931 research outputs found

    CIRA annual report 2007-2008

    Get PDF

    EMAML: Design of an Efficient Ensemble Model for Detection of Adversarial Attacks in Machine Learning Environments

    Get PDF
    In the realm of cybersecurity, the escalating sophistication of adversarial attacks poses a significant threat, particularly in the context of machine learning models. Traditional defensive mechanisms often fall short in identifying and mitigating such attacks, primarily due to their static nature and inability to adapt to the evolving strategies of adversaries. This limitation underscores the necessity for more dynamic and responsive approaches. Addressing this critical gap, our research introduces an innovative Active Machine Learning Adversarial Attack Detection framework process. Central to our approach is the strategic amalgamation of data collection and preprocessing techniques. We meticulously gather a diverse dataset encompassing both genuine and adversarial user feedback, which is then carefully annotated to differentiate between the two scenarios. This data undergoes rigorous preprocessing, including tokenization and conversion into numerical features through methods like TF-IDF and word embeddings, paving the way for more nuanced analysis. The core of our model employs a variety of machine learning algorithms—Logistic Regression, Random Forest, SVM, CNN, and XGBoost—each fine-tuned through meticulous hyperparameter optimizations. The novelty of our approach, however, lies in the integration of an active learning strategy for efficient results. By employing uncertainty sampling and query-by-committee, our model actively identifies and learns from instances of highest informational value, continuously evolving in its detection capabilities. Our framework further stands out in its post-training phases. The models are not only retrained with newly labeled data but are also subjected to a comprehensive evaluation on separate test datasets. Metrics such as accuracy, precision, recall, F1-score, and AUC are meticulously computed, ensuring the robustness of our results. Deployed in a real-time environment, the model demonstrates remarkable efficacy in detecting adversarial attacks in user feedback. Continuous monitoring and periodic retraining allow the model to adapt and respond to new adversarial tactics. The impact of our work is quantitatively significant—our model outperforms existing methods with a 9.5% improvement in precision, 8.5% higher accuracy, 8.3% increased recall, 9.4% greater AUC, 4.5% higher specificity, and a 2.9% reduction in detection delays for different scenarios

