3 research outputs found

    CAS-DSM: A Compiler Assisted Software Distributed Shared Memory

    Full text link
    Traditional software Distributed Shared Memory (DSM) systems rely on the virtual memory management mechanisms to detect accesses to shared memory locations and maintain their consistency. The resulting involvement of the OS (kernel) and the associated overhead which is significant, can be avoided by careful compile time analysis and code instrumentation. In this paper, we propose such a Compiler Assisted Software support approach (CAS-DSM). In the CAS-DSM implementation, the involvement of the OS kernel is avoided by instrumenting the application code at the source level. The overhead caused by the execution of the instrumented code is reduced through several aggressive compile time optimizations. Finally, we also address the issue of reducing certain overheads in polling-based implementation of receiving asynchronous messages. We used SUIF, a public domain compiler tool, to implement compile time analysis, instrumentation and optimizations. We modified CVM, a publicly available software DSM to support the instrumentation inserted by the compiler. Detailed performance evaluation of CAS-DSM is reported using a set of Splash/Splash2 parallel application benchmarks on a distributed memory IBM SP-2 machine. CAS-DSM achieved moderate to good performance improvements for most of the applications compared to the original CVM implementation. Reducing the overheads in polling-based implementation improves the performance of CAS-DSM significantly resulting in an overall improvement of 12–52% over the original CVM implementation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44573/1/10766_2004_Article_482234.pd

    Generating and auto-tuning parallel stencil codes

    Get PDF
    In this thesis, we present a software framework, Patus, which generates high performance stencil codes for different types of hardware platforms, including current multicore CPU and graphics processing unit architectures. The ultimate goals of the framework are productivity, portability (of both the code and performance), and achieving a high performance on the target platform. A stencil computation updates every grid point in a structured grid based on the values of its neighboring points. This class of computations occurs frequently in scientific and general purpose computing (e.g., in partial differential equation solvers or in image processing), justifying the focus on this kind of computation. The proposed key ingredients to achieve the goals of productivity, portability, and performance are domain specific languages (DSLs) and the auto-tuning methodology. The Patus stencil specification DSL allows the programmer to express a stencil computation in a concise way independently of hardware architecture-specific details. Thus, it increases the programmer productivity by disburdening her or him of low level programming model issues and of manually applying hardware platform-specific code optimization techniques. The use of domain specific languages also implies code reusability: once implemented, the same stencil specification can be reused on different hardware platforms, i.e., the specification code is portable across hardware architectures. Constructing the language to be geared towards a special purpose makes it amenable to more aggressive optimizations and therefore to potentially higher performance. Auto-tuning provides performance and performance portability by automated adaptation of implementation-specific parameters to the characteristics of the hardware on which the code will run. By automating the process of parameter tuning — which essentially amounts to solving an integer programming problem in which the objective function is the number representing the code's performance as a function of the parameter configuration, — the system can also be used more productively than if the programmer had to fine-tune the code manually. We show performance results for a variety of stencils, for which Patus was used to generate the corresponding implementations. The selection includes stencils taken from two real-world applications: a simulation of the temperature within the human body during hyperthermia cancer treatment and a seismic application. These examples demonstrate the framework's flexibility and ability to produce high performance code

    The Omni OpenMP Compiler on the Distributed Shared Memory of Cenju-4

    No full text
    corecore