-

it is obtained by calling:

ISEG = NEWSEG(LABEL)

ISEG is assigned the system nam of the new segment and LABEL is its

user name. Whenever a new segment is opened, the previous segment

is automatically terminated.

An alternative method of creating a segment is by calling

the function:

ISEG = INSTAT(IX,IY,NAMSIJB,LABEL)

This function is used to create an instance of the display subroutine

NAMSUB at the co-ordinates IX and IY. ISEG is assigned the system

name of the segment and LABEL is its user name.

After any segment has been defined, its display scale or its

intensity or both may be altered by calling:

CALL CHINTS(ISEG , ISCALE , INTENS)

ISEG is the system name of the segment and ISCALE and INTENS are the

new values of scale and intensity respectively.

Segments can be deleted from the display in a number of

ways. A segment may be temporarily deleted by the calling sequence:

CALL REMOVE(ISEG)

where ISEG is the system name of the segment. The segment disappears

from the visible display although it remains in the display sequence.

The segment may be restored by calling:

CALL RESTOR(ISEG)

The second method of deleting a segment removes the segment

permanently from the display file so that the corresponding array

space may be used again. Any display subroutines in the segment are

thus deleted as well. All calls to these subroutines are therefore

-201-

removed from the remainder of the display file by the display

software. The required calling sequence is:

CALL CANCEL(ISEG)

The third method of deleting a segment is by the calling

sequence:

CALL DELETE(ISEG)

This removes the segment from the display sequence although it

remains in the display file array. The method is used for segments

which contain only subroutine or character definitions that are not

to appear in the display until called from later segments.

3. Light Pen and Keyboard Interaction

When using interactive computer graphics, the light pen and

Teletype keyboard on the PDP-7 computer are the means by which the

user communicates with his program. The light pen enables parts of

the display file to be identified and the keyboard enables single

characters to be sent to a FORTRAN program in the 4130 computer.

As the PDP-7 computer cannot directly interrupt the FORTRAN program

in the 4130, it stores an attention block. This block may then be

read from the FORTRAN program to determine which device in the

PDP-7 caused an interrupt.

Before the light pen or Teletype can cause an interrupt

they have to be enabled. This is done by the following call from

the userts FORTRAN program:

CALL ENABLE(I)

The parameter I is an integer whose value determines whether the

light pen or the Teletype keyboard is to be enabled. A similar

subroutine call allows the user to disable either device at any

stage of the interactive program.

-202-

Every segment of the display may be made either sensitive or

non-sensitive to the light pen. This allows the user to organise the

display file so that light pen interrupts are obtained only from the

relevant parts of the display. A segment is made sensitive to the

light pen by the call:

CALL MSSLP(ISEG)

Pointing the light pen at a display segment will thus cause an

interrupt only if the segment is made sensitive and the light pen

is enabled.

The user's FORTRAN program can be made to wait for an

interactive operation by the call:

CALL ACTION(IRAY)

The program waits in a loop until an attention block is ready in

the. PDP-7 computer. The contents of the block are then read into

the four-word array IRAY. The first word of this array indicates

whether the attention was caused by the light pen or the Teletype

keyboard. The second word gives the system name of the segment in

which the light pen hit occurred, or the six bit code for the

charaàter entered on the keyboard. The following two words give

the X and Y co-ordinates of the light pen hit ifappropriate.

At some stages of the user's interactive program it may be

desirable to remove any redundant light pen hits before proceeding

to the next stage. This is effected by the call:

CALL ATKILL

The call causes the attention mechanism to be reset so that all

attention blocks waiting in the PDP-7 are cancelled.

-203-

4. Tracking Cross Routines

The display software allows a tracking cross to be used and

its co-ordinates to be read to the user's FORTRAN program. The

tracking cross is made to appear on the display by calling:

CALL TRSET(IX,IY)

The parameters IX and IY are the co-ordinates of the position at

which the cross is to appear. The tracking cross may then be

tracked by the light pen without further attention from the 4130

computer.

The current co-ordinates of the tracking cross may be read

at any time by the call:

CALL •TRACK(IX,IY,ISTOP)

The parameter ISTOP is an integer variable which indicates whether

the PDP-7 has an attention block waiting. When the tracking cross

is no longer required, it can be removed from the display by calling:

CALL TRKILL

The subroutines described here provide the user with fairly

sophisticated facilities for interactive programming. A display

file can readily be constructed and modified by interaction. The

segmentation and naming system then. enables the user program to

rapidly determine which part of the display was seen by the light

pen.

2OL1

Glossary of Terms

Base limits 	Two variables associated with a base node. They

store the extreme X co-ordinates of the node

during conductor routing.

Base list 	 A list of the nodes and conductors along the

bottom edge of a slot, used during the

construction of a layout.

Block 	 A group of consecutive words of the data storage

array, used to store information on an element

of the graph or layout.

Board 	 A thin board of insulating material which

supports the components of a layout. A pattern

of copper conductors is etched onto one or both

sides of the board to interconnect the components.

