
Generating and Auto-Tuning

Parallel Stencil Codes

Inauguraldissertation

zur Erlangung der Würde eines Doktors der Philosophie

vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Matthias-Michael Christen

aus Affoltern BE, Schweiz

Basel, 2011

Originaldokument gespeichert auf dem
Dokumentenserver der Universität Basel: edoc.unibas.ch.

Dieses Werk ist unter dem Vertrag “Creative Commons
Namensnennung–Keine kommerzielle Nutzung–Keine
Bearbeitung 2.5 Schweiz” lizenziert. Die vollständige
Lizenz kann unter
http://creativecommons.org/licences/by-nc-nd/2.5/ch

eingesehen werden.

Attribution – NonCommercial – NoDerivs 2.5 Switzerland

You are free:

to Share — to copy, distribute and transmit the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they endorse
you or your use of the work).
Noncommercial — You may not use this work for commercial pur-
poses.
No Derivative Works —You may not alter, transform, or build upon
this work.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and limi-
tations;

• The author’s moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to the web page http:

//creativecommons.org/licenses/by-nc-nd/2.5/ch.

Disclaimer — The Commons Deed is not a license. It is simply a handy reference for un-
derstanding the Legal Code (the full license) – it is a human-readable expression of some
of its key terms. Think of it as the user-friendly interface to the Legal Code beneath.
This Deed itself has no legal value, and its contents do not appear in the actual license.
Creative Commons is not a law firm and does not provide legal services. Distributing
of, displaying of, or linking to this Commons Deed does not create an attorney-client
relationship.

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf
Antrag von

Prof. Dr. Helmar Burkhart
Prof. Dr. Rudolf Eigenmann

Basel, den 20. September 2011

Prof. Dr. Martin Spiess,
Dekan

Abstract

In this thesis, we present a software framework, PATUS, which generates
high performance stencil codes for different types of hardware platforms,
including current multicore CPU and graphics processing unit architec-
tures. The ultimate goals of the framework are productivity, portability
(of both the code and performance), and achieving a high performance
on the target platform.

A stencil computation updates every grid point in a structured grid
based on the values of its neighboring points. This class of computations
occurs frequently in scientific and general purpose computing (e.g., in
partial differential equation solvers or in image processing), justifying
the focus on this kind of computation.

The proposed key ingredients to achieve the goals of productivity, porta-
bility, and performance are domain specific languages (DSLs) and the auto-
tuning methodology.

The PATUS stencil specification DSL allows the programmer to ex-
press a stencil computation in a concise way independently of hardware
architecture-specific details. Thus, it increases the programmer produc-
tivity by disburdening her or him of low level programming model is-
sues and of manually applying hardware platform-specific code opti-
mization techniques. The use of domain specific languages also implies
code reusability: once implemented, the same stencil specification can
be reused on different hardware platforms, i.e., the specification code is
portable across hardware architectures. Constructing the language to be
geared towards a special purpose makes it amenable to more aggressive
optimizations and therefore to potentially higher performance.

Auto-tuning provides performance and performance portability by au-
tomated adaptation of implementation-specific parameters to the char-
acteristics of the hardware on which the code will run. By automating

the process of parameter tuning — which essentially amounts to solving
an integer programming problem in which the objective function is the
number representing the code’s performance as a function of the param-
eter configuration, — the system can also be used more productively than
if the programmer had to fine-tune the code manually.

We show performance results for a variety of stencils, for which PA-
TUS was used to generate the corresponding implementations. The se-
lection includes stencils taken from two real-world applications: a sim-
ulation of the temperature within the human body during hyperthermia
cancer treatment and a seismic application. These examples demonstrate
the framework’s flexibility and ability to produce high performance code.

Contents

Contents i

1 Introduction 3

I High-Performance Computing Challenges 7

2 Hardware Challenges 9

3 Software Challenges 17
3.1 The Laws of Amdahl and Gustafson 18
3.2 Current De-Facto Standards 24
3.3 Beyond MPI and OpenMP 28
3.4 Optimizing Compilers . 32
3.5 Domain Specific Languages 42
3.6 Motifs . 45

4 Algorithmic Challenges 53

II The PATUS Approach 59

5 Introduction To PATUS 61
5.1 Stencils and the Structured Grid Motif 63

5.1.1 Stencil Structure Examples 64
5.1.2 Stencil Sweeps . 68
5.1.3 Boundary Conditions 69
5.1.4 Stencil Code Examples 70
5.1.5 Arithmetic Intensity 71

ii CONTENTS

5.2 A PATUS Walkthrough Example 74
5.2.1 From a Model to a Stencil 75
5.2.2 Generating The Code 76
5.2.3 Running and Tuning 78

5.3 Integrating into User Code 81
5.4 Alternate Entry Points to PATUS 83
5.5 Current Limitations . 83
5.6 Related Work . 84

6 Saving Bandwidth And Synchronization 89
6.1 Spatial Blocking . 89
6.2 Temporal Blocking . 91

6.2.1 Time Skewing . 92
6.2.2 Circular Queue Time Blocking 97
6.2.3 Wave Front Time Blocking 99

6.3 Cache-Oblivious Blocking Algorithms 101
6.3.1 Cutting Trapezoids 101
6.3.2 Cache-Oblivious Parallelograms 102

6.4 Hardware-Aware Programming 105
6.4.1 Overlapping Computation and Communication . . 105
6.4.2 NUMA-Awareness and Thread Affinity 106
6.4.3 Bypassing the Cache 108
6.4.4 Software Prefetching 109

7 Stencils, Strategies, and Architectures 111
7.1 More Details on PATUS Stencil Specifications 111
7.2 Strategies and Hardware Architectures 115

7.2.1 A Cache Blocking Strategy 115
7.2.2 Independence of the Stencil 117
7.2.3 Circular Queue Time Blocking 119
7.2.4 Independence of the Hardware Architecture 122
7.2.5 Examples of Generated Code 124

8 Auto-Tuning 127
8.1 Why Auto-Tuning? . 127
8.2 Search Methods . 131

8.2.1 Exhaustive Search . 131
8.2.2 A Greedy Heuristic 132
8.2.3 General Combined Elimination 132

CONTENTS iii

8.2.4 The Hooke-Jeeves Algorithm 133
8.2.5 Powell’s Method . 135
8.2.6 The Nelder-Mead Method 136
8.2.7 The DIRECT Method 137
8.2.8 Genetic Algorithms 137

8.3 Search Method Evaluation 138

III Applications & Results 147

9 Experimental Testbeds 149
9.1 AMD Opteron Magny Cours 151
9.2 Intel Nehalem . 152
9.3 NVIDIA GPUs . 153

10 Performance Benchmark Experiments 157
10.1 Performance Benchmarks 157

10.1.1 AMD Opteron Magny Cours 158
10.1.2 Intel Xeon Nehalem Beckton 164
10.1.3 NVIDIA Fermi GPU (Tesla C2050) 165

10.2 Impact of Internal Optimizations 168
10.2.1 Loop Unrolling . 168

10.3 Impact of Foreign Configurations 170
10.3.1 Problem Size Dependence 170
10.3.2 Dependence on Number of Threads 171
10.3.3 Hardware Architecture Dependence 172

11 Applications 175
11.1 Hyperthermia Cancer Treatment Planning 175

11.1.1 Benchmark Results 178
11.2 Anelastic Wave Propagation 180

11.2.1 Benchmark Results 182

IV Implementation Aspects 187

12 PATUS Architecture Overview 189
12.1 Parsing and Internal Representation 191

12.1.1 Data Structures: The Stencil Representation 191
12.1.2 Strategies . 194

iv CONTENTS

12.2 The Code Generator . 196
12.3 Code Generation Back-Ends 199
12.4 Benchmarking Harness . 202
12.5 The Auto-Tuner . 205

13 Generating Code: Instantiating Strategies 207
13.1 Grids and Iterators . 207
13.2 Index Calculations . 211

14 Internal Code Optimizations 217
14.1 Loop Unrolling . 218
14.2 Dealing With Multiple Code Variants 221
14.3 Vectorization . 222
14.4 NUMA-Awareness . 228

V Conclusions & Outlook 229

15 Conclusion and Outlook 231

Bibliography 239

Appendices 257

A PATUS Usage 259
A.1 Code Generation . 259
A.2 Auto-Tuning . 261

B PATUS Grammars 265
B.1 Stencil DSL Grammar . 265
B.2 Strategy DSL Grammar . 266

C Stencil Specifications 269
C.1 Basic Differential Operators 269

C.1.1 Laplacian . 269
C.1.2 Divergence . 269
C.1.3 Gradient . 270

C.2 Wave Equation . 270
C.3 COSMO . 271

C.3.1 Upstream . 271
C.3.2 Tricubic Interpolation 271

CONTENTS v

C.4 Hyperthermia . 272
C.5 Image Processing . 273

C.5.1 Blur Kernel . 273
C.5.2 Edge Detection . 273

C.6 Cellular Automata . 274
C.6.1 Conway’s Game of Life 274

C.7 Anelastic Wave Propagation 274
C.7.1 uxx1 . 274
C.7.2 xy1 . 275
C.7.3 xyz1 . 276
C.7.4 xyzq . 278

Index 281

Acknowledgments

I would like to thank Prof. Dr. Helmar Burkhart and PD Dr. Olaf Schenk
for having been given the opportunity to start this project and for their
research guidance, their support, advice, and confidence.

I would also like to thank Prof. Dr. Rudolf Eigenmann for kindly agree-
ing to act as co-referee in the thesis committee and for reading the thesis.

I am grateful to the other members of research group, Robert Frank, Mar-
tin Guggisberg, Florian Müller, Phuong Nguyen, Max Rietmann, Sven
Rizzotti, Madan Sathe, and Jürg Senn for contributing to the enjoyable
working environment and for stimulating discussions.

I wish to thank the people at the Lawrence Berkeley National Laboratory
for welcoming me – twice – as an intern in their research group and for
the good cooperation; specifically my thanks go to Lenny Oliker, Kaushik
Datta, Noel Keen, Terry Ligocki, John Shalf, Sam Williams, Brian Van
Straalen, Erich Strohmaier, and Horst Simon.

Finally, I would like to express my gratitude towards my parents for their
support.

This project was funded by the Swiss National Science Foundation (grant
No. 20021-117745) and the Swiss National Supercomputing Centre (CSCS)
within the Petaquake project of the Swiss Platform for High-Performance
and High-Productivity Computing (HP2C).

Chapter 1

Introduction

The advent of the multi- and manycore era has led to a software cri-
sis. In the preceding era of frequency scaling, performance improve-
ment of software came for free with newer processor generations. The
current paradigm shift in hardware architectures towards more and sim-
pler “throughput optimized” cores, which essentially is motivated by the
power concern, implies that, if software performance is to go along with
the advances in hardware architectures, parallelism has to be embraced
in software. Traditionally, this has been done for a couple of decades in
high performance computing. The new trend, however, is towards multi-
level parallelism with gradated granularities, which has led to mixing
programming models and thereby increasing code complexity, exacer-
bating code maintenance, and reducing programmer productivity.

Hardware architectures have also grown immensely complex, and
consequently high performance codes, which aim at eliciting the ma-
chine’s full compute power, require meticulous architecture-specific tun-
ing. Not only does this obviously require deeper understanding of the
architecture, but also is both a time consuming and error-prone process.

The main contribution of this thesis is a software framework, PATUS,
for a specific class of computations — namely nearest neighbor, or stencil
computations — which emphasizes productivity, portability, and perfor-
mance. PATUS stands for Parallel Auto-Tuned Stencils.

A stencil computation updates every grid point in a structured grid
based on the values of its neighboring points. This class of computations
is an important class occurring frequently in scientific and general pur-
pose computing (e.g., in PDE solvers or in image processing), justifying

4 CHAPTER 1. INTRODUCTION

the focus on this kind of computation. It was classified as the core compu-
tation of one of the currently 13 computing patterns — or motifs — in the
often-cited Landscape of Parallel Computing Research: A View from Berkeley
[9].

The proposed key ingredients to achieve the goals of productivity,
portability, and performance are domain specific languages and the auto-
tuning methodology. The domain specific language approach enables
the programmer to express a stencil computation in a concise way inde-
pendently of hardware architecture-specific details such as a low level
programming model and hardware platform-specific code optimization
techniques, thus increasing productivity. In our framework, we further-
more raise productivity by separating the specification of the stencil from
the algorithmic implementation, which is orthogonal to the definition of
the stencil.

The use of domain specific languages also implies code reusability:
the same stencil specifications can be reused on different hardware plat-
forms, making them portable across hardware architectures. Thus, the
combined use of domain specific languages and auto-tuning make the
approach performance-portable, meaning that no performance is sacri-
ficed for generality. This requires, of course, that an architecture-aware
back-end exists, which provides the domain-specific and architecture-
specific optimizations. Creating such a back-end, however, has to be
done only once.

We show that our framework is applicable to a broad variety of sten-
cils and that it provides its user with a valuable performance-oriented
tool.

This thesis is organized in five parts. The first part is a survey of the
current challenges and trends in high performance computing, from both
the hardware and the software perspective. In the second part, our code
generation and auto-tuning framework PATUS for stencil computations
is introduced. It covers the specification of stencil kernels and provides
some background on algorithms for saving bandwidth and synchroniza-
tion overhead in stencil computations, and presents ideas how to imple-
ment them within the PATUS framework. The part is concluded with a
deliberation on auto-tuners and search methods. In the third part, perfor-
mance experiments with PATUS-generated codes are conducted, both for
synthetic stencil benchmarks and for stencils taken from real-world ap-
plications. Implementation details on PATUS are discussed in part four,

5

and part five contains concluding remarks and ideas how to proceed in
the future.

PATUS is licensed under the GNU Lesser General Public License. A
copy of the software can be obtained at http://code.google.com/p/patus/.

Part I

High-Performance Computing
Challenges

Chapter 2

Hardware Challenges

To return to the executive faculties of this
engine: the question must arise in every
mind, are they really even able to follow
analysis in its whole extent? No reply,
entirely satisfactory to all minds, can be
given to this query, excepting the actual
existence of the engine, and actual
experience of its practical results.

— Ada Lovelace (1815–1852)

In advancing supercomputing technology towards the exa-scale range,
which is projected to be implemented by the end of the decade, power is
both the greatest challenge and the driving force. Today, the established
worldwide standard in supercomputer performance is in the PFlop/s
range, i.e., in the range of 1015 floating point operations per second. Real-
izing that imminent scientific questions can be answered by models and
simulations, the scientific world also has come to realize that accurate
simulations have a demand for still higher performance, hence the exi-
gence for ever increasing performance. Hence, the next major milestone
in supercomputing is reaching one EFlop/s — 1018 operations per second
— subject to a serious constraint: a tight energy budget.

A number of studies [21, 94, 168] have addressed the question how a
future exa-scale system may look like. There are three main design areas

10 CHAPTER 2. HARDWARE CHALLENGES

that have to be addressed: the compute units themselves, memory, and
interconnects.

Until 2004, performance scaling of microprocessors came at no effort
for programmers: each advance in the semiconductor fabrication pro-
cess reduces the gate length of a transistor on an integrated circuit. The
transistors in Intel’s first microprocessor in 1971, the Intel 4004 4-bit mi-
croprocessor, had a gate length of 10μm [103]. Currently, transistor gate
lengths have shrunken to 32 nm (e.g., in Intel’s Sandy Bridge architec-
ture). The development of technology nodes, as a fabrication process in a
certain gate length is referred to, is visualized in Fig. 2.1. The blue line vi-
sualizes the steady exponential decrease of gate lengths since 1971 (note
the logarithmic scale of the vertical axis).

Overly simplified, a reduction by a factor of 2 in transistor gate lengths
used to have the following consequences: To keep the electric field con-
stant, the voltage V was cut in half along with the gate length. By re-
ducing the length of the gates, the capacitance C was cut in half. En-
ergy therefore, obeying the law E � CV2, was divided by 8. Because of
the reduced traveling distances of the electrons, the processor’s clock fre-
quency could be doubled. Thus, the power consumption of a transistor in
the new fabrication process is Pnew � fnewEnew � 2 fold � Eold�8 � Pold�4.
As integrated circuits are produced on 2D silicon wafers, 4 times more
transistors could be packaged on the same area, and consequently the
(dynamic) power consumption of a chip with constant area remained
constant. In particular, doubling the clock frequency led to twice the
compute performance at the same power consumption.

The empirical observation that the transistor count on a cost-effective
integrated circuit doubles every 18–24 month (for instance, as a conse-
quence of the reduction of transistor gate lengths) is called Moore’s Law
[115]. Although stated in 1965, today, almost half a century later, the ob-
servation still holds. The red line in Fig. 2.1, interpolating the transistor
counts of processors symbolized by red dots, visualizes the exponential
trend. The number of transistors is shown on the right vertical logarith-
mic axis.

A widespread misconception about Moore’s Law is that compute per-
formance doubles every 18–24 months. The justification for this is that, in-
deed, as a result of transistor gate length reduction, both clock frequency
and packaging density could be increased — and compute performance
is proportional to clock frequency.

However, reducing the voltage has a serious undesired consequence.

11

The leakage power in semiconductors is increased dramatically relative
to the dynamic power, which is the power used to actually switch the
gates. Also, semiconductors require a certain threshold voltage to func-
tion. Hence, eventually, the voltage could not be decreased any further.
Keeping the voltage constant in the above reasoning about the conse-
quences of gate length scaling has the effect that, since the energy is pro-
portional to the square of the voltage, the power is now increased by a
factor of 4. The power that can be reasonably handled in consumer chips
(e.g., due to cooling constraints), is around 80 W to 120 W, which is the
reason for choosing not to scale processor frequencies any further. The
green line in Fig. 2.1 visualizes the exponential increase in clock fre-
quency until 2004, after which the curve visibly flattens out. Current pro-
cessor clock rates stagnate at clock frequencies of around 2–3 GHz. The
processor with the highest clock frequency ever sold commercially, IBM’s
z196 found in the zEnterprise System, runs at 5.2 GHz. Intel’s cancella-
tion of the Tejas and Jayhawk architectures [61] in 2004 is often quoted as
the end of the frequency scaling era.

After clock frequencies stopped scaling, in a couple of years transistor
gate length scaling in silicon-based semiconductors will necessarily come
to a halt as well. Silicon has a lattice constant of 0.543 nm, and it will
not be possible to go much further beyond the 11 nm technology node
depicted in Fig. 2.1 — which is predicted for 2022 by the International
Roadmap for Semiconductors [63] and even as early as for 2015 by Intel
[88] — since transistors must be at least a few atoms wide.

Yet, Moore’s Law is still alive thanks to technological advances. Fab-
rication process shrinks have benefited from advances in semiconduc-
tor engineering such as Intel’s Hafnium-based high-κ metal gate silicon
technology applied in Intel’s 45 nm and 32 nm fabrication processes [84].
Technological advances, such as Intel’s three-dimensional Tri-Gate tran-
sistors [35], which will be used in the 22 nm technology node, are a way
to secure the continuation of the tradition of Moore’s Law. Other ideas
in semiconductor research include graphene-based transistors [102, 146],
which have a cut-off frequency around 3� higher than the cut-off fre-
quency of silicon-based transistors; or replacing transistors by novel com-
ponents such as memristors [151]; or eventually moving away from using
electrons towards using photons.

The era of the frequency scaling has allowed sequential processors
to become increasingly faster, and the additionally available transistors
were used to implement sophisticated hardware logic such as out-of-

12 CHAPTER 2. HARDWARE CHALLENGES

10
μm

,
In

te
l 4

00
4,

 In
te

l 8
00

8

3μ
m

,
In

te
l 8

08
5,

 In
te

l 8
08

8

1.
5μ

m
,

In
te

l 2
86

1μ

m
,

In
te

l 3
86

80

0n
m

,
In

te
l 4

86
,

Pe
nt

iu
m

 P
5

60
0n

m
,

In
te

l P
en

tiu
m

,
IB

M
 P

ow
er

PC
 6

01

35
0n

m
,

In
te

l P
en

tiu
m

 P
ro

/P
en

tiu
m

 II
,

A
M

D
 K

5,
 N

V
ID

IA
 R

IV
A

25
0n

m
,

In
te

l P
en

tiu
m

 II
I,

A
M

D
 K

6-
2,

 P
la

yS
ta

tio
n

2,
 N

V
ID

IA
 V

an
ta

22
0n

m
, N

V
ID

IA
 G

eF
or

ce
 2

56

18
0n

m
,

In
te

l C
el

er
on

, M
ot

or
ol

a
Po

w
er

PC
 7

44
5,

N

V
ID

IA
 G

eF
or

ce
 2

13
0n

m
,

In
te

l X
eo

n,
 A

M
D

A

th
lo

n/
D

ur
on

/S
em

pr
on

/O
pt

er
on

,
N

V
ID

IA
 G

eF
or

ce
 F

X
56

00

90
nm

,
In

te
l X

eo
n/

Pe
nt

iu
m

 D
, A

M
D

A

th
lo

n/
Se

m
pr

on
/T

ur
io

n/
O

pt
er

on
, I

BM

Po
w

er
PC

 G
5,

N

V
ID

IA
 G

eF
or

ce
 7

00
0

65
nm

,
In

te
l C

or
e,

A

M
D

 A
th

ol
on

/D
ur

on
/P

he
no

m
,

So
ny

/T
os

hi
ba

/IB
M

 C
el

l,
N

V
ID

IA
 G

eF
or

ce
 8

30
0/

G
eF

or
ce

 8
80

0/
G

TX

28
0

45
nm

,
In

te
l C

or
e

2/
C

or
e

i7
,

A
M

D
 P

he
no

m
/O

pt
er

on
,

IB
M

 P
O

W
ER

7,

N
V

ID
IA

 G
eF

or
ce

 3
XX

/4
XX

/5
XX

32
nm

,
In

te
l C

or
e

i3
/C

or
e

i5
/

Sa
nd

y
Br

id
ge

28

nm

22
nm

 16
nm

11
nm

1E
+0

2

1E
+0

3

1E
+0

4

1E
+0

5

1E
+0

6

1E
+0

7

1E
+0

8

1E
+0

9

1E
+1

0

11010
0

10
00

10
00

0 19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

Number of Transistors / Clock Frequency

Gate Length in nm

Se
m

ic
on

du
ct

or
 F

ab
ri

ca
tio

n
Pr

oc
es

se
s,

 T
ra

ns
is

to
r C

ou
nt

s,
 a

nd
 C

lo
ck

 F
re

qu
en

ci
es

Te
ch

no
lo

gy
 N

od
es

N
um

be
r o

f T
ra

ns
is

to
rs

C
lo

ck
 F

re
qu

en
cy

 [H
z]

Fi
gu

re
2.

1:
D

ev
el

op
m

en
to

ft
ec

hn
ol

og
y

no
de

s,
tr

an
si

st
or

co
un

ts
,a

nd
cl

oc
k

fr
eq

ue
nc

ie
s.

N
ot

et
he

lo
ga

ri
th

m
ic

sc
al

es
.D

at
a

so
ur

ce
s:

[8
7,

17
4,

17
5]

.

13

order execution, Hyper Threading, and branch prediction. Hardware
optimizations for a sequential programming interface were exploited to a
maximum. To sustain the exponential performance growth today and in
the future, the development has to be away from these complex designs,
in which overhead of control hardware outweighs the actual compute
engines. Instead, the available transistors have to be used for compute
cores working in parallel. Indeed, the end of frequency scaling simulta-
neously was the beginning of the multicore era. Parallelism is no longer
only hidden by the hardware, such as in instruction level parallelism,
but is now exposing explicitly to the software interface. Current industry
trends strive towards the manycore paradigm, i.e., towards integrating
many relatively simple and small cores on one die.

The end of frequency scaling has also brought back co-processors or
accelerators. Graphics processing units (GPUs), which are massively par-
allel compute engines and, in fact, manycore processors, have become
popular for general-purpose computing. Intel’s recent Many Integrated
Core (MIC) architecture [35] follows this trend, as do the designs of many
microprocessor vendors such as adapteva, Clearspeed, Convey, tilera,
Tensilica, etc.

There are a number of reasons why many smaller cores are favored
over less and bigger ones [9]. Obviously, a parallel program is required
to take advantage of the increased explicit parallelism, but assuming that
a parallel code already exists, the performance-per-chip area ratio is in-
creased. Addressing the power consumption concern, many small cores
allow more flexibility in dynamic voltage scaling due to the finer granu-
larity. The finer granularity also makes it easier to add redundant cores
which can either take over when others fail, or redundant cores can be
utilized as a means to maximize silicon waver yield: if two cores out of
eight are not functional due to fabrication failures, the die still can be sold
as a six-core chip: e.g., the Cell processor in Sony’s PlayStation3 is in fact
a nine-core chip, but one (possibly not functional) core is disabled to re-
duce production costs. Lastly, smaller cores are also easier to design and
verify.

Today, throughput-optimized manycore processors are implemented
as external accelerators (GPUs, Intel’s MIC), but eventually the designs
will be merged together into a single heterogeneous chip including tradi-
tional “heavy” latency-optimized cores and many light-weight throughput-
optimized cores. A recent example for such a design was the Cell Broad-
band Engine Architecture [76] jointly developed by Sony, Toshiba, and

14 CHAPTER 2. HARDWARE CHALLENGES

IBM. The main motivation for these heterogeneous designs are their en-
ergy efficiency. Going further toward energy efficient designs, special-
purpose cores might be included, which are tailored to specific class of al-
gorithms (signal processing, cryptography, etc.) or which can be reconfig-
ured at runtime, much like Convey’s hybrid-core computers, into which
algorithm classes (“Personalities”) are loaded at runtime and emerge in
hardware.

Memory remains the major concern in moving towards an exa-scale
system. While microprocessor compute performance used to double ev-
ery 18–24 months, memory technology evolved, too, but could not keep
up at this pace. The consequence is what is often called the memory
gap: the latency between a main memory request and the request being
served has grown into an order of hundreds of processor cycles. Equally,
memory bandwidth has not increased proportionally to compute perfor-
mance. For a balanced computation, several tens of operations on one
datum are required. The consequence is that many important scientific
compute kernels (including stencil computations, sparse equation system
solvers and algorithms on sparse graphs) have become severely band-
width limited. A hierarchy of caches, i.e., a hierarchy of successively
smaller, but faster memories, mitigate this problem to some extent, as-
suming that data can be reused after bringing them to the processing
elements. The memory gap also has a new interpretation in the light of
energy efficiency. Data movement is expensive in terms of energy, and
more so the farther away the data has to be transferred from. Data trans-
fers have become more expensive than floating point operations. There-
fore, data locality not only has to be taken seriously because of the impact
on performance, but also as an energy concern.

Improvements in the near future include DDR4 modules, which of-
fer higher bandwidth, yet have lower power consumption, higher mem-
ory density and a resilient interface to prevent errors. More interest-
ingly, Hybrid Memory Cubes are a major advance in memory technology,
i.e., stacked 3D memory cubes with yet higher bandwidth, lower power
consumption, and higher memory density. Other ideas are in the area
of bridging the gap between DRAM and hard disk drives by means of
flash-type non-volatile memories, thereby addressing application fault
tolerance; check-pointing to non-volatile semiconductor-based memory
will be a lot faster than check-pointing to hard disks, and therefore could
substantially speed up scientific applications, which depend on fault tol-
erance.

15

The third pillar in high performance computing hardware are inter-
connects. The increasing demand for bandwidth has led to increasing
data rates. Electrical transmission suffers from frequency-dependent at-
tenuation (the attenuation increases as the frequency is raised), limiting
both the frequency and the cable length. Thus, electrical cables are grad-
ually being replaced by optical interconnects (e.g., active optical cables,
which convert electrical signals to optical ones for transmission and back
to electrical ones so that they can be used as a seamless replacements for
copper cables [178]). Not only can optical interconnects tolerate higher
data rates, but they are also around one order of magnitude more power
efficient [24].

As thousands of nodes need to be connected, it is not practical to use
central switches. Instead, hierarchical structures can be used. On the
other hand, finding good network topologies is a concern, as a substruc-
ture of the network is used for a parallel application running on a part
of a supercomputer, and thus a good mapping between the application’s
communication requirements and the actual hardware interconnect has
to be set up so as to avert performance deterioration. The current top 1
supercomputer (as of June 2011), the K computer installed at the RIKEN
Advanced Institute for Computational Science in Japan [161], employs
the “Tofu” interconnect, a 6D mesh topology with 10 links per node, into
which 3D tori can be embedded. In fact, whenever a job is allocated on
the machine, it is offered a 3D torus topology [4].

The consequence of substantially increasing explicit on-chip paral-
lelism is profound. Inevitably, it needs to be embraced in order for appli-
cations to benefit from the increased total performance the hardware has
to offer. Simultaneously, both network and memory bandwidth per Flop
will drop and the memory capacity per compute unit will drop. This
means that data can no longer be scaled up exponentially in size, and
the work per compute unit decreases as the explicit parallelism increases
exponentially. An exa-scale machine is expected to have a total number
of cores in the order of 108 to 109, and, therefore, likely a thousand-way
on-chip parallelism.

These issues must be somehow addressed in software. Most urgently,
the question must be answered how this amount of parallelism can be
handled efficiently. This is the challenge of programmability; other chal-
lenges are minimizing communication and increasing data locality —
which in the long run means that a way must be found of expressing

16 CHAPTER 2. HARDWARE CHALLENGES

data locality in a parallel programming language, either implicitly or ex-
plicitly — and, lastly, fault tolerance and resilience.

Chapter 3

Software Challenges

It must be evident how multifarious and
how mutually complicated are the
considerations which the working of such an
engine involve. There are frequently several
distinct sets of effects going on
simultaneously; all in a manner independent
of each other, and yet to a greater or less
degree exercising a mutual influence.

— Ada Lovelace (1815–1852)

As described in the previous chapter, there are currently two trends
in the evolution of hardware architectures: The hardware industry has
embraced the manycore paradigm, which means that explicit parallelism
is increasing constantly. On the other hand, systems will become more
heterogeneous: processing elements specialized for a specific task are far
more power efficient than general purpose processors with the same per-
formance.

These trends necessarily need to be reflected in software. High per-
formance computing has been dealing with parallelism almost from the
start. Yet, in a way, parallelism was simpler when it “only” had to deal
with homogeneous unicore processors. Having entered the multi- and
manycore era, not only do we have to address parallelism in desktop
computing, but this new kind of on-chip parallelism also needs to be re-

18 CHAPTER 3. SOFTWARE CHALLENGES

flected in how we program supercomputers: now not only inter-node
parallelism has to be taken care of, but also the many-way explicit finer-
grained intra-node parallelism has to be exploited. Also, the specializa-
tion of processor components obviously entails specialization at the soft-
ware level.

With the massive parallelism promised in the near future, several is-
sues become critical, which must be addressed in software. They will
eventually also influence programming models. Synchronization needs
to be controllable in a fine-grained manner; frequent global synchroniza-
tions become inhibitingly expensive. Data locality becomes increasingly
important, calling for control over the memory hierarchy and for com-
munication-reducing and communication-avoiding algorithms. In large
parallel systems, statistically a larger absolute number of failures will oc-
cur, which must be addressed by fault-tolerant and resilient algorithms.

3.1 The Laws of Amdahl and Gustafson

In the following we give a theoretical example of the impact on a fixed
problem when the amount of explicit parallelism is increased. Assume
we are given two hypothetical processors, A and B. Let A be a processor
with medium-sized cores and B a processor with small cores. We assume
that both processors consume the same amount of power; let A have N
cores running at a clock frequency of f , and let B have 4N cores run-
ning at half the frequency, f �2, and assume that the reduction in control
logic reduces the power consumption of each small core by a factor of 2
compared to the medium-sized cores of processor A.

As the industry trend moves towards processors of type B rather than
A as outlined in Chapter 2, now we can ask: what are the implications
for software when replacing processor A by processor B? How much
parallelism does a program need so that it runs equally fast on both pro-
cessors? Given an amount of parallelism in the program, do we need
to increase it so that we can take advantage of the increased parallelism
offered by processor B running at a slower speed?

Let P denote the percentage of parallelism in the program under con-
sideration, 0 � P � 1. In view of Amdahl’s law [6], which states that, for
a fixed problem, the speedup on a parallel machine with N equal com-

3.1. THE LAWS OF AMDAHL AND GUSTAFSON 19

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 10 20 30 40 50

R
eq

ui
re

d
A

m
ou

nt
 o

f P
ar

al
le

lis
m

N (Number of cores)

Required Amount of Parallelism for Equal
Performance on A and B

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

0 5 10 15 20

R
el

at
iv

e
A

dd
iti

on
al

 P
ar

al
le

lis
m

 N (Number of cores)

Required Additional Parallelism

0.5 0.6 0.7 0.8 0.9 0.95P

(a) (b)

Figure 3.1: Required amount of parallelism and additionally required paral-
lelism when switching from faster, heavier cores to more cores, which are more
light weight and slower.

pute entities is limited by

Sstrong�P, N� �
1

P
N � �1� P�

,

in order to achieve identical speedups SA and SB for both processors A
and B in our hypothetical setup, we have

SA �
2

P
N � �1� P�

�
1

P
4N � �1� P�

� SB,

or, after solving for P,

P�N� �
2N

2N � 1
.

