4 research outputs found

    Application of the Lomb-Scargle Periodogram to Investigate Heart Rate Variability during Haemodialysis

    Get PDF
    Short-term cardiovascular compensatory responses to perturbations in the circulatory system caused by haemodialysis can be investigated by the spectral analysis of heart rate variability, thus providing an important variable for categorising individual patients' response, leading to a more personalised treatment. This is typically accomplished by resampling the irregular heart rate to generate an equidistant time series prior to spectral analysis, but resampling can further distort the data series whose interpretation can already be compromised by the presence of artefacts. The Lomb-Scargle periodogram provides a more direct method of spectral analysis as this method is specifically designed for large, irregularly sampled, and noisy datasets such as those obtained in clinical settings. However, guidelines for preprocessing patient data have been established in combination with equidistant time-series methods and their validity when used in combination with the Lomb-Scargle approach is missing from literature. This paper examines the effect of common preprocessing methods on the Lomb-Scargle power spectral density estimate using both real and synthetic heart rate data and will show that many common techniques for identifying and editing suspect data points, particularly interpolation and replacement, will distort the resulting power spectrum potentially misleading clinical interpretations of the results. Other methods are proposed and evaluated for use with the Lomb-Scargle approach leading to the main finding that suspicious data points should be excluded rather than edited, and where required, denoising of the heart rate signal can be reliably accomplished by empirical mode decomposition. Some additional methods were found to be particularly helpful when used in conjunction with the Lomb-Scargle periodogram, such as the use of a false alarm probability metric to establish whether spectral estimates are valid and help automate the assessment of valid heart rate records, potentially leading to greater use of this powerful technique in a clinical setting.The authors would like to thank Mel Morris and iTrend Medical Research Ltd. for funding the iTrend research programme

    Accurate detection of sleep apnea with long short-term memory network based on RR interval signals

    Get PDF
    Sleep apnea is a common condition that is characterized by sleep-disordered breathing. Worldwide the number of apnea cases has increased and there has been a growing number of patients suffering from apnea complications. Unfortunately, many cases remain undetected, because expensive and inconvenient examination methods are formidable barriers with regard to the diagnostics. Furthermore, treatment monitoring depends on the same methods which also underpin the initial diagnosis; hence issues related to the examination methods cause difficulties with managing sleep apnea as well. Computer-Aided Diagnosis (CAD) systems could be a tool to increase the efficiency and efficacy of diagnosis. To investigate this hypothesis, we designed a deep learning model that classifies beat-to-beat interval traces, medically known as RR intervals, into apnea versus non-apnea. The RR intervals were extracted from Electrocardiogram (ECG) signals contained in the Apnea-ECG benchmark Database. Before feeding the RR intervals to the classification algorithm, the signal was band-pass filtered with an Ornstein–Uhlenbeck third-order Gaussian process. 10-fold cross-validation indicated that the Long Short-Term Memory (LSTM) network has 99.80% accuracy, 99.85% sensitivity, and 99.73% specificity. With hold-out validation, the same network achieved 81.30% accuracy, 59.90% sensitivity, and 91.75% specificity. During the design, we learned that the band-pass filter improved classification accuracy by over 20%. The increased performance resulted from the fact that neural activation functions can process a DC free signal more efficiently. The result is likely transferable to the design of other RR interval based CAD systems, where the filter can help to improve classification performance
    corecore