Bound branches 	Two branches associated with each part of a node

during the construction of the layout. They

indicate those parts of the node which have

already been placed in the layout.

Branch 	 An element of a graph which interconnects a pair

of nodes, sometimes termed an tiedget? of the graph.

Branch component A component with two connecting wires or pins.

It is represented in the graph by a component

branch.

Branch segment 	A component, pseudo or linkbranch is divided

into two branch segments when crossed by another

branch. The division of branches is caused by

the insertion of non-planar branches into the

pseudo-planar graph.

-205-

Bridge branch. 	A branch which provides the only connection

between a subset of the planar graph and the

remainder of the graph.

Circuit (electrical) A specified set of components and their

interconnections which performs an electrical

function on the signals applied to it.

Circuit (graphical) A set of branches which form a closed path in

the graph.

Circuit node. 	A point of common electrical connection of two

or more components.

Component 	 An element of the electriöal circuit, such as a

resistor or a transistor.

Component branch 	See Branch component.

Component pin 	A terminal wire or connection point of a component

which passes through a hole in the printed wiring

board and connects with a conductor.

Conductor . 	 A copper track formed onto the printed wiring

board which connects one part of the circuit to

another.

Conductor branch 	A branch representing a conductor which connects

two circuit nodes. It is formed when splitting

a node into two parts during the insertion of a

non-plan.r branch.

Data structure 	The system of data blocks and pointers which is

used to represent the graph and layout within the

computer store and which holds details of the

component library.

-206-

Development 	During the construction of the layout, a node in

the base list is developed by creating a list of

all the components and conductors which could be

directly connected to it.

Discrete component A component which performs a single electrical

function, such as a resistor or a capacitor. A

number of these components must be interconnected

in order to construct a circuit, as opposed to an

integrated circuit component in which a complete

circuit is included within one package.

Double sided board A board which has a conductor pattern on both sides.

Edge connector

	

	A set of gold plated conductors along one edge of

the board, perpendicular to that edge, to which

the external connections of the layout are brought.

The edge connector plugs into a multiway socket to

make contact with external signals and power supplies.

Edge pin 	 One of the conductors of the edge connector.

Free region 	Used during the construction of the planar graph.

It contains all those nodes and branches which

have not yet been defined as part of the graph.

Graphical display The visual display of a layout, plot 	on a

cathode ray tube.

Interaction 	The close communication between a computer program

and the user, whilst the program is running.

Layout

	

	 The arrangement of component positions and conductor

paths on a printed wiring board.

-207-

Link branch 	A branch which connects a subgraph node to its

corresponding circuit node. It is represented

physically by a length of conductor connected to

one pin of a subgraph component.

Master component 	An item in the component library which describes

all the common characteristics of a particular

group of components.

Node splitting 	The process by which a node is divided into two

parts, connected by a conductor branch, so that

a non-planar component branch can be inserted

into the graph.

Orthogonal routing The method of routing conductors in which all

parts of every conductor lie parallel with either

axis of a rectangular board.

Part of a node 	A conductor path which is connected to one or

more components of a given circuit node. The

node may exist in several parts during the

construction of a layout.

Planar graph 	A graph which maybe drawn on a plane in such a

way that its branches intersect only at their end

points. Planarity is an intrinsic property of a

graph and so is independent of any geometrical

representation of the graph.

Pointer 	 Used to indicate the interconnections between

blocks in the data structure. A pointer to a

block is a variable containing the arrayindex

of the first element of that block.

Pseudo branch A branch connected between two pins of a

subgraph component or between two edge connector

nodes. 	It is used to represent the physical

distance between two nodes so as to limit the

number of conductors passing between the nodes.

Pseudo planar graph A graph which represents all the components and

interconnections of a layout. 	It represents a

planar set of.conductor paths even though there

are a number of component/conductor branch

crossings.

Region An area within aplanar graph bounded by a

closed path of branches.

Routing The process of constructing a conductor path

between two points in the layout.

Single sided board A board which has a conductor pattern on one

side only. 	The components are mounted on the

opposite side of the board.

Slot An area of the board, bounded on three sides by

placed compdnents or board edges. 	It is used as

a working area for constructing a further part

of the layout.

Sourcepin The component pin which connects a component to

the base node from which it was developed.

Subgraph component A component with more than two connecting wires

or pins. 	It is represented in the graph by a set

of subgraph nodes, pseudo branches and link

branches.

-209-

Subgraph node 	A node representing one pin of a subgraph

component.

Through plated hole A copper-lined hole through a board which

makes a connection between bonductors on the

two sides of a double sided board.

Tie block 	 A two-element block which associates a branch

segment with its two adjacent regions.

Topological model The pseudo-planar graph wtiich represents the

order of connection of all the components and

conductor paths in a layout.

Tree 	 An ordered hierarchy of nodes and branches, used

to record the progress of a search through the

graph.

Wire jumper 	An insulated piece of wire connected into a

single sided board layout. It enables two

conductor paths to be crossed without inter-

connection.

Working list 	A list used during the construction of a layout.

It holds data which is processed to determine

the contentsof a slot and the physical

co-ordinates of these contents.