The graph of this function is shown in Fig. 3.1 (a). If, for some fixed N,
the amount of parallelism P is smaller than indicated by the curve in Fig.
3.1 (a), the program will run slower on processor B than on processor A.
Note that in our setup already for N as small as 5, 90% of the program
needs to be parallelized. Fig. 3.1 (b) shows the amount of parallelism that
has to be added relative to the already existing amount, which is given
by

q�P, N� �
2N�P� 1� � P
�1� 4N�P

.

In general, if the clock frequency of A is ρ times faster than the one
of B, but B has c times more cores than A, The amount of parallelism

20 CHAPTER 3. SOFTWARE CHALLENGES

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

Sp
ee

du
p

r

Speedups for different multi-core chip designs for N=256

0.5 0.9 0.99
0.5 0.9 0.99
0.5 0.9 0.99

symmetric
asymmetric
dynamic

Parallel program
portion (P)

Figure 3.2: Amdahl’s law for symmetric (solid lines), asymmetric (dashed
lines), and dynamic (dashed-dotted lines) multicore chips with 256 base core
equivalents due to Hill and Marty [81] for three different quantities of program
parallelism.

required of a program so that it runs equally fast on both A and B is
given by

P�N, c, ρ� �
1

1� c�ρ
�ρ�1�cN

,

and the relative amount of parallelism by which a program has to be
increased to run equally fast is given by

q�P, N, c, ρ� �
�ρ� 1�cN�P� 1� � �c� ρ�P

ρ�1� cN�P
.

Assuming that more powerful cores can be built given the necessary
resources, we can ask how the ideal multi- or manycore chip should look
like, given the parallel portion of a program. Hill and Marty take this
viewing angle [81], again assuming the simple model of Amdahl’s law.
The chip designer is given N base core equivalents, each with the normal-
ized performance 1. We also assume that r base core equivalents can be
fused into a Φ�r�-times more powerful core, i.e., a core which speeds a
sequential workload up by a factor of Φ�r�. Φ is assumed to be a sub-
linear function; if it were linear or super-linear, combining would always
be beneficial.

3.1. THE LAWS OF AMDAHL AND GUSTAFSON 21

In the simplest symmetric setting, all of the N base core equivalents
are combined into equally large cores of r base core equivalents each, thus
resulting in a device of N

r cores. Then, as all cores are Φ�r�-times more
efficient than a base core equivalent, the speedup is given by

Ssymmetric�P, N, r� � 1
P

Φ�r�N
r
� 1�P

Φ�r�

.

In an asymmetric — or heterogeneous — setting, Hill and Marty as-
sume that there are small cores, one base core equivalent each, and one
larger Φ�r�-times more powerful core of r base core equivalents. Then,
assuming the sequential part is executed by the larger core and the par-
allel portion by both the larger and all the N� r small cores, the speedup
becomes

Sasymmetric�P, N, r� � 1
P

1�Φ�r���N�r��1 � 1�P
Φ�r�

.

Furthermore, if the cores could be dynamically reconfigured to be-
come one larger core of r base core equivalents for sequential execution
or N small cores for parallel execution, the speedup in this dynamic set-
ting is

Sdynamic�P, N, r� � 1
P
N � 1�P

Φ�r�

.

Fig. 3.2 shows speedup curves for both the symmetric, asymmetric,
and dynamic designs for N � 256 base core equivalents. As in [81], the
graphs show the behavior for Φ�r� :� �

r, which is sub-linear for r � 1.
The colors in the figure encode the parallelism quantity: blue for P � 0.5,
dark green for P � 0.9, and light green for P � 0.99. The speedup is
plotted on the vertical axis; on the horizontal axis the number of base core
equivalents r is varied. Thus, in the symmetric case, to the left (for r � 1)
all cores are small, and to the right (for r � 256) the number for one large
core consisting of 256 base core equivalents is given. Similarly, in the
asymmetric and dynamic cases, the size of the one larger core increases
from left to right.

The most striking results, which can be inferred from the graphs,
apart from the fact that in any case the amount of parallelism is crucial,
is that too many small cores are sub-optimal; that the asymmetric con-
figuration leads to greater speedups than the symmetric configuration in
any case; and that the dynamic configuration is most beneficial. The sub-
optimality of many small cores is also highlighted by Fig. 3.3. It shows

22 CHAPTER 3. SOFTWARE CHALLENGES

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

P

Multi-core chips: optimal r for given P

dynamic symmetric assymetric

Figure 3.3: Optimal choices for the number of base core equivalents (r) for pro-
gram parallelism percentages P in Hill’s and Marty’s model.

the optimal number of base core equivalents r to be coalesced into the
larger cores in the symmetric, asymmetric, and dynamic scenarios for
a given parallelism percentage P. In the symmetric setting (the orange
curve in Fig. 3.3), if less than 50% of the program is (perfectly) paral-
lelized, the model favors one large core (r � 256). The dashed orange
line shows the number of base core equivalents per core that partition
the resources without reminder. According to this line, up to P � 65% 2
cores, up to P � 80% 4 cores, etc. are required. In the asymmetric set-
ting, the required size of the one large core decreases only slowly as P
increases, and only drops sharply, favoring small cores, if P is close to 1.
The dynamic configuration is designed to adapt to sequential and paral-
lel regions; thus, clearly, the maximum speedup is reached in a parallel
region when there are many small cores and in a sequential region when
there is one core which is as powerful as possible, i.e., for maximal r, as
conveyed by Figs. 3.2 and 3.3.

Gustafson put the pessimistic prospects of Amdahl’s law into per-
spective [78]. He argued that rather than fixing the problem instance,
the time to solve the problem should be fixed: in practice, when scaling
a parallel program up on a large parallel machine with many nodes, the
problem size is scaled up simultaneously. This scenario is commonly re-
ferred to as weak scaling, whereas scaling out a fixed problem on a parallel
machine is referred to as strong scaling. In the weak scaling setting, let the

3.1. THE LAWS OF AMDAHL AND GUSTAFSON 23

time required to solve a problem with a percentage P of parallelism be
1 on a parallel machine with N compute entities. Then if the same pro-
gram is executed sequentially, the time required is N � P � �1� P�, as the
parallel part takes N times longer to execute. Thus, the speedup is

Sweak�P, N� �
NP � �1� P�

1
� N � �1� N��1� P�,

which is commonly called the law of Gustafson-Barsis.
Traditionally, weak scaling was indeed what was applied in practice:

larger machines enabled solving larger problems. However, with the
dramatic increase of explicit on-chip parallelism and the consequential
decrease of per-core memory we are facing today and in the near future,
we are inevitably forced to leave the area of weak scaling and gradually
forced into the realm of strong scaling governed by Amdahl’s law.

With his law, Amdahl made a case against massive parallelism; Gustaf-
son could relativize it by assuming that the problem size grew along with
the available parallelism. Today we are challenged by having to embrace
massive parallelism, but we are no longer in the position in which we can
make use of Gustafson’s loophole.

Amdahl’s law is a model in which simplifying assumptions are made.
It may give a speedup estimate for an upper bound of the speedup, yet
the relative amount of parallelism is hardly quantifiable precisely in prac-
tice, so Amdahl’s law gives rather a qualitative than a quantitative assess-
ment. Furthermore, it might have to be applied to code section rather
to a whole program, as parallelism can change dynamically. Platforms
become more and more heterogeneous, which implies that there can be
many types of explicit parallelism. For instance, a trend today is to hy-
bridize MPI codes by inserting OpenMP pragmas so that the software
takes advantage of the hardware’s architectural features. Thus, there
is a level of coarse-grained parallelism from the MPI parallelization, as
well as the more fine-grained OpenMP concurrency layer, which is used,
e.g., to explicitly extract loop-level parallelism — a typical application of
OpenMP. Another trend is to deliberately enter the regime of heterogene-
ity by using hardware accelerators: for instance, general purpose GPU
computing enjoys a constantly gaining popularity. In fact, 3 of the cur-
rent world’s fastest computers are equipped with GPU accelerators [161].
In this case there are even more levels of explicit parallelism.

Thus, the question remains how the additionally required parallelism
can be extracted from a program. It can be accepted for a fact that compil-
ers have failed at auto-parallelization. Certainly, compilers can vectorize

24 CHAPTER 3. SOFTWARE CHALLENGES

or automatically parallelize certain types of loops. In fact, automatic loop
parallelizers such are Cetus [157] or PLuTo [23] are able to automatically
insert an OpenMP pragma at the right place into the loop nest of a stencil
computation. But a compiler typically is not able to extract additional
parallelism or reduce the bandwidth usage or the synchronization over-
head, e.g., by automatically applying one of the algorithms, which will
be discussed in Chapter 6, given a naı̈ve implementation of a stencil cal-
culation.

Mostly, the inhibiting factor for parallelization lies in fact within the
algorithmic design. Coming from a long tradition of sequential comput-
ing, algorithms still have sequential semantics, and therefore intuitively
are implemented inherently sequentially. Obviously, a compiler can typi-
cally not, or only to a very limited extent, make such an algorithm “more
parallel” by applying loop transformations. Undoubtedly, most of the
compute time is spent in loops, which is a reason why a lot of research has
focused on understanding loops. Unfortunately, loop-level parallelism is
not sufficient: not enough parallelism might be exposed or it might have
the wrong granularity, thus, e.g., incurring a high synchronization over-
head and ultimately result in a slow-down instead of a speedup. Typ-
ically, a parallel version of an algorithm is in fact a radically different
algorithm; we will give a concrete example in Chapter 4.

History teaches us that we must embrace parallelism rather than fight
it, even more so as, having forcibly left the frequency scaling era, par-
allelism has started to permeate “consumer computing”: not seldom to-
day, desktop and laptop computers have CPUs with four or even more
cores, and general purpose-programmable GPUs are omnipresent. This
inevitably leads to the question how to program these devices.

3.2 Current De-Facto Standards for Parallel Pro-

gramming Models

Historically, high performance computing has been concerned with par-
allel processing since the 1960s. In contrast, desktop computing was tra-
ditionally typically sequential (in the sense that algorithms were imple-
mented sequentially), at least until the beginning of the multicore com-
modity CPU era in 2004, the year of Intel’s cancellation of their Tejas and
Jayhawk architectures, which is often quoted as the end of the frequency
scaling era and therefore the rise of the multicores.

3.2. CURRENT DE-FACTO STANDARDS 25

Surprisingly, despite the long history of parallel computing in high
performance computing, the programming languages used in both ar-
eas are not much different in style. Notably, C/C++ as examples for
languages used in both areas, they are inherently sequential languages:
there are no language constructs for parallel execution�. Parallelism is
only offered through external libraries, typically the Message Passing In-
terface (MPI) and threading libraries such as pthreads (POSIX threads) or
the Microsoft Windows threading API. In fact, the notion of parallelism
has been known in desktop computing for a while; multi-threading is
used to carry out (sequential) compute-intensive operations in the back-
ground, which is the natural application of the task parallel model of-
fered by these threading libraries. The tight interaction of threads re-
quired when decomposing an algorithm into parallel parts as required in
typical high performance computing tasks, however, can only be done
at a high programming effort. For instance, data-level parallelism or
loop-level parallelism is cumbersome to implement with pthreads, Java
threads, or even Java’s concurrency library, since the programmer has to
take care of subdividing the data or the iteration space manually. Un-
less additional libraries, such as Intel’s Threading Building Blocks, are
used on top of the threading libraries, the programmer is responsible for
assigning the work to threads and for doing the load balancing. Decom-
posing data volumes, for instance, involves easy-to-miss translations of
thread IDs to index spaces. Furthermore, parallel programming requires
constructs for communication and synchronization, which are often not
self-explanatory to the parallel programming novice (such as a future in
Java). This leads to a steep learning curve and is a reason why paral-
lel programming is said to be difficult and why parallel programming
has not been taught in programming classes. In view of today’s hard-
ware, sequential programming should really be considered a special case
of parallel programming instead of the other way around.

Both message passing libraries and threading libraries are typically
programmed in a way that make many instances of the same program
execute the same instructions, but on different sets of data. This pro-
gramming model is called the single program multiple data (SPMD) model.
It is currently the most common programming model; almost all MPI

�Fortran offers a data-level parallel notation in the form of vectors, which is one
form of parallelism. In Java, threads are part of the runtime system, and Java offers the
synchronized keyword. These concepts target another form of parallelism: task-level
parallelism.

26 CHAPTER 3. SOFTWARE CHALLENGES

codes are written in this fashion, and it extends to more modern parallel
languages, such as the ones in the PGAS family (cf. Chapter 3.3). The
greatest shortcoming of the SPMD model is that it obfuscates the struc-
ture of an algorithm by splitting it into program fragments and forcing
the programmer to add the required management overhead. The model
also makes it hard to express nested parallelism, which might occur nat-
urally, e.g., in divide-and-conquer algorithms.

SPMD is a simple model in the sense that there are few primitives for
communication and synchronization and it offers high execution model
transparency. Although MPI offers an abundance of communication styles
and functions, they could be emulated using sends and receives. As for the
execution model transparency, the programmer knows exactly by design
how the data is distributed and where code is executed. The simplic-
ity also extends to the compilation and deployment process: a standard
sequential compiler is sufficient. However, the simplicity of the model
comes at a high overhead for the programmer, placing the burdens of
fragmented style programming and the error-prone bookkeeping over-
head that is associated with it on her or him.

So far, MPI [111] is most prevalent programming paradigm for pro-
gramming distributed memory architectures. It has become the de-facto
standard for these types of architectures. MPI was conceived in the early
1990s by a consortium from academia and industry. The first MPI stan-
dard was released in 1994; currently the MPI forum is working on the
third version of the standard. The fact that many reliable and freely avail-
able implementations for a multitude of platforms and many language
bindings (C/C++, Fortran, Java, Python, Perl, R) exist and the fact that it
is a well specified standard have significantly contributed to the success
of MPI.

A typical MPI code runs as many program instances simultaneously
as there are hardware resources (in concordance with the SPMD model);
thus parallelism is expressed at program granularity. Communication
and synchronization are done by calls to the MPI library. Communica-
tion is typically two-sided, i.e., one process issues a send to the receiver
process, which must call the recv function, lest the program hangs up in
a dead lock.

Today, OpenMP is a popular choice to utilize thread-level parallelism.
For shared memory computer systems and for intra-node concurrency,
the OpenMP API [127] has become the de-facto standard. OpenMP is
a set of compiler directives rather than providing language level con-

3.2. CURRENT DE-FACTO STANDARDS 27

structs, or providing support for concurrency by means of a library. As
such, while not being tied to a programming language, it depends on
the compiler supporting it. The programming paradigm is quite suc-
cessful, and it has been adapted in many C/C++ and Fortran compil-
ers. Because OpenMP instructions are directives or pragmas, an OpenMP-
instrumented program can still be compiled to a correct sequential pro-
gram, even if a compiler does not support OpenMP. It therefore also al-
lows the programmer to parallelize a code incrementally. The beauty of
OpenMP is that, in contrast to the fragmenting SPMD style, it gives the
programmer a global view of a parallel algorithm. OpenMP can be used
to express both loop-level and task-level parallelism. Its major shortcom-
ing is that it is designed for a shared memory environment; as commonly
known, shared memory platforms do not scale above a certain number
of processors. It does not offer as fine-grained (and therefore, low-level)
control over threads as could be done with pthreads or operating system-
specific functions, such as setting thread priorities, and it offers no so-
phisticated synchronization constructs such as semaphores or barriers in-
volving subgroups of threads. Instead, the thread-level details are taken
care of by the compiler and the OpenMP runtime system, and therefore
also relieve the programmer of tedious bookkeeping tasks.

OpenMP has been developed since 1997 by a broad architecture re-
view board with members from industry (hardware and compiler ven-
dors) and academia. Its shortcomings of being restricted to the shared
memory domain have been addressed in research as source-to-source
translation from OpenMP to distributed memory and accelerator pro-
gramming paradigms, specifically to SHMEM [96], MPI [16], and CUDA
[97]. (CUDA C [123] is the model for programming NVIDIA GPUs; also
a programming model in the SMPD style.)

In high performance computing programming, the heterogeneity of
the hardware platforms is reflected in the current trend to mix program-
ming models. The different levels of explicit parallelism (inter-node, intra-
node, or even accelerators) are addressed by using hybrid programming
paradigms, most commonly in the form of MPI+OpenMP or, with accel-
erators such as GPUs becoming more popular, e.g., MPI+CUDA or even
MPI+OpenMP+CUDA. The different programming models are used to
address the different levels or types of parallelism. Typically, MPI is used
for the coarse-grained inter-node parallelism and OpenMP for the fine-
grained intra-node and on-chip parallelism, such as to express loop-level
parallelism.

28 CHAPTER 3. SOFTWARE CHALLENGES

3.3 Beyond MPI and OpenMP

One way to make parallel programming accessible to a broader public
is by promoting new languages explicitly targeted at parallel program-
ming. The holy grail of parallel programming is no longer to find a
good parallel implementation for a given good sequential implementa-
tion of a program automatically, but to provide a language and a compiler
that bridges the unavoidable tensions between generality, programma-
bility, productivity, and performance. Obviously, a language targeted
at parallel programming has to allow a natural expression of various
flavors of parallelism, preferably in a non-obscuring global view sort
of way, thus allowing concise formulations of algorithms. Parallel pro-
grammability means to provide useful abstractions of parallel concepts,
i.e., the way concurrency is expressed, data is distributed, and synchro-
nization and communication are programmed. Furthermore, abstraction
should not come at the cost of an opaque execution model, giving the
programmer no fine-grained control of the mapping between the soft-
ware and the hardware, and thus ultimately limiting the performance
by potentially ignoring native architectural features a hardware platform
has to offer. Ideally, a language should also be portable across multi-
ple flavors of hardware architectures. For instance, OpenCL [95] tries to
bridge the chasm between latency-optimized multicore designs (CPUs)
and throughput-optimized manycore architectures (GPU-like devices).
While it works in principle, in practice, a programmer striving for good
performance (i.e., efficient use of the hardware), still has to carry out
hardware-specific optimizations manually.

A number of approaches towards productivity in parallel computing
has been proposed. One idea is to reuse sequential program components
and to orchestrate data movement between them on a high abstraction
level using a coordination language such as ALWAN [28, 79], which was
developed at the University of Basel.

A recent trend aiming at productivity are languages in the partitioned
global address space (PGAS) family. The latest attempt at creating new
parallel productivity languages are the projects developed and funded
within DARPA’s� High Productivity Computing Systems (HPCS) pro-
gram. The parallel languages which have emerged from there are Chapel

�DARPA is the Defense Advanced Research Projects Agency, an agency of the
United States Department of Defense responsible for the development of new technol-
ogy for military use.

3.3. BEYOND MPI AND OPENMP 29

(by Cray), X10 (by IBM), and Fortress (by Sun/Oracle). However, time
will tell whether these new languages are adopted by the community and
could even eventually replace traditional and established languages such
as C/C++, Fortran, and Java, which have matured over the years; many
parallel languages have come and silently vanished again.

The underlying idea of PGAS languages, including Unified Parallel
C (UPC), Co-Array Fortran, and Titanium is to model the memory as
one global address space, which is physically subdivided into portions
local to one process. Any portion of the data can be accessed by any
process, but an access time penalty is incurred if non-local data is read
or written. This concept obviously increases productivity, relieving the
programmer of the need of explicit communication calls; yet, both UPC,
Co-Array Fortran, and Titanium are still languages in the SPMD model,
thus providing no global view. The data is (more or less, depending on
the language) partitioned implicitly, while the algorithm still has to be
decomposed by the programmer in an explicit way.

Co-Array Fortran [122] is an extension to Fortran which introduces
a new, special array dimension for referencing an array across multiple
instances of an SPMD program. Such an array is called a co-array. The
array size in the local dimensions typically depends on the number of
SPMD instances, hence obstructing the global view.

UPC [45] is a C-like language, which supports the PGAS idea by the
shared keyword, which causes arrays to be distributed automatically in
a cyclic or block-cyclic way over the SPMD instances. The programmer is
given some control over the data distribution by the possibility to specify
block sizes. UPC provides a more global view via a for-all construct with
affinity control, i.e., a mechanism to distribute iterations among program
instances. The idea of the affinity control is to minimize the (implicit)
communication by matching the distributed iteration space to the data
subdivision. Data locality is managed by distinct pointer specifiers iden-
tifying global or local memory portions as a part of UPC’s type system,
which enables the compiler to reason about locality statically. Except for
the for-all construct, UPC is a language in the SPMD model, which makes
it a mix between SPMD and a global view approach.

Finally, Titanium [187] is a Java-like language developed at Berkeley
with extensions for the SPMD model (affinity control, and keywords for
synchronization and communication). Its main goals are performance,
safety, and expressiveness. There is no Java Virtual Machine; instead,
Titanium compiles to C code and therefore only a subset of Java’s runtime

30 CHAPTER 3. SOFTWARE CHALLENGES

and utility classes, and also only a subset of Java’s language constructs
are supported.

The two languages developed within the DARPA HPCS program,
Chapel [32] and X10 [83], are explicitly targeted at productivity. (Fortress
was dropped from the HPCS project in November 2006.) Productivity
is not quantifiable (certainly the number of lines of a program is not a
productivity measure), but it encompasses the notions of performance,
programmability, portability, and robustness. The grand challenge for
these undertakings was “deliver[ing] 10� improvement in HPC applica-
tion development productivity over today’s systems by 2010, while de-
livering acceptable performance on large-scale systems” [145].

Chapel’s two main design goals were to address productivity through
a global view model by supporting general parallelism. Traditionally,
there have been languages and libraries geared towards data parallelism
(High Performance Fortran, ZPL [33], Intel’s Ct, which is now Intel’s Ar-
ray Building Blocks, etc.) and others geared towards task parallelism
(Charm++, Cilk, Intel Threading Building Blocks, etc.). One of the goals
of Chapel is to support both types of parallelism naturally.

Chapel’s data parallel features were most influenced by High Perfor-
mance Fortran, the Cray MTA™ and XMT™ language extensions, and by
ZPL, an array-based parallel language, supporting global view computa-
tion on distributed arrays, and therefore limited to data parallel compu-
tations.

In Chapel, data parallelism uses domains, which define the size and
shape of the data arrays upon which a computation operates, and sup-
ports the parallel iteration by a for-all construct iterating over a domain.
Task parallelism is introduced as anonymous threads by the cobegin lan-
guage construct rather than an explicit fork-join.

Parallelism is understood as may parallelism rather than must paral-
lelism. In this way arbitrary nesting is supported without swamping the
system with too many threads, and sophisticated mechanisms for load
balancing such as work stealing can be applied.

The global view model allows algorithms and data structures to be
expressed in their entirety and thereby allows them to be expressed in a
shorter and conciser form. Thus, they become them less error-prone to
program more maintainable, as overhead cluttering the actual computa-
tion is rendered unnecessary. The program starts as one logical thread of
execution and concurrency is spawned on demand by means of data or
task parallel language constructs, i.e., for-all loops or cobegin constructs.

3.3. BEYOND MPI AND OPENMP 31

As a modern programming language, Chapel supports object orien-
tation, generic programming, and managed memory. Its syntax is de-
liberately distinct from programming languages which have previously
existed, but it is inspired by C, Java, Fortran, Modula, and Ada.

X10 is a purely object oriented language (also primitive data types
are treated as classes, but X10 distinguishes reference and value classes)
and follows the PGAS paradigm, extending it to a globally asynchronous,
locally synchronous model. The syntax is reminiscent of C++, Java, and
Scala, also allowing constructs known from functional programming lan-
guages. As in Chapel, threads are spawned anonymously — in X10
by the async keyword, — which runs a lightweight activity at a certain
place. Places are an abstraction for a shared-memory computational con-
text [34]. They can be therefore thought of as abstractions of shared-
memory multi-processors. The global view for data parallelism is sup-
ported via distributions: mappings from regions, i.e., index sets, to subsets
of places. Arrays are mappings from distributions to a base type, thereby
implementing a general multi-dimensional array concept, inspired by
ZPL [33]. Fine-grained synchronization constructs are provided by clocks
and atomic sections. Also, reading from remote locations has to be done
asynchronously within an activity; such an activity is left a future, which
will receive the result. X10 forces the programmer to manage data distri-
bution explicitly in the belief that data locality and distribution cannot be
hidden in favor of a transparent execution model and good performance.

The “traditional” PGAS languages as well as Chapel and X10 address
horizontal data locality. As mentioned in Chapter 2, vertical data locality,
i.e., the data locality of a datum within the memory hierarchy will be-
come more and more important as the memory gap continues to diverge.
Currently, there is a lot of active research in communication minimiz-
ing and avoiding algorithms, particularly for linear algebra algorithms
[12, 13, 56, 75, 114]. Data transfers are expensive both in time and in en-
ergy. High memory latencies and relatively low bandwidths impact per-
formance, and transferring data over long stretches impact performance
per Watt.

However, none of the languages presented above addresses this issue.
Eventually there will be a need for explicit data placement in both the
horizontal and the vertical dimension. A priori, this puts yet another
burden on the programmer, unless a model can be found that is both
expressive enough to facilitate the implementation of (at least a certain
class of) algorithms and provide a data transfer-minimizing mapping to

32 CHAPTER 3. SOFTWARE CHALLENGES

the memory hierarchy. Sequoia [60, 140] takes steps in this direction: it
provides language mechanisms to describe data movement through the
memory hierarchy and to localize computation.

3.4 Optimizing Compilers

Traditionally, compilers were the magic instrument to achieve both good
code performance and code portability. An optimizing compiler was sup-
posed to take care of architecture-specific details and carry out the corre-
sponding code optimizations, and possibly also automatically parallelize
the code at the same time.

General purpose languages, such as C/C++ or Fortran, which still
are the most popular languages in the high performance computing area,
have an abstraction level which is high enough so that programs can be
compiled to and ported across various ISAs of diverse microprocessor
architectures. Code portability is provided by leaving the decision to the
compiler which optimizations to perform that work well for the target
architecture. (Of course, portability is broken if architecture-specific or
compiler-specific optimizations are carried out by the programmer.)

However, as hardware architectures or architecture subsystems be-
come more specialized, traditional languages (C/C++, Fortran) become
insufficient or inadequate for expressing mappings of algorithms to the
hardware, lest the compiler is able to perform aggressive algorithmic
transformations. A recent example are GPUs, which are designed to be
massively (data-) parallel architectures. Despite NVIDIA, as an exam-
ple, proposes C/C++ as base language, a C for CUDA program translated
from a C program, differs significantly from the original. Also, Fortran
for CUDA requires architecture-specific modification of the original code.

Although we came to recognize that more than an optimizing com-
piler is needed to be successful in parallel computing, the value of an
optimizing compiler and the advances in compiler technology must not
be underestimated.

In this chapter we discuss some types of compiler optimizations and
concentrate on loop transformations, which are in fact the basis for the
stencil code generation framework PATUS proposed in part II.

Depending on the requirements of the environment, there are a num-
ber of possible objectives to optimize for. In the area of high performance
computing, a popular requirement is to minimize the time to solution,

3.4. OPTIMIZING COMPILERS 33

so the goal of the optimization is to maximize program performance.
This means: maximizing the use of computational resources, minimiz-
ing number of operations (or clock cycles spent doing the operations),
and minimizing data movement, i.e., making the most efficient use of the
memory bandwidth between parts of the memory hierarchy. A variant
which becomes more and more relevant in high performance computing,
and has always been highly relevant in embedded and mobile systems,
is to optimize for performance per Watt. Embedded systems with tight
memory constraints might also ask for minimizing memory usage (min-
imizing program size, avoid duplicating data, etc.).

An optimizing compiler has three tasks: It needs to decide which part
of the program is subject to optimization and which transformations are
applicable and contribute toward the optimization objective; it needs to
verify that the transformation is legal, i.e., conserves the semantics of the
original program; and it finally has to actually transform the code portion
[10]. Furthermore, the scope of the optimization can be a single statement
(“peephole optimization”), a code block, a loop, a perfect loop nest (i.e., a
loop nest in which each loop contains only the nested loop, except for the
inner-most loop), an imperfect loop nest, a function, or the compiler can
apply interprocedural analysis and optimization, which is most expen-
sive, but yields the most gain. Current state-of-the-art compilers (e.g.,
Intel’s C/C++ compiler as of version 8 [86], GNU gcc since version 4.1
[173], the PGI compilers [112], Microsoft’s C compiler [70]) support inter-
procedural optimization and can deliver substantial performance gains
if this option is turned on.

A typical compiler optimization does not just have a benefit associ-
ated with it, but it is rather a tradeoff between two ends. An optimization
might reduce computation or increase instruction level parallelism at the
cost of register usage, or remove subroutine call or control overhead at
the risk of incurring instruction level cache capacity misses, or increase
data locality at the price of increased control overhead, or remove access
conflicts by allowing increased memory usage. Also, compiler optimiza-
tions are typically dependent on each other or optimize towards oppo-
site ends. Thus, applying optimizations independently does not guaran-
tee that the global optimum is reached. While applying an optimization
might increase the performance of a program part, applying it globally
might be harmful. Pan and Eigenmann have proposed a framework,
PEAK [129], to break a program into parts for which the best compiler op-
timization flags are determined individually by using an auto-tuning ap-

34 CHAPTER 3. SOFTWARE CHALLENGES

proach: the performance is measured based on a benchmark executable
created from a code section and the best combination of compiler opti-
mization flags is determined iteratively with a search method. Indeed,
we believe that the auto-tuning methodology will play an increasingly
important role in compiler technology.

In the following, we give a survey over common compiler optimiza-
tions. For a more detailed overview, the reader is referred to [10] or [93].

Types of Compiler Optimizations

There is range of basic optimizations which are always beneficial, or
at least do not de-optimize the code. Such optimizations include dead
and useless code removal and dead variable elimination. Partial evalu-
ation type of optimizations (constant propagation, constant folding, al-
gebraic simplification, and strength reduction) are also beneficial in any
case. They can also act as enablers for other types of optimizations.

Many algorithms in practice tend to be limited in performance by the
bandwidth to the memory subsystem. An optimizing compiler can ap-
ply a certain number of memory access transformations, which try to
mitigate the problem. One of the most essential tasks in this category is
register allocation, i.e., assigning variables to (the limited set of) regis-
ters such that loads and stores are minimized. Register allocation can be
modeled as a graph coloring problem. Graph coloring is NP-complete,
but good heuristics exist. Another aspect of memory access transforma-
tions is removing cache set conflicts, bank conflicts, or false sharing of
cache lines. In current hardware architectures, e.g., shared memory of
GPUs is organized in banks, and when threads try to write to the same
memory bank concurrently, the accesses are serialized, resulting in a se-
vere performance penalty. Array padding, i.e., adding “holes” to an array
at the end in unit stride direction, can eliminate or at least mitigate such
problems.

As most of the execution time is typically spent in loops, loop trans-
formations are a more valuable type of optimizations, which can result
in considerable performance gains. This is certainly true for stencil com-
putations. In fact, our stencil code generation framework, which will
be presented in Part II, is concerned with applying kinds of loop trans-
formation techniques, which a current state-of-the-art compiler does not
perform, as they are specific to stencil computations.

There are a number of goals in terms of performance improvements

3.4. OPTIMIZING COMPILERS 35

that one tries to achieve by transforming loops involving computations
of or access to array elements. General goals of loop transformations are:

• Increasing data locality. One transformation doing this is loop tiling.
The idea is to decompose the iteration space of a loop nest into small
tiles. The goal is then to choose the tile size such that the data in-
volved in iterating over a tile fits into cache memory and thus avoid
non-compulsory transfers to and from memory further down in the
memory hierarchy, thus optimizing cache usage.
Another transformation increasing data locality is loop interchange:
sometimes loops could be interchanged so that the innermost loop
becomes the loop iterating over the unit stride dimension of an ar-
ray. This maximizes cache line reuse and reduces potential TLB
misses.

• Increasing instruction level parallelism. By replicating the loop
body, loop unrolling potentially increases instruction level parallelism
and decreases loop control overhead, but, on the downside, it in-
creases register pressure. Loop unrolling introduces a new param-
eter, the number of loop body replications, which has to be chosen
(in an optimizing compiler at code generation time) such that in-
struction level parallelism is maximized under the constraint that
not too many variables are spilled into slower memory and thereby
degrade the performance.
Software pipelining helps removing pipeline stalls. The operations in
one loop iteration are broken into stages S1�i�, . . . , Sk�k�, where i is
the index in the original loop. In the pipelined loop, one iteration
performs the stages S1�j�, S2�j � 1�, . . . , Sk�j � k�. Software pipelin-
ing comes with some overhead; it requires prologue and epilogue
loops (filling and draining pipeline), each of which requires k � 1
iterations.