    Towards accurate multi-person pose estimation in the wild

    Get PDF
    In this thesis we are concerned with the problem of articulated human pose estimation and pose tracking in images and video sequences. Human pose estimation is a task of localising major joints of a human skeleton in natural images and is one of the most important visual recognition tasks in the scenes containing humans with numerous applications in robotics, virtual and augmented reality, gaming and healthcare among others. Articulated human pose tracking requires tracking multiple persons in the video sequence while simultaneously estimating full body poses. This task is important for analysing surveillance footage, activity recognition, sports analytics, etc. Most of the prior work focused on the pose estimation of single pre-localised humans whereas here we address a case with multiple people in real world images which entails several challenges such as person-person overlaps in highly crowded scenes, unknown number of people or people entering and leaving video sequences. The first contribution is a multi-person pose estimation algorithm based on the bottom-up detection-by-grouping paradigm. Unlike the widespread top-down approaches our method detects body joints and pairwise relations between them in a single forward pass of a convolutional neural network. Multi-person parsing is performed by optimizing a joint objective based on a multicut graph partitioning framework. Secondly, we extend our pose estimation approach to articulated multi-person pose tracking in videos. Our approach performs multi-target tracking and pose estimation in a holistic manner by optimising a single objective. We further simplify and refine the formulation which allows us to reach close to the real-time performance. Thirdly, we propose a large scale dataset and a benchmark for articulated multi-person tracking. It is the first dataset of video sequences comprising complex multi-person scenes and fully annotated tracks with 2D keypoints. Our fourth contribution is a method for estimating 3D body pose using on-body wearable cameras. Our approach uses a pair of downward facing, head-mounted cameras and captures an entire body. This egocentric approach is free of limitations of traditional setups with external cameras and can estimate body poses in very crowded environments. Our final contribution goes beyond human pose estimation and is in the field of deep learning of 3D object shapes. In particular, we address the case of reconstructing 3D objects from weak supervision. Our approach represents objects as 3D point clouds and is able to learn them with 2D supervision only and without requiring camera pose information at training time. We design a differentiable renderer of point clouds as well as a novel loss formulation for dealing with camera pose ambiguity.In dieser Arbeit behandeln wir das Problem der Schätzung und Verfolgung artikulierter menschlicher Posen in Bildern und Video-Sequenzen. Die Schätzung menschlicher Posen besteht darin die Hauptgelenke des menschlichen Skeletts in natürlichen Bildern zu lokalisieren und ist eine der wichtigsten Aufgaben der visuellen Erkennung in Szenen, die Menschen beinhalten. Sie hat zahlreiche Anwendungen in der Robotik, virtueller und erweiterter Realität, in Videospielen, in der Medizin und weiteren Bereichen. Die Verfolgung artikulierter menschlicher Posen erfordert die Verfolgung mehrerer Personen in einer Videosequenz bei gleichzeitiger Schätzung vollständiger Körperhaltungen. Diese Aufgabe ist besonders wichtig für die Analyse von Video-Überwachungsaufnahmen, Aktivitätenerkennung, digitale Sportanalyse etc. Die meisten vorherigen Arbeiten sind auf die Schätzung einzelner Posen vorlokalisierter Menschen fokussiert, wohingegen wir den Fall mehrerer Personen in natürlichen Aufnahmen betrachten. Dies bringt einige Herausforderungen mit sich, wie die Überlappung verschiedener Personen in dicht gedrängten Szenen, eine unbekannte Anzahl an Personen oder Personen die das Sichtfeld der Video-Sequenz verlassen oder betreten. Der erste Beitrag ist ein Algorithmus zur Schätzung der Posen mehrerer Personen, welcher auf dem Paradigma der Erkennung durch Gruppierung aufbaut. Im Gegensatz zu den verbreiteten Verfeinerungs-Ansätzen erkennt unsere Methode Körpergelenke and paarweise Beziehungen zwischen ihnen in einer einzelnen Vorwärtsrechnung eines faltenden neuronalen Netzwerkes. Die Gliederung in mehrere Personen erfolgt durch Optimierung einer gemeinsamen Zielfunktion, die auf dem Mehrfachschnitt-Problem in der Graphenzerlegung basiert. Zweitens erweitern wir unseren Ansatz zur Posen-Bestimmung auf das Verfolgen mehrerer Personen und deren Artikulation in Videos. Unser Ansatz führt eine Verfolgung mehrerer Ziele und die Schätzung der zugehörigen Posen in ganzheitlicher Weise durch, indem eine einzelne Zielfunktion optimiert wird. Desweiteren vereinfachen und verfeinern wir die Formulierung, was unsere Methode nah an Echtzeit-Leistung bringt. Drittens schlagen wir einen großen Datensatz und einen Bewertungsmaßstab für die Verfolgung mehrerer artikulierter Personen vor. Dies ist der erste Datensatz der Video-Sequenzen von komplexen Szenen mit mehreren Personen beinhaltet und deren Spuren komplett mit zwei-dimensionalen Markierungen der Schlüsselpunkte versehen sind. Unser vierter Beitrag ist eine Methode zur Schätzung von drei-dimensionalen Körperhaltungen mittels am Körper tragbarer Kameras. Unser Ansatz verwendet ein Paar nach unten gerichteter, am Kopf befestigter Kameras und erfasst den gesamten Körper. Dieser egozentrische Ansatz ist frei von jeglichen Limitierungen traditioneller Konfigurationen mit externen Kameras und kann Körperhaltungen in sehr dicht gedrängten Umgebungen bestimmen. Unser letzter Beitrag geht über die Schätzung menschlicher Posen hinaus in den Bereich des tiefen Lernens der Gestalt von drei-dimensionalen Objekten. Insbesondere befassen wir uns mit dem Fall drei-dimensionale Objekte unter schwacher Überwachung zu rekonstruieren. Unser Ansatz repräsentiert Objekte als drei-dimensionale Punktwolken and ist im Stande diese nur mittels zwei-dimensionaler Überwachung und ohne Informationen über die Kamera-Ausrichtung zur Trainingszeit zu lernen. Wir entwerfen einen differenzierbaren Renderer für Punktwolken sowie eine neue Formulierung um mit uneindeutigen Kamera-Ausrichtungen umzugehen

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Decentralized Riemannian Particle Filtering with Applications to Multi-Agent Localization

