22,042 research outputs found

    Query processing of geometric objects with free form boundarie sin spatial databases

    Get PDF
    The increasing demand for the use of database systems as an integrating factor in CAD/CAM applications has necessitated the development of database systems with appropriate modelling and retrieval capabilities. One essential problem is the treatment of geometric data which has led to the development of spatial databases. Unfortunately, most proposals only deal with simple geometric objects like multidimensional points and rectangles. On the other hand, there has been a rapid development in the field of representing geometric objects with free form curves or surfaces, initiated by engineering applications such as mechanical engineering, aviation or astronautics. Therefore, we propose a concept for the realization of spatial retrieval operations on geometric objects with free form boundaries, such as B-spline or Bezier curves, which can easily be integrated in a database management system. The key concept is the encapsulation of geometric operations in a so-called query processor. First, this enables the definition of an interface allowing the integration into the data model and the definition of the query language of a database system for complex objects. Second, the approach allows the use of an arbitrary representation of the geometric objects. After a short description of the query processor, we propose some representations for free form objects determined by B-spline or Bezier curves. The goal of efficient query processing in a database environment is achieved using a combination of decomposition techniques and spatial access methods. Finally, we present some experimental results indicating that the performance of decomposition techniques is clearly superior to traditional query processing strategies for geometric objects with free form boundaries

    A storage and access architecture for efficient query processing in spatial database systems

    Get PDF
    Due to the high complexity of objects and queries and also due to extremely large data volumes, geographic database systems impose stringent requirements on their storage and access architecture with respect to efficient query processing. Performance improving concepts such as spatial storage and access structures, approximations, object decompositions and multi-phase query processing have been suggested and analyzed as single building blocks. In this paper, we describe a storage and access architecture which is composed from the above building blocks in a modular fashion. Additionally, we incorporate into our architecture a new ingredient, the scene organization, for efficiently supporting set-oriented access of large-area region queries. An experimental performance comparison demonstrates that the concept of scene organization leads to considerable performance improvements for large-area region queries by a factor of up to 150

    Some Considerations about Modern Database Machines

    Get PDF
    Optimizing the two computing resources of any computing system - time and space - has al-ways been one of the priority objectives of any database. A current and effective solution in this respect is the computer database. Optimizing computer applications by means of database machines has been a steady preoccupation of researchers since the late seventies. Several information technologies have revolutionized the present information framework. Out of these, those which have brought a major contribution to the optimization of the databases are: efficient handling of large volumes of data (Data Warehouse, Data Mining, OLAP – On Line Analytical Processing), the improvement of DBMS – Database Management Systems facilities through the integration of the new technologies, the dramatic increase in computing power and the efficient use of it (computer networks, massive parallel computing, Grid Computing and so on). All these information technologies, and others, have favored the resumption of the research on database machines and the obtaining in the last few years of some very good practical results, as far as the optimization of the computing resources is concerned.Database Optimization, Database Machines, Data Warehouse, OLAP – On Line Analytical Processing, OLTP – On Line Transaction Processing, Parallel Processing

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    Geoinformation, Geotechnology, and Geoplanning in the 1990s

    Get PDF
    Over the last decade, there have been some significant changes in the geographic information available to support those involved in spatial planning and policy-making in different contexts. Moreover, developments have occurred apace in the technology with which to handle geoinformation. This paper provides an overview of trends during the 1990s in data provision, in the technology required to manipulate and analyse spatial information, and in the domain of planning where applications of computer technology in the processing of geodata are prominent. It draws largely on experience in western Europe, and in the UK and the Netherlands in particular, and suggests that there are a number of pressures for a strengthened role for geotechnology in geoplanning in the years ahead

    From ”Sapienza” to “Sapienza, State Archives in Rome”. A looping effect bringing back to the original source communication and culture by innovative and low cost 3D surveying, imaging systems and GIS applications

    Get PDF
    Applicazione di tecnologie mensorie integrate Low Cost,web GIS,applicazione di tecniche di Computational photography per la comunicazione e condivisione dei dati, sistemi di Cloud computing.Archiviazione Grandi DatiHigh Quality survey models, realized by multiple Low Cost methods and technologies, as a container to sharing Cultural and Archival Heritage, this is the aim guiding our research, here described in its primary applications. The SAPIENZA building, a XVI century masterpiece that represented the first unified headquarters of University in Rome, plays since year 1936, when the University moved to its newly edified campus, the role of the main venue for the State Archives. By the collaboration of a group of students of the Architecture Faculty, some integrated survey methods were applied on the monument with success. The beginning was the topographic survey, creating a reference on ground and along the monument for the upcoming applications, a GNNS RTK survey followed georeferencing points on the internal courtyard. Dense stereo matching photogrammetry is nowadays an accepted method for generating 3D survey models, accurate and scalable; it often substitutes 3D laser scanning for its low cost, so that it became our choice. Some 360°shots were planned for creating panoramic views of the double portico from the courtyard, plus additional single shots of some lateral spans and of pillars facing the court, as a single operation with a double finality: to create linked panotours with hotspots to web-linked databases, and 3D textured and georeferenced surface models, allowing to study the harmonic proportions of the classical architectural order. The use of free web Gis platforms, to load the work in Google Earth and the realization of low cost 3D prototypes of some representative parts, has been even performed
    • …
    corecore