• Decreasing loop control overhead. Loop fusion, i.e., combining mul-
tiple loops into one, reduces loop control overhead (and potential
pipeline stalls due to branch misprediction), but increases register
pressure.
Loop unrolling, as mentioned before, also decreases loop control over-
head.

• Decreasing computation overhead. Loop invariant code motion moves
subexpressions which are invariant with respect to the loops’ index

36 CHAPTER 3. SOFTWARE CHALLENGES

variables out of the loop so that they are computed only once. Espe-
cially array address calculations (created by either the programmer
or the compiler) benefit from this optimization. However, the opti-
mization increases register pressure.

• Decreasing register pressure. Loop fission, i.e., splitting a loop into
two or more loops, decreases register pressure and can thereby avoid
spilling of variables into slower memory, but the loop control over-
head is increased.

• Parallelization. Loop parallelization comes in two flavors: vector-
ization, exploiting data level parallelism; and a task parallelism-
based idea of parallelization, actually assigning different iterates to
different units of execution.

• Exposing parallelism. The original loop nest might not be paral-
lelizable. For instance, vectorization may only become applicable
after a loop interchange transformation.
Loop skewing is a technique that reshapes the iteration space (by in-
troducing new loop indices depending on the original ones) so that
loop carried data dependences are removed.

• Enabling other types of loop transformations. Given a loop nest,
some loop transformation may not be legal a priori, i.e., if applied, it
would change the semantics due to loop carried data dependences.
Such techniques include the ones mentioned in the bullet above, as
well as loop splitting and loop peeling (which is a special case of
loop splitting), which break a loop into many to avoid a special first
iteration.

Dependences

The basic tool for loop analysis are data dependences. Determining the
legality of a loop transformation, i.e., under which circumstances, with
respect to dependences, a loop transformation does not change the mean-
ing of a program, and, as a consequence, developing tests that could rec-
ognize dependences or prove independence was an active research area
from the 1970s to the 1990s [5, 14, 26, 71, 100, 101, 105, 138, 182].

Two statements S1, S2 are data dependent if they contain a variable such
that they cannot be executed simultaneously due to a conflicting use of

3.4. OPTIMIZING COMPILERS 37

the variable�. In particular, if variable written by S1 is read by S2 there is
a flow dependence, if a variable in S1 is read and written in S2 there is an
anti-dependence, and if both S1 and S2 write the same variable there is an
output dependence.

Note that anti-dependences and output dependences are not as re-
strictive as flow dependences. The variable in S2 could be replaced by
another variable, which would remove the dependence.

For loop analysis, both inter- and intra-iteration dependences have
to be captured. Dependences between iterations are called loop-carried
dependences. Consider a general perfect loop nest which reads from and
writes to a multi-dimensional array a:

Listing 3.1: Dependences in a perfect loop nest.

1: for i1 = l1 . . u1
2: . . .
3: for ik = lk . . uk
4: S1 : a [f1�i1, . . . , ik�, . . . , f��i1, . . . , ik�] = . . .
5: S2 : . . . = a [g1�i1, . . . , ik�, . . . , g��i1, . . . , ik�]

Obviously, if S2 of the iteration �i1, . . . , ik� � �J1, . . . , Jk� depends on S1

in another iteration �i1, . . . , ik� � �I1, . . . , Ik�, it must hold that

f j�I1, . . . , Ik� � gj�J1, . . . , Jk� �j � 1, . . . , �. (3.1)

If it can be proven that Eqn. 3.1 has an integer solution �î1, . . . , îk� such
that lj � îj � uj for j � 1, . . . , k, then there is a loop carried depen-
dence. Conversely, if no integer solution exists, the loop carries no de-
pendences. Hence, deciding whether there are loop carried dependences
amounts to solving a system of Diophantine equations, which is an NP-
complete problem. Optimizing compilers resort to restricting f and g
to affine functions; if they are not, compilers err on the conservative
side, and all possible dependences are assumed. Numerous number-
theoretical results have been applied to prove or disprove the existence
of a solution, including simple observations as: “If f j and gj are different
constant functions for some j, then Eqn. 3.1 cannot have a solution” (in
the literature this is referred to as the “ZIV test,” ZIV being the acronym

�There is also the notion of control dependence: two statements S1, S2 are control de-
pendent if S1 determines whether S2 is executed. This type of dependence will not be
discussed in this overview.

38 CHAPTER 3. SOFTWARE CHALLENGES

for “zero index variable”), or more sophisticated GCD, Banerjee, λ, and
Omega tests [93]. The problem can also be formulated as a linear inte-
ger programming problem, or Fourier-Motzkin elimination can be used
(the complexity of which is double exponential in the number of inequal-
ities). If simple tests handling special cases fail, the optimizing compiler
can gradually proceed to more complex and more general tests.

A solution to Eqn. 3.1 — should there be one — gives rise to the
notions of distance vectors and direction vectors. For a solution J � J�I� �
Zk, the distance vector is defined as d :� J � I. A direction vector is a
symbolic representation of the signs of d.

Example 3.1: Calculating distance vectors.

Consider the loop nest
for i1 = 2 .. n

for i2 = 1 .. n-1

S1 : a[i1,i2] = a[i1-1,i2] + a[i1-1,i2+1]

The statement S1 has a loop carried dependence on itself: We have the
following index function for the right and left hand side, respectively:

f �i1, i2� � �i1, i2�

g1�i1, i2� � �i1 � 1, i2�, g2�i1, i2� � �i1 � 1, i2 � 1�

Solving f �I1, I2� � g1�J1, J2� gives I1 � J1 � 1, I2 � J2, i.e.,

J�I� � �I1 � 1, I2�,

and hence the first distance vector is

d1 � ��I1 � 1� � I1, I2 � I2� � �1, 0�.

Similarly, solving f �I1, I2� � g2�J1, J2� yields the second distance vec-
tor

d2 � �1,�1�.

The distance vectors of the transformed loop nest give information
about whether the transformation is legal: a legal distance vector d must
be lexicographically positive, denoted d � 0, meaning that the first non-zero
entry in d must be positive. (A negative component in d corresponds
to a dependence on an iteration of the corresponding loop with higher

3.4. OPTIMIZING COMPILERS 39

iteration count. If the first non-zero component was negative, this would
mean that there is a dependence on a statement in a future iteration.)

There are two general models for loop transformations. The polyhedral
model [74], applicable to loops with affine index functions and affine loop
bounds, interprets the iteration space as a polyhedron, and loop trans-
formations correspond to operations on or affine transformations of that
polyhedron. For instance, loop tiling decomposes the polyhedron into
smaller sub-polyhedra. The unimodular model associates unimodular ma-
trices, i.e., matrices in GLn�Z�, with loop transformations. For instance,
interchanging the two loops in a doubly nested loop would be described
by the matrix

�
0 1
1 0

�
.

The beauty of the latter framework is that chaining loop transforma-
tions corresponds to simple multiplication of the matrices. The matrices
also describe how distance vectors are altered under the transformation,
namely simply by multiplying the distance vector by the matrix describ-
ing the transformation. Thus, legality of a transformation can be easily
checked by testing the corresponding resulting vector for lexicographi-
cal positivity. However, it is less general than the polyhedral model. For
instance, loop tiling cannot be described by a unimodular matrix.

Example 3.2: Determining interchangeability of loops.

Interchanging the loops of the loop nest in Example 3.1 is not legal,
because the second distance vector d2 would not be lexicographically
positive: �

0 1
1 0

��
1
�1

�
�

�
�1
1

�
� 0

Parallelization

The following theorem answers the question under which conditions a
loop within a loop nest can be parallelized. The theorem is equivalent to
Theorem 3.1 in [180] and [179], and a proof can be found there.

Theorem 3.1. The j-th loop in a loop nest is parallelizable if and only if for every
distance vector d � �d1, . . . , dk� either dj � 0 or there exists � � j such that
d� � 0.

40 CHAPTER 3. SOFTWARE CHALLENGES

Example 3.3: Determining which loops can be parallelized.

In the loop nest in example 3.1, the outer cannot be parallelized
because the first entry of both distance vectors is 1. The inner loop,
however, can be parallelized because the second entry of d1 is 0, and
the second condition holds for d2 setting � � 1.

Loop Skewing

Wolfe and Lam propose skewing as a powerful enabling transformation
for parallelization [180, 179]. In fact, Wolf shows in [179] that any loop
nest can be made parallelizable after applying a skewing transforma-
tion. Different hardware architectures have different requirements for
the granularity of parallelism. For instance, multicore CPU systems favor
coarse grained parallelism (parallel loops should be as far out as possible
in a loop nest), while GPUs prefer finer grained parallelism. Skewing can
transform a loop nest such that the desired granularity of parallelism is
exposed. Skewing is an affine transformation of the iteration space, in the
unimodular framework for a doubly nested loop described by the matrix

�
1 0
f 1

�
.

f is the skewing factor which has to be chosen such that the distance vec-
tors of the loops to parallelize fulfill the parallelization condition in Thm.
3.1. Skewing is always legal, but the disadvantage is that the loop bounds
become more complicated, as, e.g., originally rectangular iteration spaces
are mapped to trapezoidal iteration spaces.

Vectorization

Current CPU architectures support a Single Instruction Multiple Data (SIMD)
mode, which carries out an arithmetic instruction on a vector of data
rather than only on a single scalar value. In contrast to vector machines,
examples for which include the Cray-1 (1976) and the Japanese “Earth
Simulator” supercomputer, which was number one on the TOP500 list
from June 2002 until June 2004 [161], current SIMD implementations in
microprocessors feature short and fixed vector lengths: current Intel and
AMD architectures implement the Streaming SIMD Extensions (SSE) in-
struction set; SSE registers are 128 bytes wide, so that 2 double precision

3.4. OPTIMIZING COMPILERS 41

or 4 single precision fixed-length floating point vector operands can be
operated on simultaneously. Similarly, AltiVec [113] implemented in the
PowerPC processor family, has 128 byte wide SIMD registers. The newer
AVX [85] instruction set, which has 256 byte wide SIMD vectors, is sup-
ported as of Intel’s Sandy Bridge and Ivy Bridge processor microarchitec-
tures released in 2011 and 2012, and in AMD’s Bulldozer released in 2011.
Manycore architectures, such as GPUs or Intel’s new MIC (“Many Inte-
grated Core”) architecture tend to have wider SIMD vectors.

Vectorization is a special form of parallelization. It modifies a fixed
sequence of operations which are previously performed sequentially on
a set of individual data elements into a mode in which the sequence of
operations is performed simultaneously on multiple data elements. An
optimizing compiler tries to extract data level parallelism from a loop to
leverage SIMD processing.

Loop Tiling

Loop tiling is a loop transformation that breaks the original iteration
space into small tiles. The transformation converts a loop or a loop nest
into a loop nest with doubly as many nested loops so that the iteration
space is subdivided into smaller iteration subspaces (tiles) over which
the the inner loop nest iterates, while the outer loop nest controls the it-
eration over the tiles. Tiling is done to improve spatial data locality for
one level of the memory hierarchy, or for multiple levels if applied recur-
sively. Tiling of a pair of loops in a loop nest is legal whenever they can
be interchanged legally.

Example 3.4: Rectangular Loop Tiling

This example shows the result of a tiling transformation of the
rectangular iteration space � min i, max i �� � min j, max j �� � min k,
max k �.

for i=min_i . . max_i
for j=min_j . . max_j

for k=min_k . . max_k
. . .

for ti=min_i . . max_i by tile_i
for tj=min_j . . max_j by tile_j

for tk=min_k . . max_k by tile_k
for i=ti . . min (max_i , ti + tile_i�1)

for j=tj . . min (max_j , tj + tile_j�1)
for k=tk . . min (max_k , tk + tile_k�1)

. . .

Compilers try to find the best optimizations based on static reasoning.

42 CHAPTER 3. SOFTWARE CHALLENGES

Their real challenge is to do so without actually executing the code. There
is a current research trend away from statical optimization towards auto-
matically evaluating the effect of optimizations based on actual program
execution, thus determining ideal parameterizations based on benchmarks.
This automatic tuning or auto-tuning methodology will be discussed fur-
ther in Chapter 8.

3.5 Domain Specific Languages

Another approach aiming at code and performance portability across ar-
chitectures are domain specific languages (DSLs). As opposed to general
purpose languages such as C/C++, Fortran, Java, or the new parallel lan-
guages such as Chapel and X10, domain specific languages are designed
to express solutions in a very specific problem domain. Well-known ex-
amples for DSLs are the database query language SQL; Matlab, a lan-
guage used for rapid prototyping of numerical algorithms; HTML to cre-
ate websites. Akin to the current trend of specialization at the hardware
level, DSLs propose specialization at the software/language level.

The effectiveness of a programming language is measured in terms of
generality, productivity, and performance [108]. Generality means pro-
viding constructs rich enough so that the language can ideally be used
to solve an arbitrary type of problem. Productivity means supporting
idioms that are easy to use and understand and provide a high level of
abstraction, e.g., through rich data types. Performance means that the
language can be compiled to machine code that matches the hardware
architecture and makes good use of the hardware resources.

Obviously, it is desirable to have a language that is highly effective,
meeting all of these three criteria. However, such a language does not
exist, as the three criteria are conflicting. Programming languages sacri-
fice one goal to some extent for the two others. C/C++, Fortran, Java, or
even more platform-specific languages such as OpenCL are general pur-
pose languages which let the programmer achieve good performance,
but require a verbose programming style. The languages allow to express
platform-specific optimizations at the cost of maintainability, reusability,
portability, error-proneness, and time spent to implement the optimiza-
tions. On the other hand, scripting languages such as Python or Ruby
allow the programmer to be productive by providing expressive syntax
and good library support, but in general, scripts written in such lan-

3.5. DOMAIN SPECIFIC LANGUAGES 43

guages cannot optimized for high performance. DSLs can take the role of
languages sacrificing generality for productivity and performance [31].

Restricting a language to a narrow, well defined domain has several
advantages [165]:

• DSLs are designed to be expressive and concise. They enable the do-
main specialist to express an algorithm or a problem in an idiom
that is natural to the domain, typically on a high level of abstrac-
tion. This facilitates the maintainability of the code. It also conveys
safety: it is easier to produce correct code. Sources of error might be
prevented by the design of the language or by an automated analy-
sis of the code.

• Running DSL programs on a new platform requires that the back-
end infrastructure is ported once. Porting programs to a new plat-
form therefore does not require re-writing of the entire application,
emphasizing portability and reusability of the code. By relying on
expert knowledge of the new platform, platform-specific optimiza-
tions have to be done once, resulting also in performance portability
of the application.
As an example in particular, switching from a CPU-based system
to GPUs, requires re-engineering the entire application or even re-
engineering algorithms for a better match of the new hardware plat-
form, which can be prevented by using a DSL.

• Due to the fact that the expressiveness of a DSL is restricted to a
precisely defined problem domain, domain-specific knowledge en-
ables aggressive optimizations, which can lead to a substantial in-
crease in performance.

On the downside, the user is required to learn a new language, and
the developer pays the cost of implementing and maintaining the sys-
tem, which might include creating a compiler and a programming envi-
ronment (IDE, debugging facilities, profilers, etc.).

There are different approaches to mitigate these disadvantages. If the
DSL is compiled to a lower-level, possibly hardware-specific program-
ming language there is no need for a dedicated compiler, and the general
purpose compiler can be relied on to perform additional general opti-
mizations. Instead of doing a source-to-source translation, another ap-
proach is to embed a DSL into a host language. Then, the constructs of

44 CHAPTER 3. SOFTWARE CHALLENGES

the host language, the optimization features, and the programming en-
vironment of the host language can be reused. Also, the programmer
does not need to learn an entirely new syntax. Furthermore, in the em-
bedded DSL approach, multiple DSLs can interoperate through the host
language, which enables seamless combinability of DSLs embedded into
the same host language. However, the host language might not provide
a direct mapping to specialized hardware. For instance, if a DSL was
embedded in Java or a language that compiled to Java Bytecode, the pro-
gram could not be run on a GPU.

Chafi et al. counter this problem by a concept they call language vir-
tualization [31]. They call a language virtualizable if, among other criteria,
performance on the target architecture can be guaranteed, which, as one
approach, entails that the embedded program is liftable to an internal
representation within the host language, i.e., the embedded program can
be represented using an abstract syntax tree within the host language.
From this internal representation, a performance layer code in a language
supported by the target architecture can be synthesized. The language
of their choice, which allows to do this, is Scala [125]. The proposed
framework, Delite [31, 126], aims at simplifying DSL development tar-
geting parallel execution. Delite compilation stages comprise virtualiza-
tion, which lifts the user program into an internal representation in which
domain-specific optimizations (written by DSL developer) are performed
and represents operations as Delite nodes, thereby mapping them to par-
allel patterns such as map, reduce, zip, and scan; the Delite compilation
handles Delite-specific implementation details and performs generic op-
timizations; and finally the domain-specific operations are mapped to the
target hardware.

Liszt [31] is a DSL approach for finite element-based simulations —
and therefore loosely related to the framework presented in Part II —
built on top of Delite with the goal to express simulation code at a high
level of abstraction, independently of the parallel target machine. The
framework generates code for lower level programming models (MPI
and C for CUDA).

Other approaches to bridge the gap between productivity and perfor-
mance have been proposed. SEJITS [30] is an approach, which does a
just-in-time compilation of an algorithm or a part of an algorithm spec-
ified in a high productivity language (such as a scripting language like
Python) to an efficiency-level language, which maps more directly to the
underlying hardware. PetaBricks [7] is a framework that tries to com-

3.6. MOTIFS 45

pose an algorithm from sub-algorithms selected by an auto-tuner and
thereby guaranteeing that the final implementation is hardware-efficient
and maps well to the selected hardware architecture.

3.6 Motifs

So far, we have discussed separate efforts in hardware and software/lan-
guage design. Motifs provide a basis for bringing the research areas to-
gether.

Motifs were conceived in a joint effort by interdisciplinary scientists
from the Lawrence Berkeley Lab and UC Berkeley [9]. They originated
from an idea presented in 2004 by Phillip Colella [43], who identified
seven dwarves, methods he believed would be important in the numer-
ics related to physical sciences for at least the next decade. The seven
dwarves are perceived as “well-defined targets from [the] algorithmic,
software, and architecture standpoint” [43]. They were subsequently
complemented by more dwarves in discussions with experts from var-
ious fields of computer and computational sciences. The resulting 13
motifs try to capture and categorize any type of algorithm or numerical
method in computer science and computational sciences.

The main motivation for motifs is to provide a fundament for innova-
tion in parallel computing. They can be viewed as a high-level abstrac-
tion unified framework, spanning algorithms and methods applied in
the entire range from embedded computing to high performance com-
puting, which are relevant now and in the long term. Realizing that
methods may change over time, more motifs may be added as needed.
The high level of abstraction allows reasoning about requirements of par-
allel applications without fixing and thereby limiting oneself to specific
code instances solving a certain problem. Rather, freedom to explore new
parallel methods and algorithms is encouraged, while knowledge from
lessons learned in the past can be incorporated, e.g., which methods work
well on large-scale parallel systems and which do not. Ongoing efforts
aim at formalizing and systematizing the motif approach [91].

Traditionally, selecting or designing a hardware infrastructure for a
software application was guided by benchmarks such as SPEC [48]. One
of the hopes in the development of motifs is to facilitate the decompo-
sition of an application into basic modules describing computation and
communication aspects of the application, which is somewhat obscured

46 CHAPTER 3. SOFTWARE CHALLENGES

in traditional benchmark suites. Conversely, the original paper [9] also
maps benchmarks from embedded and general purpose computing and
application domain-specific problems to motifs.

Motifs are classes of algorithms and methods characterized by their
compute and data movement patterns. Often, similar parallelization tech-
niques apply to any algorithm or method within a motif. Motif bound-
aries are highlighted by the fact that in some cases there are libraries en-
capsulating subsets of algorithms within a motif, e.g., dense linear alge-
bra operations or fast Fourier transforms. However, a motif may also
contain significantly different algorithmic approaches to a method. For
instance, there are multiple algorithmic approaches to particle simula-
tions.

Since motifs are designed to capture the algorithmic essence of an
application and since they are not implementation-specific, they can be
used as a measure of success for both hardware architects and (paral-
lel) programming language or programming model designers. By iden-
tifying the motifs within an application and by evaluating motif-based
benchmarks on some hardware architecture, it can be judged whether
that hardware architecture is a good match for that application. In fact,
in this way they can be viewed as a tool for the hardware-software co-
design methodology. We also view them as basic building blocks. The
work proposed in this thesis tries to provide a software infrastructure
capturing a subset of the structured grid motif: the class of stencil com-
putations.

In the following, we briefly describe the 13 motifs. The first 7 are the
original seven dwarves. We try to describe the quintessential operations
within a motif, characterize computation, data movement, and paralleliz-
ability.

• Dense Linear Algebra. This motif covers linear algebra operations
(products of vectors and matrices and basic vector and matrix op-
erations such as transposition or calculating norms as encapsulated
by BLAS (“Basic Linear Algebra Subroutines”) packages and more
sophisticated LAPACK routines such as matrix decompositions (LU,
QR, Cholesky, SVD, etc.), and solvers (triangular solves, eigenvalue
solvers, etc.). “Dense” refers to the storage format of vectors and
matrices: the entire mathematical objects are stored in memory in
a contiguous data layout. This implies that dense linear algebra
motif instances have very regular data access patterns and further-

3.6. MOTIFS 47

more lend themselves well to vectorization and usually also well
to parallelization (e.g., a matrix-matrix multiply consists of many
independent scalar products).

This motif encapsulates a mathematical domain (linear algebra) and
works on objects stored in one specific format.

• Sparse Linear Algebra. The operations are the same as in the dense
linear algebra motif. However, objects are stored in a sparse format
in which zero elements are omitted. This means that indices refer-
encing non-zero elements must be stored as well. There are a num-
ber of established sparse matrix storage formats. The richness of
the motif comes from the ways sparse matrices are stored, which
leads to fundamentally different algorithmic instances of linear al-
gebra operations depending on the storage format. Due to the ir-
regularity and unpredictability of the sparsity pattern it is difficult
to exploit the memory hierarchy, and finding a good representation
of the matrix data is essential for finding a good mapping to the
architecture [188, 17]. The irregularity is also a major challenge for
parallelization (most notably for finding a good load balance).

Again, this motif deals with one mathematical domain, but, as op-
posed to the dense linear algebra motif, is generalized to arbitrary
data storage formats.

• Spectral Methods. The archetype of the spectral method motif is
the discrete Fourier transform. The most popular algorithm for
computing discrete Fourier transforms is the The Cooley-Tukey al-
gorithm [47], which reduces the time complexity of a transform of
length n from O�n2� to O�n log n� by using properties of the n-th
roots of unity e�

2πi
n � in a recursive scheme. Due to the natural re-

cursive structure of the algorithm, it can be decomposed into sub-
problems that can be solved independently, hence, the algorithm’s
structure can be exploited for parallelism. Furthermore, multidi-
mensional transforms can be viewed as many independent one-
dimensional transforms. One of the challenges of the Cooley-Tukey
algorithm is the array holding the input data is accessed with vary-
ing (yet pre-determinable) strides, reducing spatial data locality.
There are ways around this, e.g., by reordering data elements by
what corresponds to a transpose.

Generally, this motif encapsulates mathematical integral transforms.

48 CHAPTER 3. SOFTWARE CHALLENGES

• N-Body Methods. N-Body methods summarize particle simula-
tions in which any two particles within the system interact. Given
N particles, the naı̈ve approach therefore has O�N2� operations,
rendering the computation processor bound as N becomes large.
This approach exhibits natural parallelism, since all particle-particle
interactions occur simultaneously and can be computed indepen-
dently. More sophisticated approaches (e.g., the Barnes-Hut algo-
rithm [15] or the Fast Multipole Method [73]) reduce the compute
complexity to O�N log N� or even to linear complexity. In these
approaches, tree structures are needed to manage the computation,
since the space is broken recursively into boxes, and thus the overall
structure of the computation becomes related to the graph traversal
motif. Load balancing becomes an issue in parallelization, which
has to be done dynamically at runtime.

This motif is specific to one particular technique of physical simu-
lations.

• Structured Grids. The structured grid motif comprises computa-
tions updating each grid point of the structured grid with values
from neighboring grid points. Typically the neighborhood struc-
ture is fixed, in which case it is called a stencil. Hence, this motif
is often identified with stencil computations, which, from the point
of view of the computation and data movement structure, are the
main interest in this thesis.

The structured grid motif naturally exposes a high degree of par-
allelism. (At least natural parallelism is exposed if distinct grids
are read and written; this approach is called Jacobi iteration. The
other approach is to update the grid in place (Gauss-Seidel itera-
tion), which initially is an inherently sequential approach, but reme-
dies exist, e.g., by skewing the iteration space (cf. section 3.4) or ap-
plying a colored iteration scheme.) The parallelism exposed is also
data level parallelism, thus there is also opportunity for vectoriza-
tion. However, instances of the structured grid motif are memory
bound as typically only a very limited amount of computation is
performed per grid point. Yet, the data access patterns are regular
and statically determinable.

Motif instances are relatively easy to implement in software (when
performance is not an issue) and map well to the hardware architec-

3.6. MOTIFS 49

tures of the current trend (GPUs, Intel’s MIC architectures). A more
complex version of the motif is found in adaptive mesh refinement
[19].

This motif is related to the sparse linear algebra motif as stencil
operators are mostly considered to be linear and therefore the up-
dates can be expressed as a multiplication of a highly regular ma-
trix encoding the neighborhood structure (which obviously con-
tains many redundancies due to its regularities) by a vector con-
taining all the grid point values.

This motif encapsulates a specific class of computations defined by
its regular and localized structure on data stored also in a regular
fashion.

• Unstructured Grids. Similarly to the structured grid motif, in the
unstructured grid motif grid points are updated with values on the
neighboring grid points. In contrast to the structured grid motif,
the grids operated on are not given, e.g., as Cartesian grids, but,
e.g., as a list of triangles from some triangulation of the model ge-
ometry. This obviously destroys the regularity and determinability
of the data access pattern. The double indirection used to access
grid nodes also destroys data locality. But still the amount of par-
allelism is the same as in the structured grid motif except that it
does not lend itself for immediate vectorization. Depending on the
desired granularity of parallelization, often graph partitioning tech-
niques are applied for load balancing.

This motif is used whenever the model geometry is represented
irregularly, such as by a triangulation. It occurs in finite element
solvers, for instance. It is related to the sparse linear algebra motif
as the updates — provided that they are linear — can be expressed
as a multiplication of a vector containing all the grid point values
by a matrix encoding the neighborhood structure.

As the sparse linear algebra motif is a generalization of the dense
linear algebra motif in terms of data storage, this motif is a general-
ization of the structured grid motif.

• MapReduce. The MapReduce motif summarizes parallel patterns,
most notably the embarrassingly parallel map, i.e., the application
of some function to every data element — a name borrowed from

50 CHAPTER 3. SOFTWARE CHALLENGES

functional-style programming languages, — and reduce, i.e., com-
bining a set of data elements by some reduction operator. Map and
reduce can be generalized to subsets and are arbitrarily compos-
able. The name was coined by Google, proposing the homonymous
algorithm [54].

• Combinational Logic. The archetype of this motif is bitwise logic
applied to a huge amount of data, used, e.g., when calculating CRC
sums, or for encryption. It can exploit bit-level parallelism. This
motif encapsulates operations on bit streams.

• Graph Traversal. Irregular memory accesses and typically only
a low amount of computation characterize this motif. Its perfor-
mance is limited by memory latency.

• Dynamic Programming. The idea of dynamic programming is to
decompose a problem recursively into smaller (and therefore more
easily solvable) subproblems. Instances of this motif include the
Viterbi algorithm, methods for solving the Traveling Salesperson
Problem, or the Knapsack Problem. The motif encapsulates a spe-
cific algorithmic technique typically related to optimization.

• Backtrack and Branch-and-Bound. Branch-and-bound algorithms
are used to find global optima in certain types of combinatorial
optimization problems such as Integer Linear Programming prob-
lems, Boolean Satisfiability, or the Traveling Salesperson Problem
by using a divide-and-conquer strategy, which dynamically gener-
ates parallelism in a natural way. Again, this motif encapsulates a
specific algorithmic technique related to optimization.

• Graphical Models. This motif is related and very similar to graph
traversal, although the intention of this motif is to highlight prob-
abilistic aspects found in Bayesian networks, hidden Markov mod-
els, or neural networks. Applications include speech and image
recognition. So, in contrast to the more general graph traversal mo-
tif, this motif highlights the intended application domain.

• Finite State Machines. Finite state machines can model a system
with a finite set of states and a set of rules of under which cir-
cumstances to transition between these states. It has been conjec-
tured that finite state machines might be embarrassingly sequen-
tial [9]. Finite state machines have applications in electronic design

3.6. MOTIFS 51

automation, design of communication protocols, and parsing (and
representing languages in general). This motif encapsulates a gen-
eral discrete modeling technique.

From the previous presentation we can see that motifs are a mélange
of mathematical domains, of (physical) simulation, modeling, and algo-
rithmic techniques and are differentiated by data storage patterns.

In certain cases (for specific algorithms or applications) it might not
be entirely clear how to categorize the candidate in question. For in-
stance, sorting, one of the fundamental algorithmic problems in com-
puter science, is mentioned in [9], but it is not explicitly classified. Maybe
surprisingly, Quicksort is mentioned as an example of graph traversal.
Clearly, Quicksort (and other sort algorithms) are divide-and-conquer al-
gorithms, for which no explicit motif was defined. They could be sub-
sumed under the quite general motif of graph traversal, mapping the
recursive nature of the algorithms to trees, or they could be captured by
the dynamic programming motif. In the traditional sense, an algorithm
is said to be a dynamic programming algorithm if subproblems overlap,
and a divide-and-conquer algorithm if the subproblems are independent,
which then could be interpreted as a special case of dynamic program-
ming.

It is noteworthy that, while established parallelization styles exist for
specific motifs, the concept of parallel patterns (including the high-level
structural parallel pattern, the parallelism type (task parallelism, data
parallelism), parallel data structures, and implementation of parallel prim-
itives (barriers, locks, collectives)) is orthogonal to motifs [176].

Software libraries exist for several of the motifs, at least for the initial
seven dwarves, the computational science motifs. Also, the auto-tuning
methodology has been applied successfully to some of the motifs. The
most prominent auto-tuning frameworks within motif boundaries are:

• ATLAS [171, 172] for a subset of the dense linear algebra motif
(BLAS) — one of the first frameworks to embrace the auto-tuning
methodology for a scientific computing library;

• MAGMA [3, 160], bringing LAPACK and auto-tuning to multicore
architectures and GPUs;

• OSKI [166] for sparse linear algebra kernels;

52 CHAPTER 3. SOFTWARE CHALLENGES

• FFTW [65], which is an auto-tuned framework for Fast Fourier Trans-
forms;

• SPIRAL [139], which does auto-tuning in a more generalized setting
than FFTW for many types of signal processing transforms.

Besides supporting software infrastructures for computations in the
structured grid motif such as POOMA [2] and FreePOOMA [77] — which
provide mechanisms to partition and parallelize over regular grids and
automatically takes care of ghost zones, — or supporting software for
actual stencil kernels, such as a set of C++ classes to guide efficient im-
plementations of stencil-based computations using one particular paral-
lelization scheme [154], and besides toolkits for sophisticated finite dif-
ference solvers such as the adaptive mesh refinement package CHOMBO
[44], there are ongoing projects dedicated to stencil computations, which
also support some level of tuning [92, 99, 163, 155]. Most notably, the
auto-tuning methodology is pursued by Berkeley scientists in [92]; the
other projects are compiler infrastructures, further discussed in the re-
lated work section in Chapter 5.6. In this thesis, we propose a software
framework for the core computations of the structured grid motif em-
bracing the auto-tuning methodology with the idea of bringing DSLs
into play for user productivity and performance. The auto-tuning pro-
cess is done on the basis of Strategies, hardware-architecture- and stencil-
independent descriptions of parallelization and optimization methods to
be applied.

Chapter 4

Algorithmic Challenges

The Analytical Engine has no pretensions
whatever to originate anything. It can do
whatever we know how to order it to perform.
It can follow analysis; but it has no power of
anticipating any analytical relations or truths.

— Ada Lovelace (1815–1852)

Besides the hardware and software pillars, algorithmics is the third
pillar of computer science. The increasing complexity and diversity of
hardware platforms and the explicit parallelism in particular have se-
vere implications for algorithm design. Traditionally, the field of algo-
rithmics concerns itself with theoretical development of algorithms, for
which provable worst-case or average-case performance guarantees are
deducted. These predictions are typically based on overly simplified,
thus non-realistic machine models such as (P)RAM� and on an abstract
description of the algorithm, which does not require an actual implemen-
tation of the algorithm.

The ultimate goal of the relatively new discipline of algorithm engi-
neering — the community even speaks of the new paradigm — consists
in bridging the gap between the algorithmic theory and practice. This

�(P)RAM, which stands for (parallel) random access machine, is a model of a register
machine with an unbound memory, which is also shared addressable and uniformly
accessible in the parallel model [72].