    Get PDF
    The primary focus of this research is to develop consistent nonlinear decentralized particle filtering approaches to the problem of multiple agent localization. A key aspect in our development is the use of Riemannian geometry to exploit the inherently non-Euclidean characteristics that are typical when considering multiple agent localization scenarios. A decentralized formulation is considered due to the practical advantages it provides over centralized fusion architectures. Inspiration is taken from the relatively new field of information geometry and the more established research field of computer vision. Differential geometric tools such as manifolds, geodesics, tangent spaces, exponential, and logarithmic mappings are used extensively to describe probabilistic quantities. Numerous probabilistic parameterizations were identified, settling on the efficient square-root probability density function parameterization. The square-root parameterization has the benefit of allowing filter calculations to be carried out on the well studied Riemannian unit hypersphere. A key advantage for selecting the unit hypersphere is that it permits closed-form calculations, a characteristic that is not shared by current solution approaches. Through the use of the Riemannian geometry of the unit hypersphere, we are able to demonstrate the ability to produce estimates that are not overly optimistic. Results are presented that clearly show the ability of the proposed approaches to outperform current state-of-the-art decentralized particle filtering methods. In particular, results are presented that emphasize the achievable improvement in estimation error, estimator consistency, and required computational burden

    Bayesian non-parametrics for multi-modal segmentation

    Get PDF
    Segmentation is a fundamental and core problem in computer vision research which has applications in many tasks, such as object recognition, content-based image retrieval, and semantic labelling. To partition the data into groups coherent in one or more characteristics such as semantic classes, is often a first step towards understanding the content of data. As information in the real world is generally perceived in multiple modalities, segmentation performed on multi-modal data for extracting the latent structure usually encounters a challenge: how to combine features from multiple modalities and resolve accidental ambiguities. This thesis tackles three main axes of multi-modal segmentation problems: video segmentation and object discovery, activity segmentation and discovery, and segmentation in 3D data. For the first two axes, we introduce non-parametric Bayesian approaches for segmenting multi-modal data collections, including groups of videos and context sensor streams. The proposed method shows benefits on: integrating multiple features and data dependencies in a probabilistic formulation, inferring the number of clusters from data and hierarchical semantic partitions, as well as resolving ambiguities by joint segmentation across videos or streams. The third axis focuses on the robust use of 3D information for various applications, as 3D perception provides richer geometric structure and holistic observation of the visual scene. The studies covered in this thesis for utilizing various types of 3D data include: 3D object segmentation based on Kinect depth sensing improved by cross-modal stereo, matching 3D CAD models to objects on 2D image plane by exploiting the differentiability of the HOG descriptor, segmenting stereo videos based on adaptive ensemble models, and fusing 2D object detectors with 3D context information for an augmented reality application scenario.Segmentierung ist ein zentrales problem in der Computer Vision Forschung mit Anwendungen in vielen Bereichen wie der Objekterkennung, der inhaltsbasierten Bildsuche und dem semantischen Labelling. Daten in Gruppen zu partitionieren, die in einer oder mehreren Eigenschaften wie zum Beispiel der semantischen Klasse übereinstimmen, ist oft ein erster Schritt in Richtung Inhaltsanalyse. Da Informationen in der realen Welt im Allgemeinen multi-modal wahrgenommen werden, wird die Segmentierung auf multi-modale Daten angewendet und die latente Struktur dahinter extrahiert. Dies stellt in der Regel eine Herausforderung dar: Wie kombiniert man Merkmale aus mehreren Modalitäten und beseitigt zufällige Mehrdeutigkeiten? Diese Doktorarbeit befasst sich mit drei Hauptachsen multi-modaler Segmentierungsprobleme: Videosegmentierung und Objektentdeckung, Aktivitätssegmentierung und –entdeckung, sowie Segmentierung von 3D Daten. Für die ersten beiden Achsen führen wir nichtparametrische Bayessche Ansätze ein um multi-modale Datensätze wie Videos und Kontextsensor-Ströme zu segmentieren. Die vorgeschlagene Methode zeigt Vorteile in folgenden Bereichen: Integration multipler Merkmale und Datenabhängigkeiten in probabilistischen Formulierungen, Bestimmung der Anzahl der Cluster und hierarchische, semantischen Partitionen, sowie die Beseitigung von Mehrdeutigkeiten in gemeinsamen Segmentierungen in Videos und Sensor-Strömen. Die dritte Achse konzentiert sich auf die robuste Nutzung von 3D Informationen für verschiedene Anwendungen. So bietet die 3D-Wahrnehmung zum Beispiel reichere geometrische Strukturen und eine holistische Betrachtung der sichtbaren Szene. Die Untersuchungen, die in dieser Arbeit zur Nutzung verschiedener Arten von 3D-Daten vorgestellt werden, umfassen: die 3D-Objektsegmentierung auf Basis der Kinect Tiefenmessung, verbessert durch cross-modale Stereoverfahren, die Anpassung von 3D-CAD-Modellen auf Objekte in der 2D-Bildebene durch Ausnutzung der Differenzierbarkeit des HOG-Descriptors, die Segmentierung von Stereo-Videos, basierend auf adaptiven Ensemble-Modellen, sowie der Verschmelzung von 2D- Objektdetektoren mit 3D-Kontextinformationen für ein Augmented-Reality Anwendungsszenario