-210-

W. Bader, "The topological problem of the printed circuit

board and its solution", Archiv fur Electrotechnik,

vol. 49, no. 1, pp. 2-12 5 1964.

J.W. Brackett, A.C. Kilgour, J.V. Oldfield, "Fortran package

for generating a PDP-7 display file". CAD project report no.

CAD-R-14, University of Edinburgh, Nov. 1967.

M.A. Breuer, "General survey of design automation of digital

computers", Proc. IEEE, vol. 54, no. 12, pp. 1708-17215

Dec. 1966.

P.J .. Brown, "ML/l Users Manual", University Mathematical Lab.,

Cambridge, June 1967.

R.G. Busacker & T.L. •Saaty, "Finite graphs and networks",

McGraw Hill Book Co., 1965.

P.W. Case et al, "Solid logic design automation", IBM Journal

of Research & Development, vol. 8, no. 2, pp. 127-140,

April 1964.

G.V. Dunne, "The design of printed circuit layouts by computer",

Proc. 3rd. Australian Computer Conference, Canberra,

pp. 419-423, May 1966.

G.J. Fisher & 0. Wing, "Computer recognition and extraction

of planar graphs from the incidence matrix", Trans. IEEE,

CT-13, no. 2, pp. 154-163, June 1966.

C.J. Fisk etal, "ACCEL: Automated circuit card etching

layout", Proc. IEEE, vol. 55, no. 11, pp. 1971-1982,

Nov. 1967.

-211-

W.P. Heising, "History and summary of FORTRAN standardisation

development for the ASA", Comm. ACM, vol. 7, no. 10, pp. 590-

625, Oct. 1964.

A.C. Kilgour, M.D. Brown, "SPINDLE ; a system permitting

interactive display list editing" CAD project report no.

CAD-R-55,. University of Edinburgh, June 1969.

A.C. Kilgour, "Program to plot a display file on the

incremental plotter", CAD project report no. CAD-R-37,

University of Edinl3urgh, Dec. 1968.

V.R. Kodres, H.E. Lippmann, "STL board layout", IBM technical

report no. TR 00.1010, March 1964.

M. Krejcirik, "Computer aided plant layout", Computer Aided

Design, pp. 7-19, Autumn 1969.

M. Krejcirik, "Computer aided building layout", IFIP Congress,

Edinburgh, pp. 1126-1130, August 1968.

G. Kuratowski, "Sur le probleme des courves gauches en

topologie", Furidam Math. vol. 15, pp. 271-283, 1930.

C.A. Lang, J.C. Gray, "ASP - A ring implemented associative

structure package", Comm. ACM, vol. 11, no. 8, pp. 550-555,

August 1968.

S.E. Lass, "Automated printed circuit routing with a stepping

aperture", Comm. ACM, vol. 12, no. 5, pp. 262-265, May 1969.

C.Y. Lee, "An algorithm for path connections and its applic-

ations", IRE Trans. on Electronic Computers, vol. 10, no. 3,

pp. 346-365, Sept. 1961.

D.F.A. Leevers, "The use of a graphical display in the automatic

design of printed circuit boards", International Conference on

CAD, Southampton, lEE Conference publication no. 51, pp. 11-20,

April 1969.

-212-

S. MacLane, "A conthinatorial condition for planar graphs",

Fundam. Math. vol. 28, pp. 22-32, 1937.

J.S. Mamelak, "The placement of computer logic modules",

Journal ACM, vol. 13, no. 4, pp. 615-629, Oct. 1966.

D.D. McCracken, "A guide to FORTRAN IV programming", John

Wiley & Sons, Inc. 1965.

K. Mikami, K. Tabuchi, "A computer program for optimal routing

of printed circuit conductors", IFIP Congress, Edinburgh,

pp. H47-H50, August 1968.

W.M. Newman, "The ASP-7 ring-structure processor", Computer

Technology Group Report 67/8, Imperial College, Oct. 1967.

T.A.J. Nicholson, "A permutation procedure for minimising

the number of crossings in a network", Proc. lEE, vol. 115,

no.1, pp. 21-26, Jan. 1968.

D.T. Ross, "A generalised technique for symbol manipulation

and numerical calculation", Comm. ACM, vol. 4, pp. 147-150,

1961.

D.T. Ross, "The AED free storage package", Comm. ACM, vol. 10,

no.8, p. 481 	August 1967.

T. Rowley, "Further topology associated with automatic layout

of printed wiring", AEI internal report no. NP.g.12, Sept. 1967.

R.A. 'Rutman, "An algorithm for placement of interconnected

elements based on minimum wire length", Proc. SJCCçAFIPS,

vol. 25, pp. 477-491, 1964.

H. Whitney, "NonLseparable and planar graphs", Trans. Amer.

Math. Soc., vol. 34, pp. 339-362, 1932.

N.E. Wiseman et al, "PIXIE - a new approach to graphical man-

machine communication", International Conference on CAD,

Southampton, lEE Conference publication no. 51, pp. 463-471;

April 1969.