54 CHAPTER 4. ALGORITHMIC CHALLENGES

Figure 4.1: The process of algorithm engineering

gap was caused by separating design and analysis from implementation
and experimentation [117]. Algorithm engineering promotes tighter inte-
gration of algorithm design and analysis with the practical aspects of im-
plementation and experimentation as well as inductive reasoning, and is
often driven by an application. In the algorithm engineering cycle illus-
trated in Fig. 4.1, design and analysis, implementation, experimentation
and modeling of realistic hardware architectures are equally important
concepts, and the feedback loop suggests that findings from experimen-
tation potentially give rise to alterations and improvements of the model
and the algorithm design for the next iteration. Thus, algorithm engi-
neering, like software engineering, is not a linear process.

Emphasizing practical concerns in algorithm engineering has several
consequences:

• Algorithms have to be designed based on a model capturing the
actual hardware characteristics including deep memory hierarchies
and, more importantly, parallelism. Creating the hardware model
itself is one of the challenges of algorithm engineering as it has to
reflect and adapt to the technological advances in hardware design.

• Simpler algorithms and simpler data structures are favored over
more complex ones. Immensely complex algorithms and data struc-
tures have emerged from classical algorithmics as one of its goals
is to improve asymptotic run time complexity of algorithms. As a

55

matter of fact, algorithm were designed which are so complex that
they have never been implemented.

• The actual running time matters. Oftentimes, worst case complex-
ities are too pessimistic for input data from a realistic application.
Also, the big O notation can hide huge constant factors — notably
in the case of many complex algorithms developed for a “good”
asymptotic running time complexity, — thus rendering an algo-
rithm inefficient for practical purposes.

• Space efficiency can often be traded for time efficiency. Preprocess-
ing can help to make a more time efficient algorithm applicable
given that auxiliary data can be stored. Of course, preprocessing is
only viable if the time used for preprocessing can be compensated.

• The movement towards data-driven computation entails the ne-
cessity to process exponentially increasing volumes of data. A re-
sponse to the problem is the active research in one-pass space-effi-
cient, (sub-) linear time, and approximation algorithms.

• Implementations of algorithms have to be engineered to be robust,
efficient, as generally applicable as possible, and therefore reusable.

• Raising experimentation to a first class citizen implies that the ex-
periments be reproducible. As in the natural sciences, experiments
should be conducted in a rigorous manner, including the applica-
tion of sound statistical methods for result evaluation.

Addressing the first point of the above list, which is probably the most
important in the light of this thesis, we state that a parallel version of an
algorithm typically is in fact a radically different algorithm, which al-
though shares the same preconditions and postconditions as the sequen-
tial one. We exemplify this on the basis of the single source shortest path
problem. Let G � �V, E, w� be a weighted undirected graph with vertex
set V, edge set E � V �V, and a weight function w : E �� R�. The se-
quential textbook algorithm to find the shortest path from a given source
vertex s � V to all other vertices in V is Dijkstra’s algorithm [58] shown
in Algorithm 4.1.

56 CHAPTER 4. ALGORITHMIC CHALLENGES

Algorithm 4.1: Dijkstra’s Single Source Shortest Path Algorithm.

Input: Graph G � �V, E � V �V, w : E �� R��, source vertex s � V
Output: Path lengths ��v : v � V	

1: �s
 0
2: �v
 � for v � V��s	
3: Priority queue Q
 ��v, �v� : v � V	
4: while Q
 � do
5: u
 Q.pop
6: for all v � Adj�u� do
7: if v � Q and �u �w�u, v� � �v then
8: �v
 �u �w�u, v� � update length
9: end if

10: end for
11: end while

The algorithm requires an efficient implementation of a priority queue
Q; the time complexity depends on how “fast” the minimum element
can be extracted from the queue. For instance, when choosing a binary
min heap for Q, elements can be extracted in O�log �Q�� time. Then, the
algorithm’s time complexity is O��E� � log��V���.

The for-all loop in Algorithm 4.1 suggests that the algorithm can be
easily parallelized. Note, however, that the parallelism is limited to the
number of vertices adjacent to u — on average �E���V�. Also, an efficient
concurrent implementation of a priority queue is required. By observ-
ing that the priority queue does not distinguish nodes with equal ��, the
parallelism can be increased by extracting and processing all the vertices
with equal �� at once. However, as the adjacency sets might overlap in
this case, the queries and updates then have to be done atomically. These
and some further ideas on parallelization are discussed in [72], yet from
these brief observations it can be recognized that, in spite of the sugges-
tive for all loop, this algorithm cannot be parallelized effectively.

Finding efficient algorithms for the shortest path problem is still an ac-
tive area of research: The ninth DIMACS challenge [62] held in 2006 was
dedicated to this problem; one of the recent algorithms, PHAST [55] was
published in 2011. However, only two [59, 104] of the twelve DIMACS
challenge papers deal with parallel algorithms.

Shortest path algorithms are not only of academic interest: they are
key ingredients in routing (typical examples including web-based map

57

services and navigation systems) as well as in (social) network analysis
(e.g., the betweenness centrality measure, which indicates how well a ver-
tex is connected to the network, is based on shortest paths).

The ideas and implementations presented in one of the parallel DI-
MACS papers [59] are based on Dijkstra’s algorithm, while in the other
[104] the Δ-stepping algorithm is used, which offers more opportunity
for parallelization and uses a simpler and more efficient data structure
than a priority queue. Vertices are filled into buckets, which group ver-
tices with tentative path lengths in a certain range. The path lengths —
and therefore the buckets — are updated as the algorithm progresses.

PHAST on the other hand leverages preprocessing (which has to be
done only once per graph) to introduce a hierarchy of shortcut paths,
which are utilized in the actual algorithm. Not only has the sequential
version of the algorithm been reported to be an order of magnitude faster
than Dijkstra’s (for a particular graph), but it is also amenable to paral-
lelization and offers better data locality [55]. However, it only works as
efficiently for a certain type of graphs such as road networks.

Part II

The PATUS Approach

Chapter 5

Introduction To Patus

We may say most aptly, that the Analytical
Engine weaves algebraical patterns just as
the Jacquard-loom weaves flowers and
leaves.

— Ada Lovelace (1815–1852)

PATUS is a code generation and auto-tuning framework for the core
computations of the structured grid motif: the class of stencil computa-
tions [38, 37, 39]. PATUS stands for Parallel Auto-Tuned Stencils.

Its ultimate goals are to provide a means towards productivity and
performance on current and future multi- and manycore platforms. The
conceptional tool to reach these goals are separation and composability:
PATUS separates the point-wise stencil evaluation from the implementa-
tion of stencil sweeps, i.e., the way the grid is traversed and the com-
putation is parallelized. The goal is to be able to use any of the (non-
recursive) stencil-specific bandwidth- and synchronization-saving algo-
rithms, which will be described in Chapter 6, for any concrete stencil
instance. The actual point-wise stencil computation is described by the
stencil specification, and the grid traversal algorithm and parallelization
scheme is described by what we call a Strategy. Also, both stencil specifi-
cation and Strategy are (ideally) independent of a hardware architecture de-
scription, which, together with back-end code generators, forms the basis
for the support of various hardware platforms and programming models.

62 CHAPTER 5. INTRODUCTION TO PATUS

These three concepts are orthogonal and (ideally) composable. The actual
stencil computation is typically dictated by the application and therefore
has to be implemented as a stencil specification by the PATUS user. A
small domain specific language was designed for this purpose. Choos-
ing a Strategy is independent of the specification, and also selecting the
hardware platform is naturally independent of the stencil and also of the
Strategy.

Thus, PATUS is an attempt at leveraging DSLs as a method for high-
level abstraction specifications, implemented exemplarily for the core
computations of one of the motifs, and thereby, sacrificing generality,
aiming at productivity and performance.

The idea of leveraging the auto-tuning methodology is to find the
best Strategy, i.e., the Strategy that yields the best performance (GFlop/s,
GFlop/s per Watt, or any other performance metric which can be mea-
sured in the benchmarking code), for a fixed, application-specific stencil
and a fixed hardware platform — the one the code will run on�. While
Strategies are designed to be independent of the hardware architecture,
they obviously have an impact on the performance as they, by their na-
ture, define the mapping to the hardware architecture, and they contain
some architecture-related optimizations. Yet, by leveraging DSLs once
again, Strategies are independent of the programming model used to
program the platform, and thus they also provide a basis for experimen-
tation with parallelization schemes and optimization techniques. For the
user who only wants to generate and auto-tune a code for an application-
specific stencil, PATUS comes with a selection of Strategies, which have
proven successful in practice.

Unlike in a co-design approach, we take the hardware platform as
given and try to maximize the performance under these constraints. Cur-
rently traditional CPU architectures (using OpenMP for parallelization)
and NVIDIA CUDA-programmable GPUs are supported as target plat-
forms. However, separating the stencil from the grid traversal algorithm
and from platform-specific optimizations, can make the tool also valu-
able in a hardware-software co-tuning environment.

�In the current state, the auto-tuner does not yet search over Strategies. Instead,
Strategies are typically parametrized, and the auto-tuner tries to find the parameter con-
figuration which yields the best performance for a given stencil and a given hardware
platform.

5.1. STENCILS AND THE STRUCTURED GRID MOTIF 63

5.1 Stencils and the Structured Grid Motif

Stencil computations are the core operation of the structured grid mo-
tif. A stencil computation is characterized by updating each point in a
structured grid by an expression depending on the values on a fixed ge-
ometrical structure of neighboring grid points.

Applications of stencil computations range from simple finite differ-
ence-type partial differential equation (PDE) solvers to complex adaptive
mesh refinement methods and multigrid methods. As in simple PDE
solvers, finite difference adaptive mesh refinement methods use stencils
to discretize differential operators. In multigrid methods, the interpola-
tion operators (restriction, smoothing, and prolongation) are stencil op-
erations. Stencil computations also occur in multimedia applications, for
instance as filters in image processing such as edge detection, blurring or
sharpening.

A structured grid can be viewed as a graph, but unlike the graphs con-
sidered in the unstructured grid motif or the two graph motifs, the only
admissible type of graphs in the structured grid motif is such that each
interior vertex has the same neighborhood structure, and, in particular,
the same number of edges.

Although, in theory, the node valence, i.e., the number of a vertex’s
of outgoing edges, can be arbitrary, the most common case are rectilin-
ear grids with 2d edges per interior node, where d is the dimensionality
of the grid. The reason for this choice is the resulting simplicity of the
underlying mathematics (e.g., the discretization of differential operators)
and that the method then can be easily mapped to a programming model
and programming language, and, ultimately, to the hardware. However,
it is instructive to note that, while certain topological structures — planar
surfaces, cubes, or cylinders and tori by gluing appropriate boundaries
— can be readily discretized with rectilinear grids, others cannot. For in-
stance, a rectilinear discretization of the surface of a sphere would lead
to problems at the poles; an iteratively refined icosahedral mesh would
be more suitable in that it would provide a uniform discretization of the
sphere. A nice overview is given in [176]. In this work, we restrict our-
selves to rectilinear grids.

64 CHAPTER 5. INTRODUCTION TO PATUS

5.1.1 Stencil Structure Examples

The geometrical structure of the actual stencil is interrelated to the grid
topology. Although, once the grid topology is fixed, thereby dictating
the neighborhood structure, there is still freedom to chose the neighbors
contributing to the stencil. Table 5.1 shows some examples of typical
stencil structures defined on rectilinear grids. These stencil structures
all occur in practice when discretizing basic differential operators (upper
row) or have been taken from operators found within applications.

The images show other aspects in which stencil computations can dif-
fer: although all the stencils shown are defined on a rectilinear grid, the
values defined over the grid nodes can have different data structures. In
simple finite difference-type PDE solvers, stencils represent discretized
versions of differential operators, i.e., a stencil is a representation of a
differencing operator. Table 5.1 (a) – (c) show representations of finite
difference discretizations of three basic differential operators, the Lapla-
cian, the divergence and the gradient operators. Typical finite difference
approximations of these operators in Cartesian coordinates on a uniform
grid with mesh size h are shown in table 5.2. Obviously, the structure
of these operators differ: the Laplacian maps functions to functions, the
divergence operator maps a vector field to a function and, vice versa, the
gradient operator maps a function to a vector field. Therefore, the stencil
representations of these operators have structurally different inputs and
outputs: The discrete Laplacian operates on a scalar-valued grid, and
the result is written back to a scalar-valued grid (the same or a different
grid, depending on the grid traversal strategy). The divergence opera-
tor takes a vector-valued input grid and writes to a scalar-valued output
grid. Conversely, the gradient has a scalar-valued grid as input and a
vector-valued grid as output.

Table 5.1 (d) visualizes the stencil of the hyperthermia application
(cf. Chapter 11.1), which requires many additional coefficients; (e) and
(f) are higher-order stencils, which depend on more than the immediate
neighboring grid points. The stencils are inspired by stencils occurring
in COSMO [64], a weather prediction code. The Wave stencil in (g) vi-
sualizes the stencil of an explicit finite difference solver for the classical
wave equation, which will be used in Chapter 5.2 as an illustrative ex-
ample for the usage of PATUS. Unlike the other stencils in Table 5.1 it
depends on two previous time steps instead of just one. Sub-figure (h)
finally visualizes the 2D stencil from the edge detection and the Game of

5.1. STENCILS AND THE STRUCTURED GRID MOTIF 65

(a) Laplacian (b) Divergence (c) Gradient
3D 7-point stencil, 3D 6-point stencil, 3D 6-point stencil,
scalar� scalar vector� scalar scalar� vector

(d) Hyperthermia (e) 6th order Laplacian (f) Tricubic interpolation
3D 7-point stencil, 3D 19-point stencil, 3D 64-point stencil,
scalar + 9 coefficients scalar� scalar scalar� scalar
� scalar

(g) Wave (h) Edge detection /
3D 13-point stencil, Game of Life
scalar� scalar 2D 9-point stencil,
depending on 2 time steps scalar� scalar

Table 5.1: Some examples of typical stencil structures.

66 CHAPTER 5. INTRODUCTION TO PATUS

Notation & Cart.
Operator representation A finite difference approximation

Gradient ∇ �

�
. . . , �

�xi
, . . .

�ᵀ
1

2h

�
. . . , u�x�hei� � u�x�hei�, . . .

�ᵀ

Divergence ∇� �
�

. . . , �

�xi
, . . .

�
1

2h

�
i

�
ui�x� hei� � ui�x� hei�

�

Laplacian Δ :� ∇ �∇ �
�

i

�2

�x2
i

1
h2

�
i

�
u�x�hei��2u�x��u�x�hei�

�

Table 5.2: Basic differential operators, their Cartesian representation, and a
finite difference approximation evaluated on a function u, which is scalar-valued
for the gradient and the Laplacian, and vector-valued for the divergence operator.

Life kernels.

Image Processing

In image processing applications, stencil computations occur in kernels
based on convolution matrices, which assign each pixel in the result im-
age the weighted sum of the surrounding pixels of the corresponding
pixel in the input image. The matrix contains the weights, which stay
constant within a sweep. Fig. 5.1 shows two examples of image process-
ing kernels and the corresponding convolution matrices; a blur kernel
based on the Gaussian blur

G�x, y� � 1�
2πσ2

exp
�
�x2 � y2

2σ2

�

with σ � 5 (but cut off to fit into a 5 � 5 matrix) and an edge detection
kernel [25].

Cellular Automata

Another application of stencil operations are cellular automata. Concep-
tually, a cellular automaton is an infinite discrete grid of cells, each of
which takes one of finitely many states at any given time within a dis-
crete time line. In each time step, a set of rules is applied to each cell, de-
pending on its state and the state of its neighbors. Thus, the global state
of the cellular automaton is evolved over time from an initial configura-
tion. The term was coined in the 1960s by von Neumann [144] who was

5.1. STENCILS AND THE STRUCTURED GRID MOTIF 67

�
1
� 1

1000

�
�

36 39 40 39 36
39 42 43 42 39
40 43 44 43 40
39 42 43 42 39
36 39 40 39 36

�
�

�
1 2 1
2 �12 2
1 2 1

�

Original image Blur filter Edge detection

Figure 5.1: Two examples of image processing filters and the corresponding
convolution matrices.

working on models for self-replicating biological systems. Cellular au-
tomata have been applied by physicists and biologists as a discrete mod-
eling technique. Cellular automata were broadly popularized by Gard-
ner who described Conway’s Game of Life, a cellular automaton devised
in the 1970s [69].

In the Game of Life, each cell — also called an organism in this context
— can be either live or dead. Starting from an initial configuration the
following “genetic” rules are applied:

• Survival. A live cell with two or three neighbors remains live.

• Death. A live cell dies from overpopulation if there are more than
three live neighbors or from isolation if there are fewer than two live
neighbors.

• Birth. A dead cell becomes live if it has exactly three live neighbors.

Obviously, the rules are nearest neighbor operations, and, in 2D, they
can be formulated as a 9-point stencil. Currently, PATUS does not sup-
port conditionals, but for the Game of Life they can be converted to an
arithmetic expression, which lets PATUS emulate the cellular automaton,
albeit inefficiently: If live cells are represented by the value 1 and dead
cells by a value close to 0, then the number of live neighboring cells at

68 CHAPTER 5. INTRODUCTION TO PATUS

Figure 5.2: Four iterations of the Game of Life.

time step t is

L : u x 1, y 1; t u x, y 1; t u x 1, y 1; t

u x 1, y; t u x 1, y; t

u x 1, y 1; t u x, y 1; t u x 1, y 1; t

by making use of the fact that on a computer 1 α 1 for a sufficiently
small α.

The rules could then be encoded as the arithmetic stencil expression

u x, y; t 1 :
1

1 u x, y; t L 3 L 3 C
,

where C 1 is some large number. The observation is that the poly-
nomial u x, y; t L 3 L 3 has zeros for L 3 (i.e., if the num-
ber of live neighbors is 3) and, since u x, y; t 0, 1 , for u x, y; t , L

0, 3 , 1, 2 . The function ξ 1
1 Cξ maps ξ 0 to 1 and any other

ξ Z to a number close to 0. Hence, in summary, if the number of live
neighbors is 3 (i.e., L 3), u x, y; t 1 will become 1, regardless of the
value of u x, y; t , in accordance with the second part of the survival rule
and the birth rule. If u x, y; t 1 and the number of live neighbors is 2,
L 2, u x, y; t 1 will also become 1 in accordance with the first part of
the survival rule. In all other cases the organism dies (u x, y; t 1 0).

5.1.2 Stencil Sweeps

We call the application of a stencil computation to all the interior points
in a grid a stencil sweep, or simply, a sweep.

Oftentimes, when conducting scientific simulations modeled by PDEs,
it is of interest how the observables evolve over time. Such time-de-
pendent problems are discretized in time, and advancing the states by
one time step corresponds to carrying out one stencil sweep. Examples
for such simulations are the applications discussed in Chapter 11. The

5.1. STENCILS AND THE STRUCTURED GRID MOTIF 69

Hyperthermia cancer treatment planning application is a simulation that
tries to predict the temperature distribution within the human body dur-
ing the treatment, which involves applying heat to the body at the tumor
location. The second application is an explicit finite difference solver to
conduct earthquake simulations.

Another characteristic of the stencil motif is the way the grid is tra-
versed. If there are distinct input and output sets — sets of nodes on
which data is only read from and other sets of nodes to which data is
only written to within one sweep — the order in which the nodes are
processed is irrelevant. This type of procedure is called the Jacobi iter-
ation. This is the problem structure which we limit ourselves to in this
work.

However, if, while sweeping through the grid, the same node set is
used for both read and write accesses, the order in which the nodes are
visited becomes relevant, as the method then prescribes which part of
the stencil uses the new, updated values for the evaluation and which
part still operates on the old values. Such a method is called a Gauss-
Seidel iteration. Such a method is hard to parallelize. One common vari-
ant which lends itself to parallelization is a red-black Gauss-Seidel: every
other node is colored in the same color and in the first sweep all the red
nodes are updated while the black nodes are only read, and in the second
sweep the roles of the nodes are exchanged. This is akin to the homony-
mous methods in numerical linear algebra [143] to solve sparse systems
of linear equations.

5.1.3 Boundary Conditions

Another concern are handling nodes at boundaries (i.e., nodes with a
neighborhood structure differing from the “standard” structure). Be-
cause of the different structure, the stencil might not be applicable to
boundary nodes; neighboring nodes might be missing. Also, the contin-
uous mathematical model for the computation might require to handle
boundary nodes differently and apply problem-specific boundary condi-
tions. For instance, the simplest case (Dirichlet boundary conditions) is
to keep the value on the boundary constant. Other applications might re-
quire that the flux through the boundary is conserved (Neumann bound-
ary conditions), or, when modeling waves, a common requirement is that
waves are absorbed instead of reflected at the domain boundary (absorb-
ing boundary conditions, e.g., perfectly matched layers [18], since typi-

70 CHAPTER 5. INTRODUCTION TO PATUS

cally only a small subdomain of the otherwise infinite domain is mod-
eled). In this work we choose not to treat boundaries specially for the
time being. Instead, since the boundary can be viewed as a sub-manifold,
we suggests that a special, separate stencil is defined, implementing the
boundary handling.

5.1.4 Stencil Code Examples

In code, a simple, basic stencil computation is shown in Algorithm 5.1.
The stencil, a 3D 7-point Laplacian, which depends on all the nearest
neighbors parallel to the axes, is evaluated for all the interior grid points
indexed by integer coordinates �1, X� � �1, Y� � �1, Z� � Z3. The center
point is denoted by u�x, y, z; t�. x, y, z are the spatial coordinates, t is the
temporal coordinate.

Algorithm 5.1: A Laplacian stencil sweeping over �1, X� � �1, Y� � �1, Z�.

1: procedure STENCIL-LAPLACIAN

2: initialize u�x, y, z; 0� and boundaries u��0, X � 1�, �0, Y �

1�, �0, Z � 1�; t�
3: for t � 0..T 	 1 do
 iterate over time domain
4: for z � 1..Z do
 iterate over spatial domain
5: for y � 1..Y do
6: for x � 1..X do
7: u�x, y, z; t� 1� � α � u�x, y, z; t� � β �

 evaluate
8: u�x 	 1, y, z; t� � u�x � 1, y, z; t��
 stencil
9: u�x, y	 1, z; t� � u�x, y� 1, z; t��

10: u�x, y, z	 1; t� � u�x, y, z� 1; t��
11: end for
12: end for
13: end for
14: end for
15: end procedure

In practice, however, it is hardly necessary to save every time step.
Hence, we can use only two grids in the computation, old and new, as
shown in Algorithm 5.2. After each sweep, the roles of old and new are
exchanged (line 14), and the values computed in the previous sweep are
again accessed from the old grid in the current sweep.

5.1. STENCILS AND THE STRUCTURED GRID MOTIF 71

Algorithm 5.2: Modified Laplacian stencil.

1: procedure STENCIL-LAPLACIAN

2: initialize old�x, y, z� (including boundary points)
3: for t � 0..T � 1 do � iterate over time domain
4: for z � 1..Z do � iterate over spatial domain
5: for y � 1..Y do
6: for x � 1..X do
7: new�x, y, z� � α � old�x, y, z� � β � 	 � evaluate
8: old�x � 1, y, z� � old�x � 1, y, z�� � stencil
9: old�x, y� 1, z� � old�x, y� 1, z��

10: old�x, y, z� 1� � old�x, y, z� 1�

11: end for
12: end for
13: end for
14: swap (new, old) � swap pointers to new and old
15: end for
16: end procedure

5.1.5 Arithmetic Intensity

The arithmetic intensity [131] is a metric which is often used for analyzing
and predicting the performance of algorithms and compute kernels.

Definition 5.1. The arithmetic intensity of an algorithm or a compute kernel is
defined as the number of floating point operations used for that algorithm divided
by the number of data elements that have to be transferred to the compute unit(s)
in order to carry out the computation.

Example 5.1: Arithmetic intensity of a matrix-matrix multiplication.

Multiplying two n � n matrices equates to evaluating n2 scalar
products, each of which has O	n
 floating point operations. The data
that need to be brought into memory are the two matrix factors: a
data volume of O	n2
 data elements. Thus, the arithmetic intensity is
O�n3�
O�n2�

� O	n
.

From a hardware architecture point of view, stencil computations are
attractive because of the regularity of the data access pattern. This allows

72 CHAPTER 5. INTRODUCTION TO PATUS

streaming in the data from the main memory to the compute elements,
unlike in the unstructured grid motif where logically related data can
be far apart in memory. Yet, due to their typical low arithmetic inten-
sity, the performance of typical structured grid motif kernels is limited
by the available memory bandwidth: The number of floating point op-
erations per grid point is constant and is typically low compared to the
— also constant — number of memory references. Thus, stencil compu-
tations have a constant arithmetic intensity with respect to the problem
size, unlike, e.g., a matrix-matrix multiplication, whose arithmetic inten-
sity scales with the problem size as shown in Example 5.1.

The upper bounds for the arithmetic intensities of the stencils shown
in Table 5.1 are summarized in Table 5.3. The numbers given in Table
5.3 are actually upper bounds on the ideal arithmetic intensities, which
are calculated only from compulsory data transfers. Viewed globally, we
need to bring the data entire d-dimensional domain required for the com-
putation to the compute elements, and write the result back. In addition
to the computed data, the data volume that is read has to include the halo
layer. Thus, for instance, for the Laplacian, on a domain in which N grid
points are computed, we need to bring N � O

�
dN�d�1��d

�
points� (in-

cluding the halo points) to the compute elements (or into fast memory)
and write back N points. Equivalently, 1

N

��
N �O

�
dN�d�1��d

��
� N

�
�

2�O
�

dN�d�2��d
�

data elements per computed element need to be trans-
ferred. In Table 5.3 we neglect the extra term, thus ignoring the extra
boundary data that has to be brought in. Therefore the values shown as
arithmetic intensities are really upper bounds which cannot be reached
in practice. To compute the divergence operator, we have to read 3 grids
instead of just one, and write back one grid, hence the “4” in the “num-
ber of data elements” column in Table 5.3. Conversely, to compute the
gradient, one grid has to be read and 3 grids written back, etc.

There is also a hardware-related local-view justification for the as-

�A face of a hypercube-shaped (rectilinear) discrete d-dimensional domain contain-
ing N points has approximately N�d�1��d points, and a d-dimensional hypercube has
2d faces, which accounts for the factor d. The latter can be seen inductively from the
construction of a �d � 1�-dimensional hypercube from two d-dimensional ones: each
of the two d-dimensional hypercubes are one face of the new �d � 1�-dimensional one,
and each of the 2d faces (by induction hypothesis) gives rise to a face in the �d � 1�-
dimensional hypercube by connecting the �d�1�-dimensional faces of each of the copies
of the d-dimensional hypercubes to d-dimensional sub-hypercubes: the faces in the new
�d� 1�-dimensional hypercube.

5.1. STENCILS AND THE STRUCTURED GRID MOTIF 73

Kernel Flops # Data Elements Arithmetic Intensity
Laplacian 8 2 4.0
Divergence 8 4 2.0
Gradient 6 4 1.5
Hyperthermia 16 11 1.4
6th order Laplacian 22 2 11.0
Tricubic 318 5 63.6
Wave 19 2 9.5
Blur 31 2 15.5
Edge Detection 10 2 5.0
Game of Life 13 2 6.5

Table 5.3: Flop counts, compulsory numbers of data elements to transfer, and
arithmetic intensities (Flops per transferred data element) for the stencils shown
as examples in Table 5.1.

sumption that by loading the center point of a stencil the neighboring
points are made available automatically: In hardware, data is loaded by
blocks rather than by individual elements. For instance, by reading one
element on a cache-based CPU architecture, in fact an entire cache line of
data is read. Also the typical shared memory loading pattern on CUDA-
programmed GPUs follows this pattern.

The arithmetic intensity is a kernel-specific metric. Its analogue for a
hardware platform is sometimes called the compute balance. The compute
balance is defined as the number of (floating point) operations the ma-
chine can do per transferred data element. To measure realistic compute
balances, we could measure the sustained performance of a machine, e.g.,
by running the LINPACK benchmark or benchmarking a matrix-matrix
multiply with two large matrices (or some other compute bound kernel),
and divide the number by the available bandwidth, measured, e.g., using
the STREAM benchmark [106]. The compute balances for the machines
used for our benchmarks in Part III are shown in Table 5.4�.

� The performance numbers were measured by benchmarking a single precision
matrix-matrix multiply (SGEMM) of two large square matrices (8192� 8192) using the
MKL on the Intel platform, the ACML on the AMD and CUBLAS on the GPU, respec-
tively, on all available cores. The performance of a double precision matrix-matrix mul-
tiply (DGEMM) is half of that of SGEMM. Note that the compute balance in Flops per
data element does not change when the data type is altered, as the bandwidth in number
of data elements per second is halved when switching from single to double precision.
(A single precision number has a length of 4 Bytes, a double precision requires 8 Bytes.)
The bandwidths of the Intel and AMD CPU systems were measured with the STREAM
benchmark [106], and the bandwidth of the NVIDIA Fermi C2050 GPU was measured

74 CHAPTER 5. INTRODUCTION TO PATUS

Architecture Sust. Performance Sust. Bandwidth Compute Balance
Intel 155 GFlop/s 35.0 GB/s 17.7 Flop/datum

Xeon E7540 (Nehalem)
AMD 309 GFlop/s 53.1 GB/s 23.3 Flop/datum

Opteron 6172 (Magny Cours)
NVIDIA 618 GFlop/s 84.4 GB/s 29.3 Flop/datum

Tesla C2050 (Fermi)

Table 5.4: Sustained single precision peak performances, sustained DRAM
bandwidths, and compute balances for the hardware platforms used in the bench-
marks in Part III.

Intuitively, one might argue that if the arithmetic intensity of a ker-
nel is less than the compute balance of a machine, the kernel is memory
bound, and if the arithmetic intensity is greater than the compute bal-
ance, the kernel is compute bound. Asymptotically, the statement is true,
but today’s complex architectures introduce subtleties which call for so-
phistication of the model. In [176], Williams develops the roofline model,
which, based on the arithmetic intensity, provides a means to reflect the
impact of certain hardware-specific code optimizations. The models al-
low to determine which memory-specific or compute-specific optimiza-
tions (NUMA awareness, software prefetching, vectorization, balancing
multiply and add instructions, etc.) have to be carried out so that the ker-
nel, given its arithmetic intensity, runs most efficiently on a given hard-
ware platform. Note that the notion of the compute balance should even
be differentiated with respect to the memory hierarchy since the band-
widths to the different levels in the memory hierarchy differ — by orders
of magnitude. Hence, in reality, there are DRAM, L3, L2, L1, and regis-
ter compute balances. In Table 5.4 only the DRAM compute balance is
shown.

5.2 A Patus Walkthrough Example

In this section, we give an example, how a PATUS stencil specification can
be derived from a mathematical problem description. From this stencil
specification, the PATUS code generator generates a C code which imple-
ments the compute kernel along with a benchmarking harness that can be

using NVIDIA’s bandwidth benchmark with ECC turned on.

5.2. A PATUS WALKTHROUGH EXAMPLE 75

used to measure the performance of the generated code and also shows
how the kernel is called from within a user code.

5.2.1 From a Model to a Stencil

Consider the classical wave equation on Ω � ��1, 1�3 with Dirichlet bound-
ary conditions and some initial condition:

�2u
�t2 � c2Δu � 0 in Ω,

u � g on �Ω, (5.1)

u�t�0 � f .

We use an explicit finite difference method to discretize the equation
both in space and time. For the discretization in time we use a second-
order scheme with time step δt. For the discretization in space we choose
a fourth-order discretization of the Laplacian Δ on the structured uni-
formly discretized grid Ωh with step size h. This discretization gives us

u�t�δt� � 2u�t� � u�t�δt�

δt
� c2Δhu�t� � 0, (5.2)

where Δh is the discretized version of the Laplacian:

Δhu�t��x, y, z	 � �15
2h2 u�t��x, y, z	� (5.3)

�1
12h2

�
u�t��x � 2h, y, z	 � u�t��x, y � 2h, z	 � u�t��x, y, z � 2h	

�
�

4
3h2

�
u�t��x � h, y, z	 � u�t��x, y � h, z	 � u�t��x, y, z � h	

�
�

4
3h2

�
u�t��x � h, y, z	 � u�t��x, y � h, z	 � u�t��x, y, z � h	

�
�

�1
12h2

�
u�t��x � 2h, y, z	 � u�t��x, y � 2h, z	 � u�t��x, y, z � 2h	

�
.