    Bayesian non-parametrics for multi-modal segmentation

    Get PDF
    Segmentation is a fundamental and core problem in computer vision research which has applications in many tasks, such as object recognition, content-based image retrieval, and semantic labelling. To partition the data into groups coherent in one or more characteristics such as semantic classes, is often a first step towards understanding the content of data. As information in the real world is generally perceived in multiple modalities, segmentation performed on multi-modal data for extracting the latent structure usually encounters a challenge: how to combine features from multiple modalities and resolve accidental ambiguities. This thesis tackles three main axes of multi-modal segmentation problems: video segmentation and object discovery, activity segmentation and discovery, and segmentation in 3D data. For the first two axes, we introduce non-parametric Bayesian approaches for segmenting multi-modal data collections, including groups of videos and context sensor streams. The proposed method shows benefits on: integrating multiple features and data dependencies in a probabilistic formulation, inferring the number of clusters from data and hierarchical semantic partitions, as well as resolving ambiguities by joint segmentation across videos or streams. The third axis focuses on the robust use of 3D information for various applications, as 3D perception provides richer geometric structure and holistic observation of the visual scene. The studies covered in this thesis for utilizing various types of 3D data include: 3D object segmentation based on Kinect depth sensing improved by cross-modal stereo, matching 3D CAD models to objects on 2D image plane by exploiting the differentiability of the HOG descriptor, segmenting stereo videos based on adaptive ensemble models, and fusing 2D object detectors with 3D context information for an augmented reality application scenario.Segmentierung ist ein zentrales problem in der Computer Vision Forschung mit Anwendungen in vielen Bereichen wie der Objekterkennung, der inhaltsbasierten Bildsuche und dem semantischen Labelling. Daten in Gruppen zu partitionieren, die in einer oder mehreren Eigenschaften wie zum Beispiel der semantischen Klasse übereinstimmen, ist oft ein erster Schritt in Richtung Inhaltsanalyse. Da Informationen in der realen Welt im Allgemeinen multi-modal wahrgenommen werden, wird die Segmentierung auf multi-modale Daten angewendet und die latente Struktur dahinter extrahiert. Dies stellt in der Regel eine Herausforderung dar: Wie kombiniert man Merkmale aus mehreren Modalitäten und beseitigt zufällige Mehrdeutigkeiten? Diese Doktorarbeit befasst sich mit drei Hauptachsen multi-modaler Segmentierungsprobleme: Videosegmentierung und Objektentdeckung, Aktivitätssegmentierung und –entdeckung, sowie Segmentierung von 3D Daten. Für die ersten beiden Achsen führen wir nichtparametrische Bayessche Ansätze ein um multi-modale Datensätze wie Videos und Kontextsensor-Ströme zu segmentieren. Die vorgeschlagene Methode zeigt Vorteile in folgenden Bereichen: Integration multipler Merkmale und Datenabhängigkeiten in probabilistischen Formulierungen, Bestimmung der Anzahl der Cluster und hierarchische, semantischen Partitionen, sowie die Beseitigung von Mehrdeutigkeiten in gemeinsamen Segmentierungen in Videos und Sensor-Strömen. Die dritte Achse konzentiert sich auf die robuste Nutzung von 3D Informationen für verschiedene Anwendungen. So bietet die 3D-Wahrnehmung zum Beispiel reichere geometrische Strukturen und eine holistische Betrachtung der sichtbaren Szene. Die Untersuchungen, die in dieser Arbeit zur Nutzung verschiedener Arten von 3D-Daten vorgestellt werden, umfassen: die 3D-Objektsegmentierung auf Basis der Kinect Tiefenmessung, verbessert durch cross-modale Stereoverfahren, die Anpassung von 3D-CAD-Modellen auf Objekte in der 2D-Bildebene durch Ausnutzung der Differenzierbarkeit des HOG-Descriptors, die Segmentierung von Stereo-Videos, basierend auf adaptiven Ensemble-Modellen, sowie der Verschmelzung von 2D- Objektdetektoren mit 3D-Kontextinformationen für ein Augmented-Reality Anwendungsszenario
    • …
    corecore