2,236 research outputs found

    An Efficient Vein Pattern-based Recognition System

    Full text link
    This paper presents an efficient human recognition system based on vein pattern from the palma dorsa. A new absorption based technique has been proposed to collect good quality images with the help of a low cost camera and light source. The system automatically detects the region of interest from the image and does the necessary preprocessing to extract features. A Euclidean Distance based matching technique has been used for making the decision. It has been tested on a data set of 1750 image samples collected from 341 individuals. The accuracy of the verification system is found to be 99.26% with false rejection rate (FRR) of 0.03%.Comment: IEEE Publication format, International Journal of Computer Science and Information Security, IJCSIS, Vol. 8 No. 1, April 2010, USA. ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Palm vein recognition using scale invariant feature transform with RANSAC mismatching removal

    Get PDF
    Palm vein recognition has been gaining increasing interest as a biometric method, although there still remains an issue regarding difficulties in obtaining robust signals. In this paper, the effects of random sample consensus point mismatching removal and the use of different wavelengths of illumination on the recognition rate are investigated. The CASIA multi-spectral palm print image database was used to provide input signals and the scale invariant feature transform (SIFT) and random sample consensus (RANSAC) mismatching removal approaches were adopted for vein extraction and point feature matching. The results show that the RANSAC mismatching point removal was able to eliminate outliers while preserving the appropriate SIFT key points and that this led to an improvement in the equal error rate metric, signifying better recognition performance. The palm vein recognition system was found to achieve a better verification rate when infrared illumination in a specific spectral band was used to obtain the palm vein image

    Handbook of Vascular Biometrics

    Get PDF

    Hand Geometry Techniques: A Review

    Full text link
    Volume 2 Issue 11 (November 2014

    Finger Vein Recognition Based on PCA Feature using Artificial Neural Network

    Get PDF
    Personal recognition technology is developing rapidly as a security system. Traditional methods such as authentication key; password: card is not secure enough, because they could be stolen or easily forget. Biometrics has been applied to a wide range of systems. According to various researchers, vein biometrics was a good technique from other biometric authentication system used, such as fingerprints, hand geometry, voice, etc. of the DNA. Root Authentication systems can be designed in different ways. All methods include the matching stage. A neural network is an effective way of matching Personal identification authentication system. The finger vein pattern is unique biometric identity of the human beings. The finger vein recognition is a popular biometric technique which is used for authentication purposes in various applications. In the propose work an algorithm is proposed to find the accuracy, FRR and FAR of finger vein recognition. The performances of PCA, threshold segmentation, pre-processing and testing & training techniques has been validate and compared with each other in order to determine the most accurate results in terms of finger vein recognition

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Multi-modal palm-print and hand-vein biometric recognition at sensor level fusion

    Get PDF
    When it is important to authenticate a person based on his or her biometric qualities, most systems use a single modality (e.g. fingerprint or palm print) for further analysis at higher levels. Rather than using higher levels, this research recommends using two biometric features at the sensor level. The Log-Gabor filter is used to extract features and, as a result, recognize the pattern, because the data acquired from images is sampled at various spacing. Using the two fused modalities, the suggested system attained greater accuracy. Principal component analysis (PCA) was performed to reduce the dimensionality of the data. To get the optimum performance between the two classifiers, fusion was performed at the sensor level utilizing different classifiers, including K-nearest neighbors (K-NN) and support vector machines (SVMs). The technology collects palm prints and veins from sensors and combines them into consolidated images that take up less disk space. The amount of memory needed to store such photos has been lowered. The amount of memory is determined by the number of modalities fused

    Multimodal Biometrics for Person Authentication

    Get PDF
    Unimodal biometric systems have limited effectiveness in identifying people, mainly due to their susceptibility to changes in individual biometric features and presentation attacks. The identification of people using multimodal biometric systems attracts the attention of researchers due to their advantages, such as greater recognition efficiency and greater security compared to the unimodal biometric system. To break into the biometric multimodal system, the intruder would have to break into more than one unimodal biometric system. In multimodal biometric systems: The availability of many features means that the multimodal system becomes more reliable. A multimodal biometric system increases security and ensures confidentiality of user data. A multimodal biometric system realizes the merger of decisions taken under individual modalities. If one of the modalities is eliminated, the system can still ensure security, using the remaining. Multimodal systems provide information on the “liveness” of the sample being introduced. In a multimodal system, a fusion of feature vectors and/or decisions developed by each subsystem is carried out, and then the final decision on identification is made on the basis of the vector of features thus obtained. In this chapter, we consider a multimodal biometric system that uses three modalities: dorsal vein, palm print, and periocular
    • …
    corecore