Substituting Eqn. 5.3 into Eqn. 5.2, solving Eqn. 5.2 for u�t�δt�, and inter-
preting u as a grid in space and time with mesh size h and time step δt,
we arrive at the stencil expression

u�x, y, z; t � 1� � 2u�x, y, z; t� � u�x, y, z; t � 1� � c2 δt
h2

�
�15

2 u�x, y, z; t��
�1
12 �u�x � 2, y, z; t� � u�x, y � 2, z; t� � u�x, y, z � 2; t�	�

4
3 �u�x � 1, y, z; t� � u�x, y � 1, z; t� � u�x, y, z � 1; t�	�
4
3 �u�x � 1, y, z; t� � u�x, y � 1, z; t� � u�x, y, z � 1; t�	�

�1
12 �u�x � 2, y, z; t� � u�x, y � 2, z; t� � u�x, y, z � 2; t�	

�
,

76 CHAPTER 5. INTRODUCTION TO PATUS

which is visualized in Fig. 5.1 (g).
To actually solve the discretized equation, we need to specify the

mesh size h and the time step δt or, equivalently, the number of grid
points N and the number of time steps tmax. Choosing a concrete num-
ber for the number of time steps, we can transform the above equation
almost trivially into a PATUS stencil specification:

Example 5.2: A PATUS stencil specification.

The listing below shows the PATUS stencil specification for the
classical wave equation discretized by 4th order finite differences in
space and by 2nd order finite differences in time. Note that the maxi-
mum N in the domain size specification is inclusive.

1: stencil wave

2: {
3: domainsize = (1 . . N , 1 . . N , 1 . . N) ;
4: t_max = 1 0 0 ;
5:
6: operation (float grid u , float param c2dt_h2)
7: {
8: u [x , y , z ; t+1] = 2 * u [x , y , z ; t] � u [x , y , z ; t�1]+
9: c2dt_h2 * (

10: �15/2 * u [x , y , z ; t] +
11: 4/3 * (
12: u [x+1 , y , z ; t] + u [x�1, y , z ; t] +
13: u [x , y+1 , z ; t] + u [x , y�1, z ; t] +
14: u [x , y , z+1; t] + u [x , y , z�1; t]
15:)
16: �1/12 * (
17: u [x+2 , y , z ; t] + u [x�2, y , z ; t] +
18: u [x , y+2 , z ; t] + u [x , y�2, z ; t] +
19: u [x , y , z+2; t] + u [x , y , z�2; t]
20:)
21:) ;
22: }
23: }

5.2.2 Generating The Code

We feed this stencil specification as an input to PATUS, which will turn
it to C code. PATUS expects two other input files: a template defining
how the code will be parallelized and how code optimizations will be
applied, e.g., how loop tiling/cache blocking is applied. In PATUS lingo,

5.2. A PATUS WALKTHROUGH EXAMPLE 77

this is called a Strategy. The other input is a description of the hard-
ware architecture. It defines which code generation back-end to use (e.g.,
the OpenMP paradigm for shared memory CPU system, or NVIDIA C
for CUDA for NVIDIA GPUs), and how arithmetic operations and data
types are mapped to the corresponding vector intrinsics and vector data
types, for instance.

Example 5.3: Generating the C code from a stencil specification.

java -jar patus.jar codegen --stencil=wave.stc

--strategy=cacheblocking.stg

--architecture="arch/architectures.xml,Intel x86 64 SSE"

--outdir=output

The command in Example 5.3 will create an implementation for the
stencil kernel specified in the file wave.stc and a benchmarking harness
for that kernel and file it in the directory output. The Strategy chosen is
a cache blocking strategy defined in the file cacheblocking.stg, which
comes with the PATUS software. The hardware architecture for which the
code will be generated is specified by the identifier Intel x86 64 SSE,
the definition of which can be found in the architecture definition file,
arch/architectures.xml.

After running the PATUS code generation, the directory output will
contain the following files:

• kernel.c — The implementation of the stencil kernel defined in
wave.stc.

• driver.c — The benchmarking harness invoking the stencil kernel
and measuring the time for the stencil call. It allocates and initial-
izes data with arbitrary values and (by default) validates the result
returned by the stencil kernel by comparing it to a naı̈ve sequential
implementation.

• timer.c — Functions related to timing and calculating the perfor-
mance.

• patusrt.h — Header file for the timing functions.

• cycle.h — Functions for counting clock cycles to do the timing.
(This code was borrowed from FFTW [65].)

78 CHAPTER 5. INTRODUCTION TO PATUS

• Makefile — A GNUmake Makefile to build the benchmarking har-
ness.

The benchmarking harness then can be built by typing make on the
command line. This will compile and link the generated code and pro-
duce the benchmarking executable, by default called bench.

5.2.3 Running and Tuning

The benchmark executable requires a number of parameters to run:

Example 5.4: Starting the benchmark executable.

chrmat@palu1:wave> ./bench

Wrong number of parameters. Syntax:

./bench <N> <cb x> <cb y> <cb z> <chunk> < unroll p3>

N corresponds to the N used in the stencil specification for the defini-
tion of the domain size. If additional identifiers would have been used
to define the domain size, they would appear as parameters to the ex-
ecutable as well. The cb x, cb y, cb z, and chunk arguments come from
the Strategy. They specify the sizes of the cache blocks in x, y, and z direc-
tions and the number of consecutive cache blocks assigned to one thread.
PATUS unrolls the inner-most loop nest containing the stencil evaluation.
unroll p3 selects one of the unroll configuration code variants: by de-

fault, PATUS creates code variants with the loop nest unrolled once (i.e.,
no unrolling is done) or twice in each direction. Since the example wave
stencil is defined in 3 dimensions, there are 23

� 8 code variants with
different unrolling configurations.

In Example 5.5, the benchmark executable was run with a domain
size of 2003 grid points and an arbitrary cache block size of 16� 16� 16
grid points per block, one block in a packet per thread, and the 0th loop
unrolling configuration.

Example 5.5: Running the benchmark executable with arbitrary parameters.

chrmat@palu1:wave> ./bench 200 16 16 16 1 0

Flops / stencil call: 19

Stencil computations: 40000000

Bytes transferred: 509379840

Total Flops: 760000000

Seconds elapsed: 0.230204

5.2. A PATUS WALKTHROUGH EXAMPLE 79

Example 5.5: Running the benchmark executable with arbitrary parameters. (cont.)

Performance: 3.301418 GFlop/s

Bandwidth utilization: 2.212731 GB/s

506450156.000000

Validation OK.

The benchmark executable prints the number of floating point oper-
ations per stencil evaluation, the total number of stencil evaluations that
were performed for the time measurement, the number of transferred
bytes and the total number of floating point operations, the time it took
to complete the sweeps and the calculated performance in GFlop/s and
the bandwidth utilization. The number below that is a representation of
the time spent in the compute kernel, on which the auto-tuner bases the
search. (It tries to minimize that number.) The string “Validation OK”
says that the validation test (against the naı̈ve, sequential implementa-
tion) was passed, i.e., the relative errors did not exceed certain bounds.

The idea is that the user chooses the problem size, N, but all the other
parameters, which do not change the problem definition, but rather im-
plementation details which potentially affect the performance, are to be
chosen by the auto-tuner. In the current state of the software, the user
still needs some knowledge how to find the performance-specific param-
eters (in this case cb x, cb y, cb z, chunk, unroll p3). An idea for future
work is to encapsulate this knowledge in the Strategy, which defines the
parameters, so that an auto-tuner configuration script can be generated
in order to fully automate the auto-tuning process.

We choose N � 200. Experience tells us that in cases with relatively
small domain size (such as N � 200), a good choice for cb x is N. There
are several reasons why it is a bad idea to cut the domain in the x di-
rection — which is the unit stride direction, — i.e., choosing cb x � N.
Reading data in a streaming fashion from DRAM is faster than jump-
ing between addresses. Utilizing full cache lines maximizes data locality.
And the hardware prefetcher is most effective when the constant-stride
data streams are as long as possible. In Example 5.6 we let the auto-tuner
choose cb y, cb z, chunk, and unroll p3 by letting cb y and cb z from
4 to N � 200 in increments of 4 (4:4:200), and we want the auto-tuner to
try all the powers of 2 between 1 and 16 (1:*2:16!) for the fifth command
line argument, chunk, and try all the values between 0 and 7 (0:7!) for
unroll p3, by which all the generated loop unrolling variants are refer-

enced. The exclamation mark specifies that the corresponding parameter

80 CHAPTER 5. INTRODUCTION TO PATUS

is searched exhaustively, i.e., the auto-tuner is instructed to visit all of the
values in the range specified.

Example 5.6: Running the PATUS auto-tuner.

java -jar patus.jar autotune ./bench 200 200 4:4:200 4:4:200

1:*2:16! 0:7!

"C((\$1+\$3-1)/\$3)*((\$1+\$4-1)/\$4)>=$OMP NUM THREADS"

The auto-tuner also allows the user to add constraints, such as the
expression in the last argument in the call in Example 5.6. Constraints
are preceded by a C and can be followed by any comparison expression
involving arithmetic. Parameter values are referenced by a number pre-
ceded by a dollar sign $; the numbering starts with 1. In Example 5.6,
the condition reads �$1 � $3 � 1��$3 � �$1 � $4 � 1��$4 � T. The sub-
expression �$1 � $3 � 1��$3 is the number of blocks in the y-direction,
using the integer division (which rounds towards zero) to express the
missing ceiling function§). Similarly, �$1 � $4 � 1��$4 is the number of
blocks in z-direction. Thus, the condition demands that the total number
of blocks must be greater or equal than the number of threads executing
the program (assuming the environment variable $OMP NUM THREADS is
set and controls how many OpenMP threads the program uses). Adding
constraints is optional, but they can reduce the number of searches as
they restrict the search space. In this case, we exclude the configurations
in the search space of which we know they result in bad performance,
but constraints can be a helpful tool to suppress invalid configurations.
For instance, the numbers of threads per block on a GPU must not exceed
a particular number lest the program fails. (The numbers are 512 threads
per block on older graphics cards, and 1024 threads per block on Fermi
GPUs).

Example 5.7 shows an excerpt of the auto-tuner output. The program
is run for many parameter configurations, and at the end of the search,
the auto-tuner displays the parameter configuration and output of the
run for which the best performance was achieved.

§For positive integers a, b and the integer division � (defined by a � b :�
� a

b
�
), it

holds
� a

b
�
� �a� b� 1� � b.

5.3. INTEGRATING INTO USER CODE 81

Example 5.7: Output of the auto-tuner.

./bench 200 200 4:4:200 4:4:200 1:*2:16! 0:7!

Parameter set { 200 }
Parameter set { 200 }
Parameter set { 4, 8, ...}
Parameter set { 4, 8, ...}
Parameter set , Exhaustive { 1, 2, 4, 8, 16 }
Parameter set , Exhaustive { 0, 1, 2, 3, 4, 5, 6, 7 }
Using optimizer: Powell search method

Executing [./bench, 200, 200, 4, 4, 1, 0]...

...

200 200 36 160 1 3

1.5052755E8

Program output of the optimal run:

Flops / stencil call: 19

Stencil computations: 40000000

Bytes transferred: 509379840

Total Flops: 760000000

Seconds elapsed: 0.068421

Performance: 11.107680 GFlop/s

Bandwidth utilization: 7.444774 GB/s

150527550.000000

Validation OK.

5.3 Integrating into User Code

By default, PATUS creates a C source file named kernel.c (The default
setting can be overridden with the --kernel-file command line option,
cf. Appendix A.) This kernel file contains all the generated code variants
of the stencil kernel, a function selecting one of the code variants, and an
initialization function, initialize, which does the NUMA-aware data
initialization and should preferably be called directly after allocating the
data (cf. Chapter 6.4.2).

Example 5.8: The generated stencil kernel code for the example wave stencil.

The generated stencil kernel and the data initialization function
have the following signatures:

1: void wave (float * * u_0_1_out ,
2: float * u_0_m1 , float * u_0_0 , float * u_0_1 ,

82 CHAPTER 5. INTRODUCTION TO PATUS

Example 5.8: The generated stencil kernel code for the example wave stencil. (cont.)

3: float c2dt_h2 ,
4: int N ,
5: int cb_x , int cb_y , int cb_z , int chunk ,
6: int _unroll_p3) ;
7:
8: void initialize (
9: float * u_0_m1 , float * u_0_0 , float * u_0_1 ,

10: float dt_dx_sq ,
11: int N ,
12: int cb_x , int cb_y , int cb_z , int chunk) ;

The selector function, which is named exactly as the stencil in the sten-
cil specification (wave in Example 5.8), is the function, which should be
called in the user code. Its parameters are:

• pointers to the grid arrays, which will contain the results on exit;
these are double pointers and marked with the out suffix;

• input grid arrays, one for each time index required to carry out the
stencil computation; e.g., in the wave equation example, three time
indices are required: the result time step t � 1, which depends on
the input time steps t and t� 1; the time index is appended to the
grid identifier as last suffix; the m stands for “minus”;

• any parameters defined in the stencil specification, e.g., c2dt h2 in
the wave equation example;

• all the variables used to specify the size of the problem domain;
only N in our example;

• Strategy- and optimization-related parameters, the best values of
which were determined by the auto-tuner and can be substituted
into the stencil kernel function call in the user code; the strategy
used in the example has one cache block size parameter, (cb x, cb y,
cb z) and a chunk size chunk; furthermore, unroll p3 determines
the loop unrolling configuration.

The output pointers are required because PATUS rotates the time step
grids internally, i.e., the input grids change roles after each spatial sweep.
Thus, the user does typically not know which of the grid arrays contains

5.4. ALTERNATE ENTRY POINTS TO PATUS 83

the solution. A pointer to the solution grid is therefore assigned to the
output pointer upon exit of the kernel function.

The initialization function can be modified to reflect the initial con-
dition required by the problem. However, the generated loop structure
should not be altered. Alternatively, a custom initialization can be done
after calling the initialization function generated by PATUS.

5.4 Alternate Entry Points to Patus

As the auto-tuner module is decoupled from the code generating system,
it can be used as a stand-alone auto-tuner for other codes besides the ones
created by PATUS. If the user has a hand-crafted existing parametrized
code for which the best configurations need to be determined, the PATUS

auto-tuner is a perfectly valid option to find the best set of parameters.
The only requirements are that the tunable parameters must be exposed
as command line parameters and that the program must print the timing
information to stdout as last line of the program output in an arbitrary
time measurement unit. Note that the auto-tuner tries to minimize this
number, i.e., it must be a time measurement rather than a performance
number.

5.5 Current Limitations

In the current state, there are several limitations to the PATUS framework:

• Only shared memory architectures are supported (specifically: shared
memory CPU systems and single-GPU setups).

• It is assumed that the evaluation order of the stencils within one
spatial sweep is irrelevant. Also, always all points within the do-
main are traversed per sweep. One grid array is read and another
array is written to. Such a grid traversal is called a Jacobi iteration.
In particular, this rules out schemes with special traversal rules such
as red-black Gauss-Seidel iterations.

• No extra boundary handling is applied. The stencil is applied to ev-
ery interior grid point, but not to boundary points. I.e., the bound-
ary values are kept constant. This corresponds to Dirichlet bound-
ary conditions. To implement boundary conditions, they could be

84 CHAPTER 5. INTRODUCTION TO PATUS

factored into the stencil operation by means of extra coefficient grids.
In the same way, non-rectilinear domain shapes and non-uniform
grids can be emulated by providing the shape and/or geometry in-
formation encoded as coefficients in additional grids. Alternatively,
special �d � 1�-dimensional stencil kernels could be specified for
the boundary treatment, which are invoked after the d-dimensional
stencil kernel operating on the interior. This approach, however,
will not allow to use temporal blocking schemes.

• The index calculation assumes that the stencil computation is car-
ried out on a flat grid (or a grid which is homotopic to a flat grid).
In particular, currently no cylindrical or torical geometries are im-
plemented, which require modulo index calculations.

• There is no support for temporally blocked schemes yet.

5.6 Related Work

There are a number of research projects related to PATUS.
The Berkeley stencil auto-tuner [92] aims at converting Fortran 95

stencil code automatically into a tuned parallel implementation. It gen-
eralizes prior work by Williams [176] and Datta [53] who identified po-
tential optimizations for stencil computations and implemented these
optimizations manually or with simple code generation scripts specific
for a selected stencil. Auto-tuning is applied to select the best blocking,
loop unrolling, and software prefetching method configuration. The em-
phasis of the work of Kamil et al. in [92] is on fully automated transla-
tion and tuning process, including the replacement of the original code
by the tuned version. In the user program, stencil loops are annotated,
and thereby marked as such. The stencil expressions are then parsed
and transformed into an abstract syntax tree (AST) on which the opti-
mizations are performed as manipulations of the abstract syntax tree.
From the abstract syntax tree, C, Fortran, and CUDA code can be gen-
erated. Currently, similarly to PATUS, the Berkeley auto-tuner supports
compiler-type optimizations: loop unrolling, cache blocking, arithmetic
simplification and constant propagation. In the future, better utiliza-
tion of SIMD, common subexpression elimination, cache bypass, soft-
ware prefetching will be integrated. The parallelization is based on do-

5.6. RELATED WORK 85

main decomposition (blocking), and optimizations relevant on parallel
machines (in particular, NUMA-awareness) are addressed.

Auto-tuning involves building of a hardware-specific benchmarking
harness for the extracted loops. In [92] only exhaustive search is men-
tioned as search method, which is applied after the search space is pruned
based on hardware-specific heuristics. For instance, only block sizes are
chosen such that the maximum number of threads is used. Speedups
of around 2� over naı̈ve implementations on traditional CPU systems
for selected stencil kernels (gradient, divergence, and Laplacian) are re-
ported.

Pochoir [155] is a stencil compiler developed at the MIT. The theoretic
foundation is derived from a generalization of Frigo’s and Strumpen’s
cache oblivious stencil algorithm [66, 67], cf. Chapter 6. This implies
that Pochoir is designed for iterative stencil computations which execute
many sweeps atomically. The aforementioned generalization consists in
allowing hyperspace cuts, i.e., cutting multiple spatial dimensions at once
while the original papers [66, 67] only did one space cut. This increases
parallelism, yet does not impair the cache efficiency of the original algo-
rithm.

The stencils are specified in a DSL embedded into C++, which offers
the advantages that existing tool chains and IDEs can be used. Addition-
ally, it allows Pochoir also to offer a non-optimized template-based im-
plementation of the stencil which can be compiled without the Pochoir
compiler. This feature simultaneously provides the mechanism for er-
ror checking and debugging. Similarly to PATUS, the stencil operation is
specified in a per-point Pochoir kernel function. Since the Pochoir DSL
is embedded into C++, the kernel function can contain arbitrary C++
code. Pochoir also provides a clean mechanism for handling boundary
conditions. However, the stencil shape needs to be specified explicitly.
The Pochoir compiler is a source-to-source translator, which applies the
cache oblivious algorithm and parallelization (threading) using Cilk++
to the stencil specified in the Pochoir EDSL. Optionally, auto-tuning can
be used to find the best trapezoid base size, i.e., the size of the trapezoids
for which the recursion stops. Currently only one specific algorithm is
supported (which requires multiple time steps so that it becomes benefi-
cial), but the Pochoir EDSL was designed in a way flexible enough that it
could be exchanged with other back-ends.

The authors report large speedups (� 10�) compared to naı̈vely im-

86 CHAPTER 5. INTRODUCTION TO PATUS

plemented code for a 2D 5-point stencil on large data sets (5000� 5000
grid points) and an appropriately large number of time steps (5000).

Other frameworks for dynamically time-blocked stencil computations
include CORALS [153] by Strzodka et al., and newer work by the team
[152], and the stencil C++ class framework described in [154]. CORALS
and other temporal blocking algorithms such as wave front paralleliza-
tion [170] are described in more detail in Chapter 6.

Mint [163] targets NVIDIA GPUs as hardware platforms and trans-
lates traditional, but annotated, C code to CUDA C. The goal is to in-
crease programmer productivity by introducing pragmas similar to those
of OpenMP, but keeping them to a limited set of intuitive annotations
(parallel for data parallel execution of the annotated code section, for for
parallelizing a loop nest and doing the data decomposition, barrier for a
global synchronization point, single if only one thread of execution (ei-
ther the host or one GPU thread) is to execute the annotated section,
and copy for copying data into and out of the GPU memory). The pro-
grammer is not required to have CUDA C knowledge, and knowledge of
CUDA-specific optimizations in particular. The advantage of the pragma
approach is that the code can be compiled and run on conventional hard-
ware since a standard compiler ignores any Mint-specific pragmas. Mint
establishes a simple data parallel model, which a priori is not limited
to stencil computations, but if the pragmas are inserted into C stencil
code programmed in a straight-forward fashion, the Mint stencil opti-
mizer carries out domain-specific optimizations when stencil computa-
tions are recognized. The optimizations include finding a good data de-
composition and thread block layout, usage of shared memory inferring
memory requirements by analyzing the stencil structure, and the use of
GPU registers. The authors report that Mint reaches around 80% of the
performance of that of aggressively hand-optimized CUDA code.

Other CUDA code generators use the circular queue time blocking
method to increase the arithmetic intensity, and elaborate register reuse
schemes for data locality optimizations [110].

The STARGATES project [135] is somewhat different in that it is a code
generator not only for stencil computations, but for entire simulations us-
ing finite difference discretizations of PDEs both in space and time. The
finite difference solvers are built from a DSL, a mathematical descrip-
tion of a PDE. Modular back-ends generate code for the Intel Threading
Building Blocks, MPI, and CUDA.

5.6. RELATED WORK 87

Panorama [99, 149] was a research compiler for tiling iterative stencil
computations in order to minimize cache misses; the authors established
a relation between the skewing vector and cache misses and a model pre-
dicting performance and cache misses, respectively.

More general approaches, not only limited to stencil computations,
consider tiling of perfectly and imperfectly nested loops in the polyhedral
model [141]. Loop transformation and (automatic parallelizing) compiler
infrastructures in the polyhedral model include CHiLL [80] and PLuTo
[23].

Automatic parallelization, code optimizations and auto-tuning are also
being factored into existing solver packages. For instance, CHOMBO
[8, 44] is an adaptive mesh refinement finite difference solver framework,
which has been used, e.g., for hydrodynamics simulations. Currently,
some auto-parallelization and auto-tuning efforts are undertaken within
the software [36].

Chapter 6

Intermezzo: Saving Bandwidth

And Synchronization

There are many ways in which it may be
desired in special cases to distribute and
keep separate the numerical values of
different parts of an algebraical formula; and
the power of effecting such distributions to
any extent is essential to the algebraical
character of the Analytical Engine.

— Ada Lovelace (1815–1852)

6.1 Spatial Blocking

As we showed previously, the performance of stencil computations (i.e.,
the number of stencil computations per time unit) is typically limited by
the available bandwidth to the memory subsystem. Hence we are inter-
ested in maximizing the use of the available bandwidth or in enhancing
the arithmetic intensity to increase performance.

The key idea in reducing memory transfers from and to slower mem-
ory in the memory hierarchy is to reuse the data that have already been
transferred to the faster and closer memory — e.g., the cache memories
on a CPU system, or the shared memory on NVIDIA GPUs.

90 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

Assume we are given a 3D 7-point stencil dependent only on its im-
mediate neighbors along the axes. Then, if the values for a fixed z � z0

have been loaded into the fast memory and they still reside in fast mem-
ory when moving to the next plane z � z0 � 1, all of these data can be
reused for the computation of the stencil on the points �x, y, z0� 1�, which
depend on the data points �x, y, z0�. However, if domain sizes are large,
it is likely that the points �x, y, z0 � 1� or even �x, y, z0� have been evicted
from the fast memory before they can be reused in iteration z � z0 � 1,
and they have to be transferred once more.

This can be prevented by working only on small blocks of the domain
at a time, with the block sizes chosen such that a sub-plane of data can
be kept in fast memory until it is reused, i.e., by tiling or blocking the spa-
tial loop nest. Indeed, tiling has been a well-known method to improve
temporal data locality [142, 181].

Usually it is beneficial to apply this idea recursively with decreasing
block sizes to account for the multiple layers in the memory hierarchy (L2
cache, which is possibly shared among multiple cores, per core L1 cache,
and registers).

The idea also lends itself to parallelization. In a shared memory en-
vironment which introduces a layer of spatial blocking in which each
thread is assigned a distinct subset of blocks, the stencil sweep can be ex-
ecuted in parallel without any synchronization points within the sweep,
since the stencil computation on one point is completely independent of
the calculation of other points.

Fig. 6.1 shows a possible hierarchical decomposition of a cube-shaped
domain into blocks. In level 1, each thread is assigned a thread block.
Thread blocks are executed in parallel. Each thread block is decomposed
into cache blocks to optimize for highest level cache data locality. When
choosing the cache block sizes, there are a number of facts that have to be
kept in mind. Typically, the highest level cache is shared among multiple
threads (e.g., on an AMD Opteron Magny Cours the six cores on a socket
share a 6 MB L3 cache, and each core has its own unified 512 KB L2 cache
and its own 64 KB L1 data cache). It is not necessary that the cache holds
all of the data in the cache block. It is sufficient if the neighboring planes
of the plane being calculated fit into the cache. To avoid loading a plane
twice, thread blocks should not be cut in z direction if it can be avoided.

6.2. TEMPORAL BLOCKING 91

Figure 6.1: Levels of blocking: decomposition of the domain into thread and
cache blocks for parallelization and data locality optimization.

6.2 Temporal Blocking

In iterative or time-dependent schemes, the stencil kernel does multiple
sweeps over the entire grid. If intermediate results are of no interest, we
can think of not only blocking the stencil computation in space, but also
in the time dimension, i.e., blocking the outermost loop and thereby sav-
ing intermediate write-backs and loads — thus increasing temporal data
locality, — as well as reducing the synchronization overhead. Instead of
loading, writing, and synchronizing in every time step, these costly op-
erations are only performed every tlocal time steps. In this section several
ways of parallelizing and handling the data dependences are discussed
based on the idea of blocking in the temporal dimension. As temporal
blocking methods reduce the number of data transfers, they increase the
arithmetic intensity — by a factor of O �tlocal�.

Although temporal blocking schemes have a high potential to increase
performance — both data transfer operations in a bandwidth limited set-
ting and synchronization are expensive operations — there are disad-
vantages to it. Firstly, the application must not request the state of the
solution after every time step. Secondly, in order to integrate a tempo-
rally blocked compute kernel into an existing code, it typically has to
be re-engineered since the outermost loop has to be altered. Also, since
boundary conditions have to be applied after every time step, temporal
blocking schemes require adaption to incorporate the boundary condi-

92 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

tions dictated by the application and therefore they cannot be used in a
plug-and-play fashion.

The PATUS software framework proposed in this thesis was designed
to support temporal blocking schemes conceptually. However, the focus
of the work is on generating stencil kernels that can easily be integrated
into existing applications, and at the time of writing the PATUS code gen-
erator is still missing some essential parts to support temporal blocking
schemes, which are planned to be completed in the future.

6.2.1 Time Skewing

Time skewing is a loop transformation which essentially modifies the it-
eration order such that temporal data locality is increased: by interchang-
ing the temporal loop to an inner position, values computed in previous
time steps can be reused through the entire iteration in time. The method
requires that the number of time steps is known at runtime; alternatively
the temporal iteration space can be blocked such that a constant number
of time steps are performed per time block.

To keep the illustration of the method simple, consider a 1D 3-point
stencil ϕ. We assume that the values u�x; 0� at time 0 as well as the bound-
ary values u�0; t�, u�X � 1; t� are given and set.

Listing 6.1: A 1D example stencil.

1: for t = 0 . . T� 1
2: for x = 1 . . X
3: u�x; t � 1� = ϕ�u�x � 1; t�, u�x; t�, u�x � 1; t��

The t and the x loops cannot be interchanged due to data depen-
dences: solving the equations �x1, t1 � 1� � f �x1, t1� � gj�x2, t2� with
gj�x, t� � �x � j, t� for j � �1, 0, 1 as detailed in 3.4, we find the distance
vectors

D �

��
1
1

�
,
�

1
0

�
,
�

1
�1

��
.

In the unimodular framework, loop interchange is represented by the
matrix

�
0 1
1 0

�
. Multiplying the third distance vector by this matrix gives

a new distance vector ��1, 1�ᵀ, which is not lexicographically positive,
which in turn means that interchanging the loops is not legal.

6.2. TEMPORAL BLOCKING 93

However, we can skew the inner loop first and find a skewing factor
such that interchanging becomes legal. The problem is to find f � Z such
that �

0 1
1 0

�
���������

interchange

�
1 0
f 1

�
���������
skewing

D �

��
f � 1

1

�
,
�

f
1

�
,
�

f � 1
1

��
!
� 0.

Clearly, the condition is fulfilled for f � 1. Hence, after skewing, the loop
index x is replaced by x� :� t� x, as�

t�

x�

�
�

�
1 0
1 1

��
t
x

�
�

�
t

t� x

�
,

and the loop nest takes the following shape:

Listing 6.2: Skewing the spatio-temporal loop nest.

1: for t� = 0 . . T� 1
2: for x� = t� � 1 . . t� � X
3: u�x� � t�; t� � 1� = ϕ�u�x� � t� � 1; t��, u�x� � t�; t��, u�x� � t� � 1; t���

Interchanging the t� and x� is now legal, and we arrive at the loop
nest shown in the next listing. Care has to be taken in adjusting the loop
bounds, however. Since x� � t� x, for x� we now have 0� 1 � x� � �T �

1� �X. The more complicated bounds for the inner t� loop are derived by
intersecting the original loop ranges.

Listing 6.3: Exchanging temporal and spatial loops.

1: for x� = 1 . . X � T � 1
2: for t� = max�0, x� � X� . . min�x� � 1, T � 1�
3: u�x� � t�; t� � 1� = ϕ�u�x� � t� � 1; t��, u�x� � t�; t��, u�x� � t� � 1; t���

Fig. 6.2 shows the order of the iterates before skewing (a) and after
skewing (b) for X � 4 and T � 3. Without skewing, one spatial sweep
is completed before the proceeding to the next time step. After skewing,
the spatio-temporal iteration space is traversed in diagonal lines shown
in red. Note that the traversal order shown in (b) is indeed legal since the
dependences, which are indicated by arrows, are respected.

The impact on data locality of time skewing is shown in Fig. 6.3. As-
suming that only the values in the last time step are of interest, the inter-
mediate values, shaded in gray, can be discarded as soon as they cannot

94 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

(a) (b)

Figure 6.2: Traversal order before (a) and after (b) skewing. The numbers show
the orders in which the data points are evaluated, the arrows symbolize the data
dependences.

be reused any longer. The outer iteration proceeds along the horizontal
axis. One value, marked in blue and labeled “load”, is loaded from main
memory. Having all the values in the area colored in blue in cache (in
[107], McCalpin and Wonnacott propose a temporary array to hold these
values), the values across all time steps symbolized with red dots and la-
beled “compute” can be computed in sequence, walking diagonally from
bottom to top. Note that only the values in the blue sliding window are
needed to satisfy the dependences doing one sweep along the skewed t -
axis. As soon as the inner sweep is completed, the oldest, left most values
are not needed any longer and can be overwritten in the next iteration.
The dark red “computed values” are written back to main memory.

The method also works in higher dimensions by interpreting the dots
in Figs. 6.2 and 6.3 as lines (for 2D stencils) or planes (for 3D stencils) of
data, which are loaded and computed atomically. This approach would
do skewing in just one direction, which is the approach taken in [107, 184,
185]. Skewing can also be done in all directions [89].

Time skewing can be parallelized [107, 152]. The idea is illustrated in
Fig. 6.4. Note that the parallelization cannot be straightforward, i.e., the
outer loop cannot be do-all loop since no matrix T GL2 Z exists such
that the first components of all the transformed distance vectors are zero,

T
2
1

,
1
1

,
0
1

! 0
,

which, by Theorem 3.1, would mean that the outer loop were paralleliz-
able. (The first component of the products is only zero if the first row of T

6.2. TEMPORAL BLOCKING 95

Figure 6.3: Temporal data locality in time skewing: many stencil computations
are done when only one point is loaded from main memory. The only values that
need to be kept in fast local memory are symbolized by the points within the blue
area.

is zero, but then, clearly, T GL2 Z .) This example shows that finding a
good parallelization automatically is far from trivial. Note that the inner
loop is parallelizable by Theorem 3.1, so an auto-parallelizing compiler
would pick this loop for parallelization. However, because of the high
synchronization overhead the performance will likely be inferior to the
performance of the method described below.

The entire spatio-temporal iteration space is subdivided into blocks
in the time dimension. In Fig. 6.4 only one time block is shown. A time
block of the iteration space is then divided among the processes along
the black diagonal lines. Due to this particular decomposition of the iter-
ation space, each process can start computing without any dependences
on values held by other processes. Per processor the same strategy ap-
plies as described above, with only keeping the data within the blue slid-
ing window area in fast memory. The computation of the values within
the red trapezoidal area on process p depend on values calculate by pro-
cess p 1. Therefore process p has to wait until the values within the
dark blue area on process p 1 have been computed, or, in a distributed
memory setting, have been communicated to and received by process p.
Note that if the processes work in a sufficiently synchronous manner and
the data blocks in the spatial dimension (along the horizontal axis) are
sufficiently large, the values on process p 1 required be process p, be-
ing the first values that are computed, are already available when process
p reaches the dependence area.

96 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

Fi
gu

re
6.

4:
Pa

ra
lle

lt
im

es
ke

w
in

g.
A

tim
eb

lo
ck

is
di

vi
de

d
al

on
g

th
eb

la
ck

di
ag

on
al

lin
es

am
on

g
th

ep
ro

ce
ss

es
.A

si
n

th
es

eq
ue

nt
ia

l
ca

se
,e

ac
h

pr
oc

es
so

r
on

ly
ne

ed
s

to
ca

ch
e

th
e

va
lu

es
w

ith
in

th
e

bl
ue

sl
id

in
g

w
in

do
w

ar
ea

.
Be

fo
re

co
m

pu
tin

g
th

e
va

lu
es

in
th

e
re

d
ar

ea
,p

ro
ce

ss
p

m
us

tw
ai

tf
or

pr
oc

es
s

p
1

to
co

m
pl

et
e

th
e

co
m

pu
ta

tio
n

of
th

e
va

lu
es

in
th

e
da

rk
bl

ue
ar

ea
.

6.2. TEMPORAL BLOCKING 97

Figure 6.5: The parallel circular queue method. Each process computes a num-
ber of time steps independently and without synchronizing at the cost of redun-
dant computation at the artificial boundaries.

6.2.2 Circular Queue Time Blocking

The idea behind the circular queue method is to use a more regular sub-
division for parallelization compared to the one used in the parallel time
skewing described above. Instead of skewing the spatial iteration space,
overlapping “pyramids” of data are computed: Starting from a base tile
at local time step 0, the tiles computable values shrink with each time
step due to the data dependences as shown in Fig. 6.5. The upper most
tiles computed in the last local time step have to be aligned such that
the spatial domain is seamlessly tiled, which means that there are re-
dundant computations at the inner artificial boundaries [177, 51]. This is
the cost for a simpler code structure: no checking for data availability is
needed during the computation of a block; the blocks can be worked on
completely independently. The 3.5D blocking method described in [121]
is proposes to stream z-planes (planes orthogonal to the z-axis, the axis
with the slowest varying indices) through the local memory. But if circu-
lar queue time blocking is implemented reasonably, this is done anyway
[40, 41, 42], so the methods are equivalent.

We want to maximize the number of local time steps as the arithmetic
intensity increases about proportionally to the number of local time steps
since we need to load only one input plane and store one output plane
per set of local time steps. However, with each additional local time step
the amount of redundant computation increases. Additionally, the size of
the planes directly limits the number of time steps that can be performed
simultaneously on the data, since the size of the intermediate planes de-
creases with each time step. Therefore, planes should be as large as pos-

98 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

Figure 6.6: Memory layout of planes in the time-blocking scheme.

sible. On the other hand, with each additional local time step the number
of intermediate planes that need to be kept in fast memory increases. The
memory size limits the size of the planes. Hence a trade-off between the
increased arithmetic intensity and the redundant computations must be
found by determining the best number of local time steps.

In the shared memory environment, no explicit treatment of the arti-
ficial block boundary has to be carried out. We simply have to make sure
that the overlaps of the input data of adjacent blocks are large enough so
that the result planes are laid out seamlessly when written back to main
memory. Distributed memory environments require the artificial bound-
aries to be exchanged, the width of which is multiplied by the number of
time steps that are performed on the data between two synchronization
points.

Boundary conditions have to be applied after each time step on the
blocks that contain boundaries. Dirichlet boundary conditions (bound-
aries whose values do not change in time) can be easily implemented
by simply copying the boundary values on the input plane forward to
the planes belonging to the intermediate time levels. Note that, e.g., dis-
cretized Neumann or convective boundary conditions can be rewritten
as Dirichlet boundary conditions, a process that involves only modifica-
tions of the stencil coefficients on the boundary [120].

Fig. 6.6 shows the layout of the planes u in memory for time block

6.2. TEMPORAL BLOCKING 99

size 2. It shows the most compact memory layout that can be explicitly
programmed on architectures with a software-managed cache (e.g., the
shared memory of GPUs). The lower indices of u denote the spatial in-
dices and the upper indices are the indices in time. The figure illustrates
that the spaces in memory are filled as time advances (from top to bot-
tom in the diagram): u0

0, u0
1, u0

2, u0
3 are loaded in succession (the white

items symbolize loading of data into fast memory). In the fourth row, u0
0,

u0
1, and u0

2 are available, and the first time step u1
1 can be computed. The

memory locations that receive calculated data are drawn in black. In the
next step, u0

0 is no longer needed and can be overwritten to contain data
of u0

4, while simultaneously u1
2 is calculated from u0

1, u0
2, and u0

3. In the
sixth row, after calculating u1

3, the input planes to compute the first plane
of the next second step, u2

2, are available. As we want to overlap compu-
tation and communication, u2

2 is written back from fast to slower memory
only a step later (this can, of course, only be controlled in architectures
which support explicit memory transfers). Note that for a given time in
computation (i.e., on a specific row in the diagram), the spatial indices of
the planes being calculated are skewed. For example, in the last row of
the diagram, plane 4 of time step 1 (u1

4) and plane 3 of time step 2 (u2
3) are

calculated.
This time blocking scheme was implemented on the Cell Broadband

Engine Architecture [76] for the hyperthermia cancer treatment planning
application (cf. Chapter 11.1), and the speedup when applying the cir-
cular queue time blocking method to the stencil kernel on that particular
architecture has been found to be a factor of 2 [40, 41, 42]. In this appli-
cation, numerous coefficient fields put a heavy pressure on the relatively
small local stores, which was the main reason for the speedup limit.

The circular queue method has also been successfully adapted to GPUs
[110]by using the shared memory or even devising a scheme how to ex-
plicitly reuse data through the register file, which is comparatively large
on GPUs.

6.2.3 Wave Front Time Blocking

The idea of the wavefront parallelization [170, 162] is to have a team of
threads cooperate on a set of planes of data and each thread computing
one time step. Fig. 6.7 illustrates how the algorithm works. Thread 1
reads planes from the input array (depicted in blue) and after the com-
putation writes its result plane (drawn in red) into a temporary array. The

100 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

Figure 6.7: Wavefront parallelization of a 7-point stencil in 3D. A team of 4
threads compute 4 time steps by having thread i perform a sweep on the data
previously computed by thread i 1.

results produced previously by thread 1 are consumed by thread 2, which
simultaneously computes the next time step. The last thread (thread 4 in
Fig. 6.7) write the result to the output array, which can be identical to the
input array, since the output lags behind and does not overwrite planes
that are still needed as inputs for thread 1. To save temporary array space,
intermediate threads can also write to the input array as long as the data
that is still needed is not overwritten. The algorithm requires that all the
threads within a team are synchronized after computing one plane.

If the threads work on planes that are cross-sections of the entire do-
main, each thread can apply boundary conditions before the result is con-
sumed by the next thread. If the domain is too large to be handled by one
thread team, the planes can be decomposed into smaller panels. Then,
multiple thread teams can work on a stack of panels each, and there are
two levels of parallelism. Handling the interior boundaries makes the
algorithm more intricate, and the threads computing the lower local time
steps have to load and compute redundantly, similarly as in the circular
queue method, or they can avoid redundant computation by setting up
a separate data structure holding the values on the artificial boundary.
If redundant computation approach is chosen, a global synchronization
point is required after each sweep.

6.3. CACHE-OBLIVIOUS BLOCKING ALGORITHMS 101

6.3 Cache-Oblivious Blocking Algorithms

An algorithm is cache-oblivious if it is agnostic to concrete cache specifi-
cations such as the number of cache levels, the cache and cache line sizes,
and yet makes optimal or near-optimal use of the cache hierarchy. The
magic behind the concept is often a recursive divide-and-conquer-like
recipe.

6.3.1 Cutting Trapezoids

Frigo and Strumpen present a cache-oblivious grid traversal algorithm
for stencil computations [66] for a uniprocessor mapping which works
by recursively dividing the trapezoid spanned by the spatio-temporal it-
eration space into two new trapezoids, which are obtained from cutting
the old trapezoid through its center point either in space if the width is
large enough so that both parts are again trapezoids, or from cutting the
old trapezoid through its center point in the time dimension.

Again for the 1D case, let a trapezoid T be given by

T � �t0, t1, x0, �x0, x1, �x1�,

where t0 is the lower and t1 the higher coordinate in time dimension (i.e.,
t0 � t1), x0 the lower and x1 higher spatial coordinate vectors (x0

i � x1
i

for all i), and �x0 and �x1 are the slopes at x0
i and x1

i , respectively. Let σ

be the maximum slope between two consecutive time steps, e.g., σ � 1
for a 3D seven point stencil, or σ � 2 for a stencil depending on two
neighbor points, etc. The exact process of cutting the trapezoids is given
in Algorithm 6.1.

Algorithm 6.1: A cache-oblivious blocking algorithm for stencil computations.

1: procedure WALK(trapezoid T � �t0, t1, x0, �x0, x1, �x1�)
2: Δt � t1 � t0

3: if Δt � 1 then
4: evaluate stencil for all points in T
5: else
6: find the minimum i such that wi � 2σΔt,
7: where wi :�

�
x1

i � x0
i
�
� 1

2

�
�x1

i � �x0
i
�

Δt is the width
8: in dimension i
9: if i exists then 	 cut in space along dimension i

102 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

Figure 6.8: Spatial (left) and temporal (right) cuts of a trapezoid in one spatial
dimension.

Algorithm 6.1: A cache-oblivious blocking algorithm for stencil computations. (cont.)

10: xnew � 1
2

�
x1

i � x0
i
�
� 1

4

�
�x1

i � �x0
i
�
� 1

2 σΔt � new base pt
11: walk (T�x1

i � xnew, �x1
i � �σ�) � walk “left” T first

12: walk (T�x0
i � xnew, �x0

i � �σ�)
13: else � cut in the temporal dimension
14: walk (T�t1 � t0 �

1
2 Δt�) � walk the T with lower time

15: walk (T�t0 � t0 �
1
2 Δt�) � coordinates first

16: end if
17: end if
18: end procedure

For 1D, cutting a trapezoid is illustrated in Fig. 6.8. The trapezoid
on the left is wide enough so that a cut in the spatial cut is possible (here,
σ � 1), whereas the width of the trapezoid on the right is too small, hence
a cut in the spatial dimension (vertical axis) is performed as prescribed
by the method.

In [66], Frigo and Strumpen generalize the method to arbitrary dimen-
sions and prove that this method incurs O

�
Vol�T	Z�

1
d

�
cache misses for

an ideal cache of size Z. In [67, 155] a parallelization of the method is
presented. The idea is to extend the spatial cuts such that multiple in-
dependent trapezoids and connecting dependent triangular shapes are
obtained. The independent trapezoids can then be processed in parallel.

6.3.2 Cache-Oblivious Parallelograms

In [153], Strzodka et al. propose a cache-oblivious algorithm, CORALS,
for temporal blocking of iterative stencil computations by considering
the entire space-time iteration space and embedding it within a �d � 1	-

6.3. CACHE-OBLIVIOUS BLOCKING ALGORITHMS 103

dimensional parallelotope, which the algorithm subdivides recursively
into 2d�1 smaller parallelotopes by halving each side. The observations
are that parallelism can be extracted from the subdivision, which con-
verges to the ideal speedup number as the number of subdivisions tends
to infinity, and that assigning threads in a certain way guarantees good
spatial and temporal data locality. Both a static and a dynamic assign-
ment of threads are presented.

For illustration purposes, we show the algorithm for a 1D stencil with
the static thread assignment. First, a parallelogram is chosen with width
2w and height 2h for some w and h such that the entire spatio-temporal
iterations space of the stencil computation is covered by the parallelo-
gram as shown in Fig. 6.9 (a). The powers of 2 are enforced to enable
maximally many subdivisions.

The sub-figures (b) and (c) in Fig. 6.9 show the recipes proposed in
[153] assigning numbers of threads to sub-parallelograms and steps of
the recursive subdivision. After subdividing a parallelogram, the bottom
left and the top right parts are assigned n threads, and the bottom right
and top left parts n�2 threads. A parallelogram assigned one thread is
not subdivided any further.

The main observation is that the top left and the bottom right sub-
parallelograms in Fig. 6.9 (a) can be processed in parallel: The bottom
right parallelogram obviously does not have any dependences, and can
therefore be processed anytime, in particular after the bottom left par-
allelogram was processed. The top left parallelogram only depends on
values from the bottom left parallelogram. Only one of the threads as-
signed to a parallelogram does the computation. Fig. 6.10 (a) shows
the order in which the parallelograms are processed. Sub-parallelograms
labeled with the same numbers are processed in parallel. In the exam-
ple, 4 threads are used; Each of the 4 threads processes one of the sub-
parallelograms with labels 5, 11, 13, 15, and 21. The remaining sub-
parallelograms are not processed with maximum parallelism. However,
as the number of subdivision steps tends to infinity, the parallelism be-
comes optimal. Fig. 6.10 (b) shows a possible assignment of threads to
the sub-parallelograms; the labels are thread IDs. However, to process
the original rectangular iteration space optimally, a more effective dy-
namic load balancing strategy is required, as shown in [153].

104 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

(a)

(b)

(c)

Figure 6.9: (a) shows the spatio-temporal iteration space covered by a parallelo-
gram. The spatial coordinate varies along the horizontal axis, the time along the
vertical axis. (b) shows the recursive subdivision and the assignment of number
of threads when using 2 threads. Similarly, (c) shows the recursive subdivision
and assignment for 4 threads.

(a) (b)

Figure 6.10: In (a), the sequence of the iteration over the parallelograms is
shown when using 4 threads. Note that parallelograms with the same number
are executed in parallel. (b) shows an assignment of parallelograms to threads
(the numbers are thread IDs).

6.4. HARDWARE-AWARE PROGRAMMING 105

6.4 Hardware-Aware Programming

In this section, techniques are presented which hardly qualify as algo-
rithms, but rather are hardware-specific code optimizations which can
significantly reduce memory bandwidth usage or bandwidth pollution.

6.4.1 Overlapping Computation and Communication

If cores share a common cache it can be beneficial — especially if few
threads already exhaust the available memory bandwidth — to have two
classes of threads: one class of threads doing the computation while the
other class is responsible for bringing data from main memory into the
cache shared with the compute thread(s). This approach guarantees a
constant flow of data from the memory to the compute cores and thus
maximizes memory throughput. Such a mechanism is built into the C++
framework detailed in [154].

In a distributed memory environment, usually a ghost layer is added
at the block borders that replicates the nodes of the adjacent blocks in
order to account for the data dependences. If multiple sweeps have to be
run on the data, the ghost nodes need to be updated after each sweep.
The simplest parallelization scheme simply synchronizes the execution
after the sweep and exchanges the values on the artificial boundaries. A
more elaborate scheme that allows overlapping the computation and the
communication of the boundary values (and thus scales if the block sizes
are large enough) is described in Algorithm 6.2.

Algorithm 6.2: Scalable distributed memory parallelization.

1: for each process do
2: for t � 0..tmax do
3: copy boundary data to send buffers
4: initiate asynchronous transfers of the send buffers
5: into the neighbors’ receive buffers
6: compute
7: wait for the data transfers from the neighbors to complete
8: update the boundary nodes with the data in the recv bufs
9: apply boundary conditions

10: end for
11: end for

106 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

The algorithm works with extra send and receive buffers. It is as-
sumed that each process is assigned exactly one block. Before the actual
computation, the data which have to be sent to the neighboring processes
are copied to the send buffers and an asynchronous transfer is initiated,
which copies the data from the send buffers into the neighbors’ receive
buffers while simultaneously the main computation is done. As soon
as both the computation and the data transfers are complete, the nodes
at the artificial boundaries are updated with the values from the receive
buffers. Note that the update step in line 7 requires that the stencil ex-
pression can be separated into single components depending only on
neighboring nodes in one direction and that the ghost zones are initial-
ized with zero so that the nodes at the boundaries are not affected by
the ghost zones when applying the regular stencil. Splitting can be done
whenever the stencil computation is linear in the node values, e.g., if the
stencil expression is a weighted sum over the values of the neighboring
nodes. Note that there might be stencils for which the separation is not
possible, and hence the algorithm is not applicable.

6.4.2 NUMA-Awareness and Thread Affinity

Currently, the majority of CPU clusters are, on the node level, multi-
socket designs with cache coherent non-uniform memory architectures
(cc-NUMA). This means that each socket or even a sub-entity of a socket
has its own memory controller and DRAM, which can be accessed by
other sockets, although doing so incurs a latency penalty since the data
has to be transferred over the socket interconnect (Intel’s Quick Path In-
terconnect or AMD’s HyperTransport), and a bandwidth penalty, since
the bandwidth to the DRAM module or the interconnect bandwidth has
to be shared.

Ideally, if a NUMA architecture is used, each thread should not be al-
lowed to migrate between sockets, i.e., threads should be pinned to the
socket on which they were created or even to a single core to prevent
cache thrashing and access of foreign DRAM modules (since the DRAM
pages do not migrate along with the threads), and ideally they should
only access the DRAM belonging to the socket they are running on. Also,
going forward to exa-scale HPC systems, energy and power consump-
tion are concerns that have to be addressed. On a small scale, placing
data in memories as close as possible to the compute element, requires
less energy than fetching data across the node and therefore is a contri-

6.4. HARDWARE-AWARE PROGRAMMING 107

0

5

10

15

20

1 2 4 6 12 24 1 2 4 6 12 24

No NUMA NUMA-Aware

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Performance of no-NUMA vs. NUMA-aware code

3D 7-point Laplacian on AMD Magny Cours

Figure 6.11: NUMA-aware data initialization.

bution to energy-aware programming.
Thread affinity can be set programmatically using the operating sys-

tem API, and also most OpenMP implementations provide options to
specify the thread affinity by means of setting environment variables .
Cray’s aprun launcher pins threads automatically, by default to cores.

Memory affinity is harder to set programmatically. Typically, operat-
ing systems implement the first touch policy. I.e., the data will be placed in
a page of the DRAM module belonging to the socket on which the thread
is running which touches the data first. Hence it is important to to think
carefully about the initialization of the data. Ideally, the data on which
a thread computes should also be initialized by that thread. In that way,
memory affinity is ensured implicitly on systems implementing the first
touch policy.

Fig. 6.11 compares the performances of two versions of an exam-
ple codes, once without and once with NUMA-aware data initialization.
NUMA-aware initialization is not really a code optimization technique,
but if it is possible to employ NUMA-awareness, there is a huge perfor-
mance benefit on NUMA architectures.

The GNU OpenMP implementation recognizes the GOMP CPU AFFINITY environ-
ment variable, which can be assigned a comma-separated core ID list; Intel’s OpenMP
implementation reads the KMP AFFINITY environment variable, which can also be as-
signed a core ID list, or, more conveniently, a list of keywords describing the affinity
pattern. In addition, the GOMP CPU AFFINITY variable is also recognized.

108 CHAPTER 6. SAVING BANDWIDTH AND SYNCHRONIZATION

The left part of the figure shows the version of the code in which no
NUMA-aware initialization of the data was done; the right part shows
the scaling behavior with NUMA-awareness. The minor horizontal axis
shows the number of threads used, and the vertical axis the performance
in GFlop/s for the single precision 3D 7-point Laplacian stencil compu-
tation.

In the No NUMA version of the code, the grid arrays were set to zero
using the stdlib C function memset after allocating (equivalently, calloc
could have been used to allocate and initialize the data to zero). In con-
trast, in the NUMA-aware version, relying on the first-touch policy, the
initialization was done in a loop nest parallelized identically to the com-
pute loop nest.

The machine on which the benchmark was run is a dual-socket AMD
Opteron Magny Cours system, cf. Chapter 9. Since one socket consists of
two hexa core dies, each of which has its own memory interface, there are
4 NUMA domains. One to six threads ran on the same NUMA domain,
so both parts of the figure with 1 to 6 threads show the same (linear)
scaling behavior. In the result for 12 threads, the threads ran on the two
dies of a single socket. Since all the data is initialized by one thread in
the No NUMA case, all the data is owned by one NUMA domain, and the
second die has to send data requests to the first die, which has to satisfy
both memory requests of its own cores as well as of the other die’s cores,
and the data sent to the foreign cores additionally have to travel over the
HyperTransport interconnect. As the bandwidth is exhausted, the result
is the slowdown shown in the left part of Fig. 6.11. The situation becomes
even worse when 4 dies send their data requests to the single die which
has initialized and therefore owns the data. In the right part of the figure
this problem does not occur since all the dies operate on data served by
their own memory modules.

6.4.3 Bypassing the Cache

Another viable optimization is bypassing the cache entirely when data
cannot be reused. While data read from main memory can be reused,
data written back to main memory (at least in the last sweep) cannot.
So-called streaming or non-temporal stores prevent that data being writ-
ten back to main memory is first updated in the cache by transferring
them from DRAM, and transferred back to the main memory again. This
optimization is potentially valuable as without it, the so-called write allo-

6.4. HARDWARE-AWARE PROGRAMMING 109

cation traffic (bringing data from DRAM into cache before writing back)
doubles the amount of transferred data. Bypassing the cache is especially
valuable in cc-NUMA systems because no additional bandwidth is con-
sumed by the cache coherency protocol [176].

6.4.4 Software Prefetching

The idea of software prefetching is to give the processor hints about the
data that will be used in a future computation. The processor might
choose to act on these hints and bring the data into cache in advance. For
stencil computations, the data pattern is known and static, so the data
movement can be choreographed easily. However, in current processor
architectures the hardware prefetchers have become so sophisticated that
explicit software prefetching hints are hardly noticeable in terms of per-
formance benefits [53, 176]. Yet, certain architectures require that data is
brought into the local memories explicitly (e.g., into the shared memory
of CUDA-based GPUs or into the local store of the Cell Broadband Engine
Architecture’s processing elements). In this context, software prefetching
is also referred to as double buffering, since an additional data buffer is
allocated into which the data are streamed before being consumed from
the computation buffer by the computation.

Chapter 7

Stencils, Strategies, and

Architectures

We might even invent laws for series or
formulæ in an arbitrary manner, and set the
engine to work upon them, and thus deduce
numerical results which we might not
otherwise have thought of obtaining; but this
would hardly perhaps in any instance be
productive of any great practical utility, or
calculated to rank higher than as a
philosophical amusement.

— Ada Lovelace (1815–1852)

7.1 More Details on Patus Stencil Specifica-

tions

In the current version, PATUS stencil specifications consist of 3 parts: the
size of the domain, a d-dimensional grid, to the points of which the sten-
cil is applied; a specification of the number of time steps (sweeps) that is
performed within one stencil kernel call; and, most importantly, the op-
eration: the definition of the actual stencil expression(s), which is applied

112 CHAPTER 7. STENCILS, STRATEGIES, AND ARCHITECTURES

to each point of the grid(s) over which the computation sweeps.
The following listing shows a skeleton of a stencil specification:

stencil name
{

domainsize = (xmin . . xmax , ymin . . ymax , . . .) ;
t_max = number of sweeps ;

operation (grid argument and parameter declarations)
{

stencil expressions
}

}
Sweeps are not programmed explicitly in the stencil specification; the

operation only contains a localized, point-wise stencil expression. Cur-
rently, PATUS supports Jacobi iterations, which means that the grids which
are written to are distinct in memory from the grids that are read. In the
future, other types of grid traversals, e.g., red-black Gauss-Seidel sweeps,
may be supported. Given the Jacobi iteration as structural principle, there
are no loop carried dependences within the spatial iteration over the grid.
Hence, the order in which the grid points are visited and the stencil ex-
pressions evaluated does not matter. This fact is actually exploited by the
Strategies.

Both the domain size and the number of sweeps can contain symbolic
identifiers, in which case these identifiers are added as arguments to the
stencil kernel function in the generated code. The dimensionality of the
stencil is implicitly defined by the dimensionality of the domain size and
the subscripts in the stencil expressions. Currently, it is not possible to
mix grids of different dimensionalities. xmin, xmax, . . . can be integer lit-
erals, identifiers, or arithmetic expressions. Number of sweeps can be ei-
ther an integer literal or an identifier if the number of time steps has to be
controlled from outside the stencil kernel. Both minimum and maximum
expressions in domain size specifications are inclusive, i.e., the domain
size �xmin..xmax, . . . � has xmax � xmin � 1 points in x-direction.

There can be arbitrarily many grid arguments to the stencil operation,
depending on the application. For instance, discretizing the divergence
operator, which maps vector fields to a scalar function, might be imple-
mented in the 3D case with three grids, which are read, and one grid to
which the result is written. Grid arguments (in first line in the follow-

7.1. MORE DETAILS ON PATUS STENCIL SPECIFICATIONS 113

ing listing) and parameter declarations (second line) have the following
form:

Listing 7.1: Operation arguments in the stencil specification.

1: �const� �float �double� grid grid name �
2: � (x�

min . . x�

max , y�

min . . y�

max , . . .) � � [number of grids] �
3: �float �double� param parameter name � [array size] �

Both grids and parameters can either be based on single or double
precision floating point data types. If a grid is declared to be const, it is
assumed that the values do not change in time, i.e., the grid is read-only.
The optional grid size specification after the grid name defines the size
of the array as it is allocated in memory. This is useful if the kernel is
to be built into an existing code. If no explicit size of the grid is speci-
fied, the size is calculated automatically by PATUS by taking the size of
the iteration space domainsize, the inner domain, and adding the bor-
der layers required so that the stencil can be evaluated on each point of
the inner domain. Again, x�

min, x�

max, . . . can be integer literals, identi-
fiers, which can be distinct from the identifiers used for the domainsize

specification, or arithmetic expressions. Any additional identifiers used
to specify the grid size will be added as arguments to the stencil kernel
function. Multiple grids can be subsumed in one grid identifier. Instead
of using 3 distinct grid identifiers in the above example of the divergence
operator, the inputs can be declared as float grid X[3] rather than, e.g.,
float grid Xx, float grid Xy, float grid Xz. In the generated code,
an array of grids will be split into distinct grid identifiers, however. The
number of grids has to be an integer literal. Also, parameters can be both
scalar identifiers or arrays.

The body of the operation consists of one or more assignment expres-
sion statements. The left hand side of the assignments can be a grid access
to which the right hand side is assigned or a temporary scalar variable,
which can be used later in the computation. The arithmetic expressions
on the right hand side involve previously calculated scalar variables or
references to a grid point.

In Table 7.1 some flavors of assigning and referencing points in a grid
are shown.

114 CHAPTER 7. STENCILS, STRATEGIES, AND ARCHITECTURES

Assignment to a grid u[x,y,z ; t+1] = ...

Assignment to temporary variables float tmp1 = ...
double tmp2 = ...

Referencing a float grid u

// center point
... = u[x,y ,z; t] + ...
// right neighbor
... = u[x+1,y,z ; t] + ...
// center pt of prev time step
... = u[x,y ,z; t�1] + ...

Referencing an array // center point of component 0
float grid X[3] ... = X[x,y ,z; t; 0] + ...

Referencing a const float grid c
// center point of a const grid
... = c[x,y,z] + ...

Referencing an array // center point of component 0
const float grid c[3] ... = c[x,y,z; 0] + ...

Table 7.1: Assigning and referencing points in a grid in the stencil specification
language.

The center point of a stencil� is always denoted by u[x,y,z; �], neigh-
boring points by u[x�δx, y�δy, z�δz; �] if u is the identifier of the
grid we wish to access and the stencil is defined in 3 dimensions. 2-
dimensional grids would only use x and y as spatial references, for ar-
bitrary-dimensional stencils spatial reference identifiers x0, x1, . . . are de-
fined. The δ� must be integer literals, i.e., the neighborhood relationship
to the center point must be constant and known at compile time.

Non-constant grids, i.e., grids which change their values in the time
dimension and are read from and written to, require an additional index
denoting the time step, which is interpreted relatively to the time step of
the corresponding left hand side grid. The temporal reference identifier
is always t. Note that no references to future time steps can occur on
the right hand side, i.e., the temporal indices of the grid references in
expressions on the right hand side must be strictly less than the temporal

�Here, “center” always refers to the current point within a sweep. Sweeps are not
explicitly programmed in the stencil specification as detailed above.

7.2. STRATEGIES AND HARDWARE ARCHITECTURES 115

index on the left hand side. (If this was not the case, the method would
be implicit, and a linear solver would be required to solve the problem.)

If an identifier has been declared to be an array of grids, an addi-
tional index has to be appended after the temporal one, which determines
which array element to use. The index has to be an integer literal.

The complete grammar of the stencil specification DSL is given in Ap-
pendix B. Also, more examples of stencil specifications — the ones for
which benchmarking results are given in Chapter 10 and the stencils oc-
curring in the applications discussed in Chapter 11 — can be found in
Appendix C.

7.2 Strategy Examples and Hardware Architec-

ture Considerations

A PATUS Strategy is the means by which we aspire to implement paral-
lelization and bandwidth-optimizing methods such as the ones discussed
in Chapter 6. In practice it mostly is at least cumbersome to adapt an
implementation for a toy stencil (e.g., a 3D 7-point constant coefficient
Laplacian) to a stencil occurring in an application, since the implemen-
tation of the algorithm most likely depends on the shape of the stencil
and the grid arrays used, and very probably on the dimensionality of the
stencil. Extending a coded template to incorporate a stencil computation
for which it was not designed initially is tedious and error prone.

The idea of Strategies is to provide a clean mechanism which sep-
arates the implementation of parallelization and bandwidth-optimizing
methods from the actual stencil computation. In this way, the implemen-
tation of the algorithm can be reused for arbitrary stencils.

7.2.1 A Cache Blocking Strategy

We start by looking at the implementations of a cache blocking method.
The Strategy in Listing 7.2 iterates over all the time steps in the t loop,
and within one time step in blocks v of size cb over the root domain u,
i.e., the entire domain to which to apply the stencil. Both the root do-
main and the size of the subdomain v are given as Strategy parameters.
The blocks v are executed in parallel by virtue of the parallel keyword,
which means that the subdomains v are dealt out in a cyclic fashion to the
worker threads. The parameter chunk to the schedule keyword defines

116 CHAPTER 7. STENCILS, STRATEGIES, AND ARCHITECTURES

how many consecutive blocks one thread is given. Then, the stencil is
applied for each point in the subdomain v.

The Strategy argument cb has a specifier, auto, which means that this
parameter will be interfaced with the auto-tuner: it is exposed on the
command line of the benchmarking harness so that the auto-tuner can
provide values for cb� �c1, c2, . . . , cd�, where d is the dimensionality of
the stencil, and pick the one for which the best performance is measured.

Listing 7.2: A cache blocking Strategy implementation.

1: strategy cacheblocked (domain u , auto dim cb ,
2: auto int chunk)
3: {
4: // iterate over time steps

5: for t = 1 . . stencil . t_max
6: {
7: // iterate over subdomain

8: for subdomain v (cb) in u (: ; t) parallel schedule chunk

9: {
10: // calculate the stencil for each point

11: // in the subdomain

12: for point p in v (: ; t)
13: v [p ; t+1] = stencil (v [p ; t]) ;
14: }
15: }
16: }

In the Strategy of Listing 7.2, the parameter cb controls both the gran-
ularity of the parallelization and consequently the load balancing, and
the size of the cache blocks. The size of the blocks ultimately limits the
number of threads participating in the computation. If the blocks be-
come too large the entire domain will be divided into less subdomains
than there are threads available, and the performance will drop. In prac-
tice, the auto-tuner will prevent such cases. But the consequence is that
a configuration for cb, which runs well for a specific number of threads
might not perform well for another number of threads.

The Strategy in Listing 7.3 this one block v was split into smaller
blocks w. Here, the idea is that v is responsible for the parallelization
and load balancing, while the inner subdomain w is reserved for cache
blocking.

7.2. STRATEGIES AND HARDWARE ARCHITECTURES 117

Listing 7.3: Another way of subdividing for cache blocking.

1: strategy cacheblocked2 (domain u ,
2: auto dim tb , auto dim cb , auto int chunk)
3: {
4: // iterate over time steps

5: for t = 1 . . stencil . t_max
6: {
7: // parallelization

8: for subdomain v (tb) in u (: ; t) parallel schedule chunk

9: {
10: // cache blocking

11: for subdomain w (cb) in v (: ; t)
12: {
13: for point pt in w (: ; t)
14: w [pt ; t+1] = stencil (w [pt ; t]) ;
15: }
16: }
17: }
18: }

Although this is currently not done yet, restrictions could be inferred
for w, limiting the search space the auto-tuner has to explore: Since w is an
iterator within the subdomain v, we could restrict cb by cb

�
� tb

�
(where

tb is the size of v).
Also, we could infer a restriction preventing that threads are sitting

idle by calculating the number of blocks v: Let �s1, . . . , sd� be the size of
the root domain u. Then we could require that the following inequality
holds:

d�
i�1

�
si

tbi

�
� T,

where T is the number of threads.

7.2.2 Independence of the Stencil

By concept, Strategies are designed to be independent of both the sten-
cil and the concrete hardware platform. The obvious means to achieve
independence of the stencil is to not specify the actual calculation in the
Strategy, but have a reference to it instead. This is done by the formal
stencil call, which expects a grid reference as argument (actually, a point

118 CHAPTER 7. STENCILS, STRATEGIES, AND ARCHITECTURES

within a domain) and assigns the result to another grid reference. Strate-
gies therefore also must have the notion of grids, but interpreted as index
spaces rather than actual mappings to values. Each Strategy has one re-
quired argument of type domain, the root domain, which represents the
entire index space over which the Strategy is supposed to iterate. In the
Strategy, this domain can be subdivided, defining the way in which the
actual stencil grids are traversed. This is done using subdomain iterators,
which are constructs that advance a smaller box, the iterator, within a
larger one, its parent domain. The size of a Strategy domain is always the
size of the computed output, i.e., not including the border layers required
for a stencil computation.

Being independent of the stencil means in particular being indepen-
dent of the stencil’s dimensionality. The root domain inherits the di-
mensionality of the stencil. Subdomains, however, need a notion of the
dimensionality in order to specify their size. Strategies provide data
types dim and codim(n), which can be used in Strategy arguments. If
the stencil dimensionality is d, a dim variable is a d-dimensional vector,
and a codim(n) variable is a �d � n�-dimensional vector (a vector of co-
dimension n).

Again consider the cache blocking Strategy in Listing 7.2. The size of
the subdomain v being iterated over the root domain u is specified by cb,
an argument to the strategy of type dim. This means that the subdomain
v will have the same dimensionality as the stencil and the root domain.

The instruments provided by Strategies to deal with the unknown
dimensionalities are the following:

• subdomain iterators rather than simple for loops,

• dim and codim(n) typed variables,

• subdomain and stencil properties: when a Strategy is parsed, both
w.dim and stencil.dim are replaced by the dimensionality of the
stencil and of the subdomain w, respectively,

• a subdomain’s size property, which is a dim-typed variable contain-
ing the size of a subdomain (i.e., w.size is a d-dimensional vector
with its components set to the size of w),

• subscripting dim or codim(n) type variables by an index vector. An
index vector can be either

7.2. STRATEGIES AND HARDWARE ARCHITECTURES 119

– a single integer (e.g., the value of w.size(1) is the first compo-
nent of the size vector of w);

– a vector of integers (e.g., w.size(1,2,4) returns a 3-dimen-
sional vector containing the first, second, and fourth compo-
nent of the size of w);

– a range (e.g., w.size(2 .. 4) returns a 3-dimensional vector
containing the second, third, and fourth component of the size
of w, or w.size(1 .. w.dim-1) returns a vector containing all
the components of the size of w except the last one);

– ellipses, which fill a vector in a non-greedy fashion so that the
vector is of dimension stencil.dim:

* (a ...) is a d-dimensional vector with each component
set to a (a must be a compile-time constant);

* (a, b ...) is a d-dimensional vector with the first com-
ponent set to a, and all the others to b;

* (a, b ... c) is a vector with the first component set to a
and the last set to c, and all the components in the middle
set to b;

– any combinations of the above.

The size of a subdomain might also depend on the structure or the
bounding box of a stencil. This can be achieved by the stencil.box prop-
erty, which can be used to enlarge a subdomain.

7.2.3 Circular Queue Time Blocking

In the following, a circular queue time blocking method is shown how
it is envisioned as a Strategy implementation. In the current state at
the time of writing, the code generator still lacks certain mechanisms re-
quired for generation of the final C code.

The algorithm is in the spirit of [40, 41, 121]. For the sake of simplicity
of presentation, no pre-loading scheme is implemented. The parameters
to tune for is the number of local time steps timeblocksize in the inner
time blocked iteration, and the cache block size cb. The implementation
assumes that the stencil only requires the data of time step t in order to
compute the result at time step t� 1.

120 CHAPTER 7. STENCILS, STRATEGIES, AND ARCHITECTURES

Listing 7.4: A circular queue time blocking Strategy implementation.

1: strategy circularqueue (domain u , auto int timeblocksize ,
2: auto dim cb)
3: {
4: int lower = �stencil . min (stencil . dim) ;
5: int upper = stencil . max (stencil . dim) ;
6:
7: // number of regular planes

8: int numplanes = lower + upper + 1 ;
9:

10: for t = 1 . . stencil . t_max by timeblocksize

11: {
12: for subdomain v (cb) in u parallel

13: {
14: // local timesteps 0 .. last -1

15: domain pln (
16: v . size (1 . . stencil . dim�1) +
17: timeblocksize * stencil . box (1 . . stencil . dim�1) , 1 ;
18: timeblocksize �1;
19: lower+upper + 1) ;
20: // last timestep

21: domain pnlL (v . size (1 . . stencil . dim�1) , 1) ;
22:
23: // preloading phase and filling phase omitted ...

24:
25: // working phase

26: for z = (timeblocksize �1)* upper + 1 . . v . max (v . dim)�2
27: {
28: // load

29: memcpy (
30: pnl [: ; 0 ; (z + upper + 1) % numplanes0] ,
31: v (: + timeblocksize * stencil . box (1 . . stencil . dim�1) ,
32: z + upper + 1)
33:) ;
34:
35: // compute

36: for t0 = 0 . . timeblocksize � 2
37: {
38: int idx = (z � t0 * upper) % numplanes ;
39: for point pt in v (
40: : + (timeblocksize�t0�1) *
41: stencil . box (1 . . stencil . dim�1) , 1 ;
42: t+t0)
43: {
44: pnl [pt ; t0 ; idx] = stencil (pnl [pt ; t0�1;idx]) ;

7.2. STRATEGIES AND HARDWARE ARCHITECTURES 121

Listing 7.4: A circular queue time blocking Strategy implementation. (cont.)

45: }
46: }
47: for point pt in v (: , 1 ; t+t0)
48: {
49: pnlL [pt] = stencil (pnl [
50: pt ;
51: timeblocksize � 2 ;
52: (z � (timeblocksize �1)* upper) % numplanes]) ;
53: }
54:
55: // write back

56: memcpy (v (: , z�(timeblocksize �1)* upper �1) , pnlL) ;
57: }
58:
59: // draining phase omitted ...

60: }
61: // implicit synchronization point from parallel v loop

62: }
63: }

The d-dimensional root domain is cut into �d � 1�-dimensional slices
orthogonal to the last axis, called planes in the following and in Listing
7.4. The number of planes required is given by the shape of the stencil.
For a calculation of one output plane, lower+upper+1 planes are required,
where lower is the number of stencil nodes below the center node, and
upper the number of nodes above the center.

The outer temporal t loop iterates over all the time steps, increasing
the global time step by the timeblocksize, the number of inner temporal
iterations. The actual algorithm applies to the subdomain v. The algo-
rithm is a sort of software pipelining; the pipelined operations are load-
compute-store blocks. For brevity, Listing 7.4 only shows the steady-state
phase of the pipeline. pnl and pnlL are sets of temporary data buffers.
pnlL is the plane into which the last local time step is written, and which
is copied back to the main memory. Within the z loop, which processes
all the planes in the subdomain v, data is loaded from v into the tempo-
rary buffer pnl and consumed in the compute loops. Data at the border
is loaded and computed redundantly and in an overlapping fashion with
respect to other subdomains v. To express this, the subdomain on which
the stencil is evaluated is enlarged by the expression

122 CHAPTER 7. STENCILS, STRATEGIES, AND ARCHITECTURES

v (: + (timeblocksize � t0 � 1) *
stencil . box (1 . . stencil . dim�1) , 1 ;
t+t0)

which means that the first d� 1 coordinates of bounding box of the stencil
is added (timeblocksize-t0-1)-times to the size of v, while the size in the
last dimension remains 1. There is an implicit synchronization point after
the parallel v loop.

7.2.4 Independence of the Hardware Architecture

A Strategy’s independence of the hardware architecture is given by the
notions of general iterators over subdomains and generic data copy op-
erations, and, more importantly, by the liberty of interpreting the paral-
lelism defined in a strategy as a may parallelism rather than a must paral-
lelism.

The underlying model of the hardware is a simple hierarchical model,
to some extent inspired by the OpenCL execution model [95]. The execu-
tion units are indexed by multi-dimensional indices, similar to OpenCL’s
NDRange index spaces. This guarantees that there is an optimal map-
ping to architectures that have hardware support for multi-dimensional
indexing or have multidimensional indices built into the programming
model such as CUDA or OpenCL. We call a level in the hierarchy a par-
allelism level. The dimension of the indices may differ in each parallelism
level.

Each parallelism level entity can have its own local memory, which
is only visible within and below that parallelism level. We allow the
data transfers to the local memories to be either implicit or explicit, i.e.,
managed by hardware or software. Furthermore, we permit both syn-
chronous and asynchronous data transfers.

According to this model, a shared-memory CPU architecture has one
parallelism level with local memory (cache) with implicit data transfer,
and a CUDA-capable GPU has two parallelism levels, streaming multi-
processors and streaming processors – or thread blocks and threads, re-
spectively. The thread block level has an explicit transfer local memory,
namely the per-multiprocessor shared on-chip memory.

An architecture description together with the PATUS back-end code
generators specific for a hardware platform are responsible for the cor-
rect mapping to the programming model. In particular, nested paral-
lelism within a Strategy is mapped to subsequent parallelism levels in

7.2. STRATEGIES AND HARDWARE ARCHITECTURES 123

the model. If a hardware platform has less parallelism levels than given
in a Strategy, the parallel Strategy entities will be just mapped onto the
last parallelism level of the architecture and executed sequentially.

Domain decomposition and mapping to the hardware is implicitly
given by a Strategy. Every subdomain iterator, e.g.,

for subdomain v (size_v) in u (: ; t)
. . .

decomposes the domain u into subdomains of smaller size size v. When,
in addition, the parallel keyword is used on a subdomain iterator, the
loop is assigned to the next parallelism level (if there is one available),
and each of the iterator boxes is assigned to an execution unit on that par-
allelism level. All the loops within the iterator also belong to the same
parallelism level (i.e., are executed by the units on that level), until an-
other parallel loop is encountered in the loop nest.

If a parallelism level requests explicit data copies, memory objects are
allocated for an iterator box as “late” as possible: since local memories
tend to be small, the iterator within the parallelism level with the smallest
boxes, i.e., as deep down in the loop nest as possible (such that the loop
still belongs to the parallelism level), is selected to be associated with the
memory objects. The sizes of the memory objects are derived from the
box size of that iterator, and data from the memory objects associated
with the parallelism level above are transferred. In the case that the iter-
ator contains a stencil call within a nested loop on the same parallelism
level, the iterator immediately above a point iterator

for point p in v (: ; t)
. . .

is selected, if there is one, or if there is no such iterator, the iterator con-
taining the stencil call is selected.

The Strategy excerpt

for subdomain v (size_v) in u (: ; t) parallel

for subdomain w (size_w) in v (: ; t) parallel

for point p in w (: ; t)
. . .

and the resulting data decomposition and the ideal hardware mapping
are visualized in Fig. 7.1. The upper layer shows the hierarchic domain
decomposition of u into v and w. The bottom layer shows an abstraction
of the hardware architecture with 2 parallelism levels, work groups and

124 CHAPTER 7. STENCILS, STRATEGIES, AND ARCHITECTURES

Figure 7.1: Mapping between data and hardware. Both hardware architecture
(bottom layer) and data (top layer) are viewed hierarchically: the domain u is
subdivided into v and w, the hardware architecture groups parallel execution
units on multiple levels together.

work items, which both can have a local memory. By making the v loop in
the Strategy parallel, it is assigned to the first parallelism level, labeled
work groups in the figure (following the OpenCL nomenclature). And by
making the nested w loop parallel, this, in turn, is assigned to the second
parallelism level, the work items within a work group. The points p in w

are all assigned to the same work item that “owns” w.

7.2.5 Examples of Generated Code

To conclude this chapter, we show two examples how a simple strategy
iterator is mapped to code, once for a OpenMP-parallelized shared mem-
ory CPU system, and once for a CUDA-programmed NVIDIA GPU.

Listing 7.5 shows an example of a generated C code using OpenMP
for parallelization. It was generated for a 3D stencil from the parallel
Strategy subdomain iterator

for subdomain v (cb) in u (: ; t) parallel

. . .

OpenMP provides one level of one-dimensional indexing (by the thread
number, omp get thread num ()), but the domain to decomposed is 3-

7.2. STRATEGIES AND HARDWARE ARCHITECTURES 125

dimensional. Thus, the 3-dimensional index range

�vidxx, vidxxmax� � �vidxy, vidxymax� � �vidxz, vidxzmax�

is calculated based on the thread ID. By incrementing the loop index
v idx by the number of threads, the v blocks are dealt out cyclically.

Listing 7.5: C/OpenMP code generated for a 3D stencil.

1: int dimidx0 = omp_get_thread_num () ;
2: int dimsize0 = omp_get_num_threads () ;
3: int v_numblocks =
4: ((x_max+cb_x�1)/cb_x) * ((y_max+cb_y�1)/cb_y) *
5: ((z_max+cb_z�1)/cb_z) ;
6: for (v_idx=dimidx0 ; v_idx <= v_numblocks �1;
7: v_idx += dimsize0)
8: {
9: tmp_stride_0z = ((x_max+cb_x�1)/cb_x) *

10: ((y_max+cb_y�1)/cb_y) ;
11: v_idx_z = v_idx/tmp_stride_0z ;
12: tmpidxc0 = v_idx�(v_idx_z * tmp_stride_0z) ;
13: v_idx_y = tmpidxc0 / ((x_max+cb_x�1)/cb_x) ;
14: tmpidxc0 �= v_idx_y * ((x_max+cb_x�1)/cb_x) ;
15: v_idx_x = tmpidxc0 ;
16: v_idx_x = v_idx_x * cb_x +1;
17: v_idx_x_max = min (v_idx_x+cb_x , x_max + 1) ;
18: v_idx_y = v_idx_y * cb_y +1;
19: v_idx_y_max = min (v_idx_y+cb_y , y_max + 1) ;
20: v_idx_z = v_idx_z * cb_z +1;
21: v_idx_z_max = min (v_idx_z+cb_z , z_max + 1) ;
22:
23: // inner loops/computation within

24: // [v_idx_x , v_idx_x_max] x ...

25: }

In contrast, CUDA provides 2 levels of indexing, the thread block
and the thread level. Moreover, the indices on the thread block level
can be 1 or 2-dimensional (prior to CUDA 4.0) or 1, 2, or 3-dimensional
in CUDA 4.0 on a Fermi GPU, and thread indices can be 1, 2, or 3-di-
mensional. Also, a GPU being a manycore architecture, we assume that
there are enough threads to compute the iterates in v completely in par-
allel. Hence, there is no loop iterating over the domain, but a conditional
guarding the “iteration” space instead as shown in Listing 7.6.

126 CHAPTER 7. STENCILS, STRATEGIES, AND ARCHITECTURES

Listing 7.6: C for CUDA code generated for a 3D stencil.

1: stride_1 = (blockDim . y+y_max�1)/blockDim . y ;
2: tmp = blockIdx . y ;
3: idx_1_2 = tmp/stride_1 ;
4: tmp �= idx_1_2 * stride_1 ;
5: idx_1_1 = tmp ;
6: v_idx_x = 1+(blockDim . x * blockIdx . x+threadIdx . x) * cbx ;
7: v_idx_x_max = v_idx_x+cbx ;
8: v_idx_y = threadIdx . y+idx_1_1 * blockDim . y+1;
9: v_idx_y_max = v_idx_y +1;

10: v_idx_z = threadIdx . z+idx_1_2 * blockDim . z+1;
11: v_idx_z_max = v_idx_z +1;
12:
13: if ((((v_idx_x<=x_max)&&(v_idx_y<=y_max))&&
14: (v_idx_z<=z_max)))
15: {
16: // inner loops/computation within

17: // [v_idx_x , v_idx_x_max] x ...

18: }

Again, the 3-dimensional index range

�vidxx, vidxxmax� � �vidxy, vidxymax� � �vidxz, vidxzmax�

is calculated before the actual calculation, but now based on the 2-dimen-
sional thread block indices (blockIdx.x, blockIdx.y) and the 3-dimen-
sional thread indices (threadIdx.x, threadIdx.y, threadIdx.z).
blockIdx and threadIdx are built-in variables in C for CUDA.

Chapter 8

Auto-Tuning

In almost every computation a great variety
of arrangements for the succession of the
processes is possible, and various
considerations must influence the selections
amongst them for the purposes of a
calculating engine. One essential object is to
choose that arrangement which shall tend to
reduce to a minimum the time necessary for
completing the calculation.

— Ada Lovelace (1815–1852)

8.1 Why Auto-Tuning?

Automated tuning or auto-tuning is the use of search to select the best
performing code variant and parameter configuration from a set of pos-
sible versions. This means that a benchmarking executable is built and
actually run on the target machine. The code versions can range from
valid re-parameterizations that have an impact on cache behavior, — in
the context of PATUS finding the best combination of Strategy parame-
ters — to code transformations as described in Chapter 3.4, which can be
done using dedicated source-to-source transformation frameworks such
as CHiLL [80], or also by determining the best configuration for an opti-

128 CHAPTER 8. AUTO-TUNING

mizing compiler [129], to data structure transformations, or even to dif-
ferent algorithmic design, i.e., substituting the original algorithm with a
“smarter” variant, which performs better under the given circumstances.
In PATUS this would mean exchanging a Strategy by another one and
finding the one with the best overall performance behavior.

Another — famous — example for the latter would be to replace the
naı̈ve O�N2� N-body algorithm by a tree code such as the O�N log N�

Barnes-Hut algorithm or the O�N� Fast Multipole Method (FMM). All
three are approaches to solve the same problem, so the results, given the
same input set, will be equivalent. The performance, however, is de-
pendent on the size of the input set: for small problem sizes the O�N2�

method will win because in this case Barnes-Hut and FMM have non-
negligible overheads associated with them (in other words, albeit being
O�N log N� and O�N� algorithms, respectively, the constants are quite
large). On the other hand, if N is large, the Fast Multipole Method will
win.

However, although auto-tuning has become a widely accepted tech-
nique, at least in the research community, and has been applied success-
fully in a number of scientific computing libraries including the pioneers
of auto-tuned libraries for scientific computing: ATLAS [172] for dense
linear algebra, FFTW [65] and SPIRAL [139] for spectral algorithms, and
OSKI [166] for sparse linear algebra, the optimization scope of today’s
auto-tuners encompasses only code transformations and maybe data struc-
ture transformations. As these projects demonstrate, auto-tuning is still
a valuable approach for creating high performance codes. Rather than
hand-tuning and specifically tailoring code to a specific hardware archi-
tecture, which is done, e.g., in vendor libraries such as Intel’s Math Ker-
nel Library (MKL), auto-tuning is an attempt at transferring performance
across hardware platforms and letting the code adapt to the architecture’s
peculiarities. Of course, this comes at a cost. While Intel’s MKL can just
be copied to a new machine and is ready to be used, the installation of
ATLAS requires going through a one-time procedure of adapting the ker-
nels in an offline time intensive auto-tuning phase. But the benefit is that
a single code base can be reused across many different architectures with-
out needing to re-engineer and re-optimize compute kernels for every
new emerging architecture in an error prone and time intensive process.

The same holds true for the PATUS approach: migrating to another
platform requires a one-time offline re-tuning and possibly a preceding
code generation phase, but none of the existing code has to be changed.

8.1. WHY AUTO-TUNING? 129

The three major concepts of auto-tuning are the optimization scope,
code generation for the specific optimizations enumerated, and explo-
ration of the code variant and parameter space [176]. In our approach
we aim at an integration of all three concepts. The optimization scope is
defined by the Strategy set and ultimately the Strategy design, code gen-
eration is handled by the PATUS code generator which depends on both
the problem description in the form of the stencil specification and the on
a Strategy, and Strategies also form the bridge to the PATUS auto-tuning
module, which is dedicated to the search space exploration. Other ap-
proaches prefer a more composable structure, such as Active Harmony
[159], which essentially provides a means to navigate the search space,
while code generation is delegated to a decoupled transformation frame-
work (currently, the loop transformation framework CHiLL [80] is used).
Both FFTW and SPIRAL are appealing in that the search space essentially
is constituted by code variants emerging from transformations within a
rigorous mathematical framework, which enables enumerating valid al-
gorithms.

The difficult task of an optimizing compiler is to decide on the po-
tentially best combination of transformations without knowledge of the
problem domain and completely obliviously of the data. The output is
a single executable, based on a heuristically chosen path in the decision
tree. In contrast, the auto-tuning approach encourages a choice of code
variants for the tuning phase. Auto-tuners mostly are domain specific: In
the code generation phase, variants can be generated which an optimiz-
ing compiler has to reject because it has to err on the conservative side
for safety’s sake. Also, the resultant optimization configuration returned
by an auto-tuner is necessarily data-aware since an input data set (which
ideally is real data or a training data set reflecting the properties of the
real data) is required to run the benchmarks. Thus, optimizing compilers
aim at best performance while being agnostic of the problem, the exe-
cution platform (to some extent), and the data, while auto-tuners aim at
best performance for a specific problem domain, a specific hardware plat-
form, and a specific input data set. By performance we do not necessarily
mean maximum number of Flops per time unit, but a more general term,
which can indeed include GFlop/s, but can also mean energy efficiency
or maximum GFlop/s subject to constraints such as memory usage or
total power consumption.

On the other hand, it can be too restrictive to optimize for a single
input data set since the performance behavior can depend sensitively on

130 CHAPTER 8. AUTO-TUNING

the input data. Approaches to mitigate this include online auto-tuning,
i.e., adapting the code while the program is running. This is an approach
taken by Tiwari et al. in [159]. Another way would be to tune for multiple
probable input data sets simultaneously, and choose the best code variant
based on a probability distribution of the input data sets.

Another question is how to deal with and navigate the typically enor-
mous search space, which is exponential in the number of parameters,
and therefore how to deal with the time required to execute the bench-
marks while traversing the search space. A purely theoretical approach is
to find a performance model predicting the performance for each param-
eter configuration. This would not solve the problem of navigating the
search space, but it could give insights which areas of the search space are
“bad” and can be avoided. It might be the case that model-based pruning
of the search space is sufficient so that the remaining configurations are
so low in number so they can be examined exhaustively. In the context of
our work, it is not clear whether and how this approach is applicable. It
would require that a performance model is created (preferably automat-
ically) for each PATUS Strategy.

Navigating the search space is a combinatorial optimization [22, 130]
or integer programming [183] problem. Lacking a performance model,
the cost function is not given as a mathematical model. Instead, eval-
uating the cost function for a certain input means executing the bench-
marking executable under a specific parameter configuration and mea-
suring the time spent in the kernel. Clearly, gradient-based optimization
techniques are not applicable. In the next chapter, a choice of gradient-
free search methods are discussed that could be used to traverse the
search space. Gradient-free search methods include direct search meth-
ods, which were popularized in the 1960s and 1970s as well as meta-
heuristics such as genetic algorithms, which have enjoyed some popular-
ity since the 1990s and can be counted to the state-of-the-art algorithms
in integer programming today.

Finally, an essential requirement for the actual auto-tuning bench-
marking process is a “clean” environment. When running the bench-
marks, it is assumed that no other (significantly compute intensive) pro-
cess is running besides the application being tuned so that measurements
are not perturbed. Also, it is assumed that background noise (e.g., pro-
duced by the operating system) is negligible. Typically multiple runs are
done and the performance is averaged or the median is taken.

8.2. SEARCH METHODS 131

8.2 Search Methods

Direct search methods have been characterized as optimization methods
that are derivative-free methods (and therefore sometimes are referred to
as zero-order methods), which only require the range of the objective func-
tion to be equipped with a partial order [98]. Some of the algorithms de-
veloped in the 1960’s and 1970’s, the golden era of direct search methods,
are still in use in practice today since they have proven to be robust in that
they are able to deliver at least a local optimum and they are simple and
therefore easy to implement. The probably most famous of these algo-
rithms is the Nelder-Mead method [118], also called simplex search (but
not to be confused with the simplex algorithm for linear programming).
In [98], Lewis et al. partition classical direct search methods into three cat-
egories: pattern search methods, simplex methods, and adaptive search
direction methods. Originally, direct search methods were designed for
continuously differentiable objective functions f : Ω � Rn

�� R, and in
that case convergence proofs can be given. Because they do not require
the calculation of derivatives they can be applied to our discrete setting
and actually work well enough for our purpose.

All the algorithms in pseudo code presented in this section try to find
a local minimum of the objective function f , but they can be re-written
easily to find a local maximum instead. In the text we use the generic
term, optimum.

8.2.1 Exhaustive Search

Exhaustive search, i.e., enumeration of the entire search space, is the most
basic approach as a search method and is guaranteed to find the global
optimum. Obviously, due to tight time constraints this method has only
limited use in practice since the search space grows exponentially with
the number of parameters. However, it might be valuable to search a very
limited number of parameters exhaustively, for which only a small range
of values needs to be covered. An example within PATUS could be loop
unrolling configurations. On the other hand, if heuristics can be found
which can be used to prune the search space so that a manageable set
of combination is left, these combinations can be searched exhaustively.
Obviously, exhaustive search is trivially parallelizable. Thus, if a cluster
of n equal machines is available, the time required for the exhaustive
search can be cut by a factor of n.

132 CHAPTER 8. AUTO-TUNING

8.2.2 A Greedy Heuristic

A simple greedy search method, which is only additive in the number
of parameter values instead of multiplicative as the exhaustive search,
varies one parameter at a time while the others remain fixed. Specifically,
starting from an initial point, all the points parallel to the first axis are
enumerated (potentially in parallel). From these points, the best one is
picked and fixed, and from this new point, the method proceeds to enu-
merating all the points parallel to the second axis, and so forth. In Algo-
rithm 8.1 we assume that the entire search space is given by the integers
in �xmin

1 , xmax
1 � � � � � � �xmin

d , xmax
d �.

Algorithm 8.1: A greedy search method.

Input: Objective function f , starting point x0

Output: Local minimizer x̂ for f
1: x̂ � x0

2: for i � 1, . . . , d do
3: for all ζ � xmin

i , . . . , xmax
i do

4: ξ � �x1, . . . , xi�1, ζ, xi�1, . . . , xd� 	 write: x̂ �: �x1, . . . , xd�

5: if f �ξ�
 f �x̂� then 	 if ξ is better than x̂
6: x̂ � ξ [atomically] 	 accept ξ as new point
7: end if
8: end for
9: end for

8.2.3 General Combined Elimination

This greedy algorithm was proposed by Pan and Eigenmann in [129]. The
basic idea is to fix the parameters that have the most beneficial effect on
performance one by one and iterate as long as parameters can be found
which have not been fixed and improve the performance.

As for the greedy heuristic above, we assume that the d-dimensional
search space is given by the integers in �xmin

1 , xmax
1 � � � � � � �xmin

d , xmax
d �. In

Algorithm 8.2 we write x̂ � �x1, . . . , xd�, and we use the notation

x̂�xi�ξ :� �x1, . . . , xi�1, ξ, xi�1, . . . , xd�

to replace the ith coordinate by ξ.

8.2. SEARCH METHODS 133

Algorithm 8.2: General combined elimination.

Input: Objective function f , starting point x0

Output: Local minimizer x̂ for f
1: x̂ � x0

2: I � �1, . . . , d�
3: repeat

4: ρiξ �
f �x̂�xi�ξ�� f �x̂�

f �x̂� for all i � I, ξ � xmin
i , . . . , xmax

i

5: X �

�
�i, ξ� : ρiξ � 0 and ξ � arg min

ζ

ρiζ

�

6: for all �i, ξ� � X ordered ascendingly by ρiξ do
7: if f �x̂	xi�ξ� � f �x̂� then
8: I � I
�i� � remove processed index from index set
9: x̂ � x̂	xi�ξ � replace the old configuration

10: end if
11: end for
12: until X � ��

Algorithm 8.2 iteratively reduces the parameter index set I. In line 4,
the relative improvement percentage ρ is calculated for each parameter still
referenced by the index set I and for each admissible value in �xmin

� , xmax
�

(in an embarrassingly parallel fashion). ρ is the relative improvement
over the currently best parameter configuration x̂. In line 5, the set X
of index-value pairs is formed, consisting of parameter configurations
which improve the objective function over the old configuration x̂, i.e.,
ρ� � 0, and for each index only the value which results in the most im-
provement of the objective function. Then, in the for loop (lines 6 to 11),
iteratively all the parameters are fixed to their best values ξ replacing the
old configuration x̂, and the parameter reference is removed from the in-
dex set, provided that the objective function is still improved over the
new configuration x̂. The process is repeated as long as there are param-
eters which improve the objective function, i.e., as long as X is not empty.

8.2.4 The Hooke-Jeeves Algorithm

The idea of the Hooke-Jeeves algorithm [82, 137], shown in Algorithm 8.3
is to make exploratory moves from the current best point by taking dis-
crete steps in each positive and negative directions parallel to the coordi-
nate axes. If an improvement could be found, the new point is accepted

134 CHAPTER 8. AUTO-TUNING

and the process is repeated. If no improvement was found, the step size
is halved, and the process is repeated. If no improvement can be found
and the step size has reached the tolerance, the algorithm stops and the
current best point is returned as local optimum.

Hence this algorithm does a local search trying to improve a starting
point by searching in its neighborhood. The algorithm also qualifies as a
pattern search: Pattern search methods explore the search space by visit-
ing a pattern of points in the search space, which lie on a rational lattice.
For integer search, the algorithm terminates as soon as the step size be-
comes � 1.

Algorithm 8.3: The Hooke-Jeeves algorithm.

Input: Objective function f , starting point x0, initial step width h
Output: Local minimizer x̂ for f

1: x � x0

2: while not converged do
3: repeat
4: xc � x
5: for i � 1, . . . , d do � Try to find improvements at
6: if f �xc � hei� � f �x� then � x� h

�d
i�1��ei�

7: xc � xc � hei � Accept improvement
8: else
9: if f �xc 	 hei� � f �x� then

10: xc � xc 	 hei � Accept improvement
11: end if
12: end if
13: end for
14: if x
 xc then � Value of f was improved
15: d � xc 	 x
16: x � xc � d
17: end if
18: until x � xc � No improvement possible
19: h � h�2 � Tighten mesh if no improvement can be found
20: end while
21: x̂ � x

8.2. SEARCH METHODS 135

8.2.5 Powell’s Method

Powell’s Method [136] is an extension of the greedy search method de-
scribed above. It starts in the same way as the greedy method, searching
a local optimum along the coordinate axes. However, in contrast to the
greedy method, in Powell’s method after completing the run through the
axes, a new search direction, ξd in Algorithm 8.4 is constructed, which
is based on the local optimum found during the iteration and is linearly
independent of the other search directions ξ1, . . . , ξd�1. The process is re-
peated with the new set of search directions until no improvement can be
made.

In [136], Powell proves that for a convex quadratic the set of search
directions always forms a set of conjugate directions (i.e., assuming that
the objective function can be written as f �x� � xᵀQx for a symmetric pos-
itive definite matrix Q � Rd�d, ξ jQξk � 0 holds for any distinct search
directions ξ j, ξk), and that the method finds the optimum of the quadratic
in finitely many steps. Note that, as in the greedy search, line 4 in Algo-
rithm 8.4 can be done by parallel function evaluations.

Algorithm 8.4: Powell’s method.

Input: Objective function f , starting point x0

Output: Local minimizer x̂ for f
1: ξi � ei �i � 1, . . . , d� � Initialize search directions parallel to

axes
2: while f �x0� � f

�
xold

0
�

do
3: for i � 1, . . . , d do
4: Find λi such that f �xi�1 � λiξi� is a minimum
5: xi � xi�1 � λiξi
6: end for
7: ξi � ξi�1 �i � 1, . . . , d	 1� � Construct new search

directions
8: ξd � xd 	 x0

9: Find λd such that f �xd � λdξd� is a minimum
10: xold

0 � x0

11: x0 � x0 � λdξi�1
12: end while
13: x̂ � x0

136 CHAPTER 8. AUTO-TUNING

8.2.6 The Nelder-Mead Method

The Nelder-Mead method [118], also called simplex search or downhill
simplex method, is probably the best known direct search method. One
variant of the simplex search is given in Algorithm 8.5. The search works
like so: After choosing d� 1 points spanning a non-degenerate simplex in
the d-dimensional search space and sorting them according to the func-
tion values such that x1 has the “best” value for the objective function
relative to the other points, and xd�1 the “worst”, four types of transfor-
mations are applied to the simplex by reflecting, expanding, or contracting
the point with the worst function value at the centroid of the simplex. If
one of these new transformed points happens to be superior to the worst
point, the worst point is replaced by a transformed point (lines 5–18, and
the process is repeated. If no better point is found, the simplex is shrunk
around the best point (line 20). Nelder and Mead give a set of rules when
the worst point is replaced by which transformed point. This is encoded
in conditionals in lines 6–18 in Algorithm 8.5. Standard values for the
parameters occurring in the algorithm (which were also used in PATUS’s
Nelder-Mead implementation, are α � 1., γ � 2, ρ � 1

2 , and σ � 1
2 .

The search method used in the ActiveHarmony auto-tuning frame-
work [159], for instance, is based on the Nelder-Mead method, extended
by a parallel evaluation of the objective function on the vertices after the
transformation of the simplex (multiple transformations are done simul-
taneously).

Algorithm 8.5: One variant of the Nelder-Mead method.

Input: Objective function f
Output: Local minimizer x̂ for f

1: Choose d � 1 points x1, . . . , xd�1 in the search space spanning a
non-degenerate d-dimensional simplex

2: Sort the points such that f �x1� � � � � � f �xd�1�

3: while not converged do
4: x̄ � 1

d
�d

i�1 xi � compute the centroid of all points except
worst

5: xr � x̄� α �x̄	 xd�1� � compute reflected point
6: if f �x1� � f �xr�
 f �xd� then
7: xd�1 � xr � accept reflected point
8: else if f �xr�
 f �x1� then
9: xe � x̄� γ �x̄	 xd�1� � compute expansion

8.2. SEARCH METHODS 137

Algorithm 8.5: One variant of the Nelder-Mead method. (cont.)

10: if f �xe� � f �xr� then
11: xd�1 � xe � accept expansion
12: else
13: xd�1 � xr � accept reflected point
14: end if
15: else
16: xc � xd�1 � ρ �x̄� xd�1� � compute contraction
17: if f �xc� � f �xd�1� then
18: xd�1 � xr � accept reflection
19: else
20: xi � x1 � σ �xi � x1� , i � 2, . . . , d� 1 � reduce simplex
21: end if
22: end if
23: end while
24: x̂ � x1

8.2.7 The DIRECT Method

The DIRECT method [68, 90] is another pattern search, which, in con-
trast to the Hooke-Jeeves algorithm, was devised for global optimization.
The basic idea is simple: The search space is covered with a rectilinear,
initially coarse lattice, and the objective function is evaluated at the cen-
ters of the lattice cells. The cells with the best function values are sub-
divided recursively (each cell is cut into 3 sub-cells along one axis), and
the objective function is evaluated at the cell centers of the sub-cells. This
subdivide-and-evaluate process is repeated until a potential global opti-
mum is found.

For the implementation in PATUS, the original idea has been modified
slightly to match the problem structure better. The objective function
evaluations are done at the cell corners instead of the cell centers, and
cells are recursively bi-sected instead of tri-sected.

8.2.8 Genetic Algorithms

An approach to combinatorial optimization radically different from the
direct search methods presented above are nature-inspired evolution-
ary algorithms [22]. The main conceptual difference between the direct

138 CHAPTER 8. AUTO-TUNING

search methods and evolutionary algorithms is that the former are deter-
ministic methods, whereas the basic principle for the latter is randomiza-
tion.

Genetic algorithms, ant colony optimization, and particle swarm op-
timization are popular types of evolutionary algorithms. A genetic algo-
rithm is included in PATUS, which is based on the JGAP [109] package.
The idea behind genetic algorithms is natural selection. Roughly speak-
ing, a population — a set of potential solutions — is evolved iteratively
towards a “better” population, a set of solutions more optimal than the
one before the evolution. Trivially, as the individuals in the population
are independent, the population can be evolved in an embarrassingly
parallel fashion. The actions driving an evolution are crossover, i.e., in-
terbreeding two potential solutions, and mutation, i.e., modifying one or
multiple genes of a potential solution, and selection, i.e., selecting the in-
dividuals of the population, which survive the evolution step. The latter
is done by means of the fitness function — the objective function in evolu-
tionary algorithm lingo, — which measures the quality of a solution.

In the genetic algorithm used currently in PATUS, the crossover oper-
ator mixes some of the genes of two individuals, i.e., swaps the values
of certain parameters. Mutation is applied on a randomly selected, small
set of individuals in the population: mutating means altering the value
of a parameter by a random percentage between �100% and �100%.

8.3 Experiments with the Patus Auto-Tuner —

Search Method Evaluation

Fig. 8.1 summarizes the need for auto-tuning and the need for a good
search method. It shows the performance distribution of the search space
for a specific stencil — the Wave stencil from the example in Chapter 5.2
for a 2003 problem size — and for a specific Strategy. The Strategy chosen
is the chunked cache blocking strategy presented in Listing 7.2, with loop
unrolling enabled. The Strategy has 4 parameters for 3D stencils, the first
three ranging from 2 to 200 in increments of 2, the fourth accepting values
in �1, 2, 4, 8, 16, 32�. There were 8 loop unrolling configurations. Thus, the
total search space contained 1003 � 6 � 8 � 4.8 � 107 points.

The data for Fig. 8.1 was obtained by conducting a partial exhaustive
search, fixing the first parameter to 200 (a reasonable choice, since the
first parameter corresponds to the block size in unit stride direction, and

8.3. SEARCH METHOD EVALUATION 139

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

6%

12%

18%

24%

30%

0 10 20 30 40 50
GFlop/s

Performance Distribution over all Configurations
Single Precision Wave Stencil on AMD Opteron, 24 Threads

Cumulative
Distribution Function

Percentage of
Configurations

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 10 20 30 40 50
GFlop/s

Performance Distribution over
Load Balanced Configurations

Cumulative
Distribution Function

Percentage of
Configurations

(b)

Figure 8.1: Performance distribution over the full search space (a) and restricted
to load balanced configurations (b).

140 CHAPTER 8. AUTO-TUNING

by deciding not to cut along the unit stride dimension, the use of the
hardware prefetcher is maximized, and also data is loaded in as large
contiguous chunks as possible), and letting parameters 2 and 3 accept
values between 4 and 200 in increments of 4. Thus, the exhaustive search
could be constrained to a tractable number of 120, 000 benchmark runs,
for which 150 one-hour jobs were allocated on a cluster.

Fig. 8.1 (a) shows the distribution over the this entire search space;
Fig. 8.1 (b) restricts the benchmark runs to load balanced ones, i.e., runs
in which all of the 24 threads of the AMD Opteron Mangy Cours (cf.
Chapter 9), the hardware platform on which the experiment was con-
ducted, participated in the computation.�

The orange lines show how many configurations, in percent, caused
the benchmark executable to run at the performance given on the hori-
zontal axis, i.e., it visualizes the probability distribution of the random
variable mapping parameter configurations to the corresponding perfor-
mance. The number percentages are labeled to the left of the figures. In
the total search space, in sub-figure (a), almost one fourth of the configu-
ration ran at around 5 GFlop/s, whereas the maximum attainable perfor-
mance for this stencil and this strategy is around 50 GFlop/s. Restricting
the block sizes to load balanced configurations effectuates a more uni-
form distribution of the configurations across the performance range, al-
though the spike at 5 GFlop/s remains, if less pronounced. The blue
areas are cumulative distribution functions with percentages labeled to
the right of the figures: Given a specific performance number, the upper
boundary of the blue area gives the percentage of configurations which
achieved at least that performance. Thus, e.g., the probability to pick a
load balanced configuration which achieves at least 40 GFlop/s is around
5% for this particular stencil and Strategy on this particular hardware
platform.

For the evaluation of the search methods for auto-tuning, two stencil
kernels were picked for which tuning had different benefits: the single
precision Wave stencil and a double precision 6th order Laplacian, called
Upstream in the following charts. On the AMD Opteron Magny Cours, on
which the auto-tuning was performed, the Wave stencil benefited mostly
from explicit vectorization, and the Upstream stencil, in contrast, from
blocking (cf. Chapter 10). Vectorization obviously is not a tunable opti-
mization (it can be either turned on or off), whereas blocking is. Thus, for

�In the Strategy, the size of the blocks determines how many threads can participate;
if the block sizes are too large, some threads remain idle.

8.3. SEARCH METHOD EVALUATION 141

the Wave stencil we want to verify that the performance does not deteri-
orate with respect to the base line when using the auto-tuner with a spe-
cific search method, and for Upstream, for which blocking about doubles
the performance, we want to test whether the various search methods are
able to find blocking configurations which improve the performance.

For the search method evaluation, we added a method that was not
discussed in the previous section: random search. This method just takes
randomly a number (here: 500) of samples from the search space and
evaluates them. For the Wave stencil, we also included the partial ex-
haustive search described above, labeled “Exhaustive*” in the charts.

We did 25 auto-tuning runs with each search method. We only did
one run using the DIRECT algorithm since it is deterministic. All other
algorithms have some stochastic elements, at least for picking a starting
point. The performance numbers shown for the DIRECT algorithm might
be suboptimal, since it exceeded the 3 hour time budget, causing an early
termination of the algorithm.

The purple and blue bars in Figs. 8.2 and 8.3 visualize ranges; the
lower end of a bar is the minimum and the upper end the maximum
value. The more strongly colored middle part of the bar shows the stan-
dard deviation around the mean, which is marked by a yellow or green
diamond.

Fig. 8.2 (a) shows the performance ranges, the standard deviations,
and the average performance numbers achieved by the search methods
for both the Wave (left) and the Upstream stencils (right). In both cases,
the genetic algorithm (except from the exhaustive search), reached the
highest average performance. In the Wave example, general combined
elimination (GCE) and simplex search reached higher maximum abso-
lute performances, but both methods have a large variance in the perfor-
mance outcome; so does Hooke-Jeeves. Judging by the standard devi-
ation, the genetic algorithm was still able to outperform both GCE and
simplex search. The large variance implies that the methods are sensitive
to the choice of the starting point. Apparently, a poor choice for a starting
point cannot improve performance very far; the result being that the out-
come can even be worse than when applying random search. Conversely,
if a good starting point is given, both GCE and simplex search yield very
good results. Greedy search and the genetic algorithm, both having a
more “global view,” have a significantly smaller variance. Greedy search,
however, is likely to get stuck in a local optimum; thus the genetic al-
gorithm overall delivers higher average and maximum performances —

142 CHAPTER 8. AUTO-TUNING

15

20

25

30

35

40

45

50

55

Ex
ha

us
tiv

e*
D

IR
EC

T
G

C
E

G
en

et
ic

G
re

ed
y

H
oo

ke
-Je

ev
es

R
an

do
m

 S
ea

rc
h

Si
m

pl
ex

 S
ea

rc
h

D
IR

EC
T

G
C

E
G

en
et

ic
G

re
ed

y
H

oo
ke

-Je
ev

es
Ra

nd
om

 S
ea

rc
h

Si
m

pl
ex

 S
ea

rc
h

Single Precision Wave Double Precision Upstream

G
Fl

op
/s

Attained Performance Numbers

Performance Range Average Performance

(a)

0%

5%

10%

15%

20%

25%

30%

35%

Ex
ha

us
tiv

e*
D

IR
EC

T
G

C
E

G
en

et
ic

G
re

ed
y

H
oo

ke
-Je

ev
es

R
an

do
m

 S
ea

rc
h

Si
m

pl
ex

 S
ea

rc
h

D
IR

EC
T

G
C

E
G

en
et

ic
G

re
ed

y
H

oo
ke

-Je
ev

es
R

an
do

m
 S

ea
rc

h
Si

m
pl

ex
 S

ea
rc

h

Wave Upstream

Pe
rc

en
ta

ge
 o

f R
un

s

Percentage of Runs within 10% of Max. Performance

Percentage Range Average Percentage

(b)

Figure 8.2: Ranges, standard deviations, and averages of (a) attained perfor-
mance and (b) percentage of runs with at least 90% of the maximum performance
of the respective search method.

8.3. SEARCH METHOD EVALUATION 143

which, however, can be less than the best achieved with GCE and simplex
search as shown in the Wave example. For the Upstream stencil, GCE, ge-
netic, and greedy search are about on par; here simplex search performs
slightly worse.

15%–30% of all benchmark runs in the genetic algorithm search have a
performance, which is at least 90% of the maximum of that auto-tuning
run. This is shown in Fig. 8.2 (b). The fact is quite surprising, but it means
that the chosen mutation and crossover operators are well suited to the
problem (at least for the chosen Strategy). Naturally by construction, ex-
haustive search and the DIRECT method, which evaluates many points
spread over the entire search space, perform many benchmark runs in
“bad regions,” therefore only a very low percentage of the runs fall into
the high performing category. Equally, random search, agnostic of the
run history during the tuning process, does many low performing bench-
mark runs. For greedy search, the percentage of “good runs” obviously
depends on the search space structure.

Fig. 8.3 shows the price that was paid for the good performance out-
come in the genetic algorithm. The blue bars represent the results for
the Wave stencil, the purple bars for the Upstream stencil. Where Hooke-
Jeeves, simplex search, and GCE stayed under 500 benchmark runs on
average, more than 1000 (up to 1700) runs were done when applying the
genetic algorithm. As a local search method, Hooke-Jeeves terminates
quickly�; each auto-tuning run took well under 10 minutes as shown in
Fig. 8.3 (b), one benchmark run taking 2.3 seconds on average. With
around 10 and around 20 minutes tuning time, simplex search� and GCE,
respectively, are the methods of choice if fast tuning is desired, keeping
in mind that performance might deteriorate for poor choices for starting
points. The running time of greedy search again depends on the struc-
ture of the search space; Upstream, with a higher potential of performance
increase due to tuning, requires more adjusting than Wave.

Fig. 8.4 shows the convergence of the search methods under study.
The lines show the maximum attained performance after 2, 4, 8, . . . , 1024
benchmark runs — for Wave in (a) and Upstream in (b). Note the log-
arithmic scale of the horizontal axis. Also note that the performances
shown in the figures are averages over the conducted experiments. The
figures show that the genetic algorithm — on average — beats Hooke-

�In fact, 5 Hooke-Jeeves runs were carried out, each starting from another randomly
chosen starting point.

�Again, 5 runs were done starting from different randomly chosen simplices.

144 CHAPTER 8. AUTO-TUNING

0

200

400

600

800

1000

1200

1400

1600

1800

N
um

be
r o

f B
en

ch
m

ar
k

R
un

s

Number of Benchmark Runs
Wave | Upstream

(a)

0

10

20

30

40

50

60

O
pt

im
iz

at
io

n
D

ur
at

io
n

[m
in

ut
es

]

Auto-Tuning Process Duration
Wave | Upstream

(b)

Figure 8.3: Number of benchmark runs in the auto-tuning process (a) and total
duration of the auto-tuning process (b).

8.3. SEARCH METHOD EVALUATION 145

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16 32 64 128 256 512 1024

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Number of Benchmark Runs

Search Method Convergence
Single Precision Wave Stencil

DIRECT
GCE
Genetic
Greedy
Hooke-Jeeves
Random Search
Simplex Search

(a)

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128 256 512 1024

D
ou

bl
e

Pr
ec

is
io

n
G

Fl
op

/s

Number of Benchmark Runs

Search Method Convergence
Double Precision Upstream Stencil

DIRECT
GCE
Genetic
Greedy
Hooke-Jeeves
Random Search
Simplex Search

(b)

Figure 8.4: Performance convergence of the search methods for (a) the Wave
and (b) the Upstream stencils. The performance numbers are averages over all
runs. Note the logarithmic scale of the horizontal axis.

146 CHAPTER 8. AUTO-TUNING

Jeeves, GCE, and simplex search, even if not as many as� 1000 iterations
are carried out. As the figures show, in fact it can be stopped earlier, as
the performance increase from 512 to 1024 runs is not as pronounced.
On average, the performance during a GCE run seems to increase rather
slowly, the convergence rates of Hooke-Jeeves and simplex search are
about equal. Maybe surprisingly, random search shows a steady con-
vergence and rather good performance numbers, but remember that the
numbers are statistically expected values; thus, in a specific instance the
performance outcome might not be as desired.

For the performance benchmark results in Chapter 10, we used the
genetic algorithm as search method.

Part III

Applications & Results

Chapter 9

Experimental Testbeds

It is desirable to guard against the possibility
of exaggerated ideas that might arise as to
the powers of the Analytical Engine.

— Ada Lovelace (1815–1852)

In this chapter, we give an overview over the hardware architecture
that were used to conduct the performance benchmark experiments which
will be discussed in the next chapter. Table 9.1 shows a summary of the
architectural features.

The bandwidth was measured using the STREAM triad benchmark
[106], and the performance is for a single precision matrix-matrix mul-
tiplication of two large (8192� 8192) square matrices. The compute bal-
ance measures how many floating point operations have to be carried out
per data element D transferred from main memory to the compute units
so that there is no pipeline stall. Table 9.1 shows that the numbers are
in the range of 20–30 Flops per datum on these current architectures —
a high number which is not reached for typical stencils. This once again
highlights the importance of algorithms making efficient use of the cache
hierarchy.

150 CHAPTER 9. EXPERIMENTAL TESTBEDS

AMD Intel NVIDIA
Opteron 6172 Xeon E7540 Tesla C2050
Magny Cours Nehalem Fermi

Cores 2� 2� 6 2� 6 14
Concurrency 24 HW threads 24 HW threads 448 ALUs
Clock 2.1 GHz 2 GHz 1.15 GHz
L1 Data Cache 64 KB 32 KB 48� 16 KB
L2 Cache 512 KB 256 KB —
Sh’d Last Level Cache 6 MB 18 MB 768 KB
Avg. Sh’d L3/HW Thd 1 MB 1.5 MB —
Measured Bandwidth 53.1 GB/s 35.0 GB/s 84.4 GB/s
Measured SP Perf. 209 GFlop/s 155 GFlops/s 618 GFlop/s
Compute Balance 23.3 Flop/D 17.7 Flop/D 29.3 Flop/D

Table 9.1: Hardware architecture characteristics summary.

Figure 9.1: Block diagram of one die of the 12 core AMD Opteron Magny Cours
architecture.

9.1. AMD OPTERON MAGNY COURS 151

9.1 AMD Opteron Magny Cours

AMD’s Magny Cours processor integrates two dies of six x86-64 cores,
each manufactured in 45 nm silicon on insulator (SOI) process technol-
ogy, in one package, which total around 2.3 billion transistors.

The cores are out-of-order, three-way superscalar processors, i.e., they
can fetch and decode up to three x86-64 instructions per cycle to dispatch
them to independent functional units. Specifically, variable length x86-64
instructions are converted to fixed-length macro-operations, which are
dispatched to two independent schedulers for integer and to a floating
point/multimedia operations, respectively. There are three integer pipe-
lines for integer operations and address generation, and three pipelines
for floating point and multimedia operations.

Each core has its own two-way associative 64 KB L1 caches (two, one
for instructions and one for data) and its own on-chip 16-way associative
unified 512 KB L2 cache, and all the cores on a die share a 16-way asso-
ciative 6 MB L3 cache. The load-to-use latencies for the L1 cache are 3
cycles, and 12 cycles for the L2 cache. The L2 cache is a victim cache for
the L1 caches, i.e., DRAM fetches are moved directly into L1, and cache
lines evicted from the L1 cache are caught by the L2 cache. Similarly, the
L3 cache is a victim cache for the L2 caches of the individual cores. A
sophisticated algorithm prevents L3 cache thrashing based on the cores’
cache efficiency.

AMD’s solution to the cache coherence problem in multiprocessor set-
tings in the Magny Cours architecture is HT Assist, also known as the
Probe Filter: a cache directory that keeps track of all the cache lines that
are in the caches of other processors in the system and therefore elimi-
nates the need of broadcasting probes. If activated, the cache directory
reserves 1 MB of the L3 cache for its use [46].

Each of the two dies has two DDR3 memory channels and four Hy-
perTransport 3.0 links, cf. Fig. 9.1. This implies that the package itself
is a NUMA architecture: each die is a NUMA node, each having its own
memory controller. Two of the per-die HyperTransport links are used
to connect the dies internally. Hence, the package exposes four mem-
ory channels and four HyperTransport links. The maximum theoretical
memory bandwidth per socket is 25.6 GB/s. We measured an aggregate
bandwidth of 53.1 GB/s using all 24 threads on all 4 dies on the dual-
socket node using the STREAM triad benchmark [106].

The benchmarks were run on one node of a Cray XE6. On the ma-

152 CHAPTER 9. EXPERIMENTAL TESTBEDS

Figure 9.2: Block diagram of one die of the 6 core Intel Xeon Nehalem architec-
ture.

chine, the Cray Linux Environment 3.1 was run as operating system. The
GNU gcc 4.5.2 C compiler was used.

9.2 Intel Nehalem

The Intel Xeon E7540 Beckton belongs to the family of the recently re-
leased Nehalem architectures, which differs drastically from the previous
generations in that the frontside bus, which used to connect processors
via a north-bridge chip to memory, has been forgone in favor of Quick
Path Interconnect (QPI) links, which is Intel’s point-to-point coherence
interface, and in favor of on-chip memory controllers. This feature ef-
fectuates a considerably higher bandwidth compared to older generation
systems. Coherency is managed through distributed or directed snoop
messages.

The chip is also manufactured in 45 nm technology and contains also
around 2.3 billion transistors. The system we used is a dual-socket hexa-
core architecture running at 2 GHz clock frequency. We used the CPUs
in Hyper Threading mode, thus there are 24 hardware threads available.
The cores are 4-wide out-of-order cores. Each of the cores is equipped
with a 32 KB L1 data and a 32 KB L1 instruction cache and a shared 256
KB L2 cache. The six cores on one socket share an 18 MB L3 cache. There
are four Scalable Memory Interconnect channels. We measured 35 GB/s

9.3. NVIDIA GPUS 153

Figure 9.3: Block diagram of one die of the NVIDIA Fermi GPU Tesla C2050
architecture.

of sustained bandwidth from the memory to the sockets. The bandwidth
measurement have been done using the STREAM Triad benchmark [106].

The Caching Agents connect the cores to the un-core interconnect and
the L3 cache. The 8-port router manages the QPI layer and is directly
connected to the Caching and Home Agents. The remaining four ports
are connected to the external QPI ports. The Home Agents handle read
and write requests to the memory controllers, as well as data write-backs
from L3 cache replacement victims.

For the benchmarks, we used one node of an IBM x3850 M2 system
running SUSE SLES 11.1. The benchmarks were compiled with Intel’s C
compiler, icc 11.1.

9.3 NVIDIA GPUs

CUDA, the Compute Unified Device Architecture, is NVIDIA’s graphics pro-
cessing unit (GPU) architecture introduced with the G80 series of their
GeForce GPUs in the fall of 2006. The GeForce 8800 was the first CUDA-
programmable GPU. In CUDA GPUs, the traditional graphics pipeline
consisting of stages of special-purpose compute units was replaced by
unified cores, which could carry out any of the graphics-specific opera-
tions previously reserved to dedicated geometry, vertex, and pixel shaders.
Advantages of the unified architecture are better balanced workloads,
with the added benefit that the by nature massively parallel device could

154 CHAPTER 9. EXPERIMENTAL TESTBEDS

be used much more easily for general purpose computations�. Around
the same time, AMD-ATI released their version of unified architecture
GPUs, initially with their Stream Processor based on the Radeon R580
GPU.

Since then, GPU computing has become increasingly popular — un-
derstandably, since GPUs, as inexpensive commodity devices are ubiq-
uitous and deliver a high floating point performance. They have been
so successful that they have been readily adapted in high performance
computing; in fact, 3 of the top five supercomputers at the time of writing
(TOP500 [161], June 2011) use NVIDIA GPUs as hardware accelerators.

The high-end version of NVIDIA’s first CUDA GPU had 128 unified
shaders — so-called streaming processors. The device used for the bench-
marks in this thesis, a Tesla C2050, which is explicitly dedicated to com-
putation, has 448. The C2050 is one of the first GPUs in NVIDIA’s Fermi
[124] architecture. It is fabricated in a 40 nm process and has around 3 bil-
lion transistors. The core clock is 1.15 GHz, which is lower than the clock
rate of graphics-dedicated GPUs, in favor of increased reliability. The the-
oretical single precision peak performance therefore is around 1 TFlop/s,
and the double precision peak performance is about 500 GFlop/s. In the
Fermi architecture, the double precision performance has been greatly
improved over the previous GPU generations.

For computation, the GPU is understood as a co-processor connected
to the CPU host system over the PCIexpress bus. A block diagram of the
internals of the GPU is shown in Fig. 9.3. The diagram reveals that the
448 light-weight cores are organized in 14 streaming multiprocessors, con-
taining 32 cores each. From another viewpoint, the C2050 is a 14 core ar-
chitecture with each core being a 32-way SIMD unit, since all the stream-
ing processors within a scheduling unit carry out the same instruction.
The streaming multiprocessors are again organized into graphics process-
ing clusters, grouping 3 or 4 streaming multiprocessors and containing
one raster engine.

Each streaming multiprocessor contains 64 KB of shared memory (here
“shared” means that the memory is shared among all the streaming pro-
cessors within a streaming multiprocessor), which can be configured as

�GPGPU, i.e., general purpose computing on GPUs, has been done prior to the
launch of unified device architectures. However, graphics knowledge was required,
and computation had to be translated to the graphics metaphor; e.g., running an algo-
rithm would correspond to rendering an image, or to transfer data, the image had to be
projected onto a surface. Also, non-IEEE compliant floating point arithmetic could lead
to occasional surprises.

9.3. NVIDIA GPUS 155

a 16 KB cache and 48 KB of explicit, software-controlled local memory or
48 KB of cache and 16 KB of local memory. Each streaming multiproces-
sor has a rather large register file: there are 32768 32-bit wide registers.
Access latencies to the register file is one clock cycle, and a couple of clock
cycles to the shared memory. The entire device comes with a modest 768
KB last level cache.

The GPU is equipped with 3 GB of on-board ECC-protected GDDR5
memory, for which we measured 84.4 GB/s of sustained bandwidth with
ECC turned on using NVIDIA’s bandwidth measurement utility. DRAM
latency is in the range of several hundred clock cycles.

Parallel to the hardware, NVIDIA developed C for CUDA [123], the
general-purpose language used to program their CUDA GPUs. CUDA
C is a slight extension of C/C++. In particular, there are new specifiers
identifying a kernel, the program portion which is executed on the GPU.
The CUDA programming model follows the SPMD model; each logi-
cal thread executes the same kernel, and a kernel therefore is a thread-
specific program, in which special built-in variables have to be used to
identify a thread and the portion of the data the thread is supposed to
operate on.

In correspondence to the hierarchical structure of the hardware, the
threads — which are logically executed by streaming processors — are
grouped into thread blocks, which are mapped onto streaming multipro-
cessors. Thread blocks, in turn, are grouped into the grid, which, in
the execution model, corresponds to the entire GPU. In the Fermi ar-
chitecture, both thread blocks and the grid can be one, two, or three-
dimensional (i.e., indexed by one, two, or three-dimensional thread and
thread block IDs), which eases index translations for three-dimensional
physical simulations, for instance.

For the benchmarks, version 4.0 of the CUDA SDK and runtime was
used, compiled with nvcc release 4.0, V0.2.1221 wrapping GNU gcc 4.4.3.

Chapter 10

Performance Benchmark

Experiments

In studying the action of the Analytical
Engine, we find that the peculiar and
independent nature of the considerations
which in all mathematical analysis belong to
operations, as distinguished from the objects
operated upon and from the results of the
operations performed upon those objects, is
very strikingly defined and separated.

— Ada Lovelace (1815–1852)

10.1 Performance Benchmarks

In this chapter, we conduct performance benchmark experiments for six
selected stencil kernels. For presentation reasons they were divided into
two sets: Set 1 contains the low-arithmetic intensity stencils of the basic
low-order discretization differential operators Gradient, Divergence, and
Laplacian as described in Chapter 5.1. Set 2 contains the higher-arithmetic
intensity kernels Wave, Upstream, and Tricubic. Wave is the 3D 13-point
stencil of a fourth-order discretization of the classical wave equation used
in the example in Chapter 5.2. Upstream is the 3D 19-point stencil of

158 CHAPTER 10. PERFORMANCE BENCHMARK EXPERIMENTS

a sixth-order discretization of the Laplacian shown in Chapter 5.1, and
Tricubic is the tricubic interpolation, also shown in Chapter 5.1: a 3D 64-
point stencil. Both Upstream and Tricubic stencils are inspired by a real-
world application, the weather code COSMO [64].

All the stencils were auto-tuned and benchmarked both in single and
double precision, as some striking optimization impact phenomena can
be observed when switching the precision modes. As search method for
the auto-tuner the genetic algorithm was used. The benchmarks were
all done on a grid with 2003 interior grid points. To obtain the perfor-
mance numbers, the run time of 5 one-sweep runs was measured after
one warm-up run.

Table 10.1 summarizes the arithmetic intensities and the performance
bounds for both sets of stencils used in the benchmarks. In contrast to the
asymptotic numbers given earlier in Table 5.3, the numbers in Table 10.1
account for the boundary data. Furthermore, for each stencil, two arith-
metic intensities in Flops per data element are given: The one in the up-
per row is the ideal arithmetic intensity, counting the number of compul-
sory data transfers for the actual problem size. The arithmetic intensities
printed in italics in the lower row, are the numbers corresponding to the
actual transfer done by the hardware, including the write-allocate traf-
fic: On a CPU system, before every write-back, the data is brought from
DRAM into the cache before the actual write-back to DRAM occurs. This
causes the write-back transfer volume to be doubled, resulting in a signif-
icantly lower arithmetic intensity for most of the stencils, and therefore
in a lower effective performance. The Tricubic stencil is compute-bound
on all of the three selected architectures.

10.1.1 AMD Opteron Magny Cours

On the AMD Opteron Magny Cours, we auto-tuned and benchmarked
stencil codes from three cache blocking Strategy variations.

Strategy 1, shown in Listing 10.1, decomposes the total domain into
smaller domains for parallelization, assigning one or multiple consec-
utive subdomains to one thread, and doing cache blocking within the
thread’s local domain. Both the thread block and the cache block sizes
are parameters to be tuned. For a 3D stencil, this Strategy requires tuning
of 7 parameters.

10.1. PERFORMANCE BENCHMARKS 159

Stencil Arith. Int. Max. SP Perf. [GFlop/s] Max. DP Perf. [GFlop/s]

[Flop/data elt.] AMD Intel NVIDIA AMD Intel NVIDIA

Gradient 1.50 19.9 13.1 31.7 10.0 6.6 15.8
0.86 11.4 7.5 — 5.7 3.8 —

Divergence 2.00 26.6 17.5 42.2 13.3 8.8 21.1
1.60 21.1 14.0 — 10.6 7.0 —

Laplacian 3.94 52.3 34.5 83.1 26.2 17.2 41.6
2.64 35.0 23.1 — 17.5 11.6 —

Wave 9.22 122.4 80.7 194.5 61.2 40.3 97.2
6.21 82.4 54.3 — 41.2 27.2 —

Upstream 10.51 139.6 92.0 221.8 69.8 46.0 110.9
7.11 94.4 62.2 — 47.2 31.1 —

Tricubic 63.02 (CB) (CB) (CB) (CB) (CB) (CB)
52.60 — —

Table 10.1: Arithmetic intensities of the stencils in Flops per data element ne-
glecting (upper row) and accounting for (lower row in italics) write allocate
transfers. The Performance bounds for single (SP and double precision (DP)
stencils are inferred from the bandwidth measurements in Table 9.1. (CB) means
compute bound.

Listing 10.1: Strategy 1: Thread block parallelization and cache blocking.

1: strategy thdblk (domain u , auto dim tb , auto dim cb ,
2: auto int chunk)
3: {
4: // iterate over time steps

5: for t = 1 . . stencil . t_max {
6: // iterate over subdomain , parallelization

7: for subdomain v (tb) in u (: ; t) parallel schedule chunk

8: {
9: // cache blocking

10: for subdomain w (cb) in v (: ; t)
11: for point pt in w (: ; t)
12: w [pt ; t+1] = stencil (w [pt ; t]) ;
13: }
14: }
15: }

Strategy 2 collapses the parallelization and cache blocking subdivision of
Strategy 1 into one level of decomposition. The size of the blocks is to be
tuned. In 3D, this Strategy has 3 tuning parameters.

160 CHAPTER 10. PERFORMANCE BENCHMARK EXPERIMENTS

Listing 10.2: Strategy 2: Simple cache blocking.

1: strategy compact (domain u , auto dim cb) {
2: // iterate over time steps

3: for t = 1 . . stencil . t_max {
4: // iterate over subdomain

5: for subdomain v (cb) in u (: ; t) parallel {
6: // calculate the stencil for each point

7: // in the subdomain

8: for point p in v (: ; t)
9: v [p ; t+1] = stencil (v [p ; t]) ;

10: }
11: }
12: }

Strategy 3 is a variation of Strategy 2, allowing multiple subsequent blocks
to be assigned to one thread (“chunking”). For a 3D stencil, there are 4
parameters to be tuned.

Listing 10.3: Strategy 3: Cache blocking with chunking.

1: strategy chunked (domain u , auto dim cb , auto int chunk)
2: {
3: // iterate over time steps

4: for t = 1 . . stencil . t_max {
5: // iterate over subdomain

6: for subdomain v (cb) in u (: ; t) parallel schedule chunk

7: {
8: // calculate the stencil for each point

9: // in the subdomain

10: for point p in v (: ; t)
11: v [p ; t+1] = stencil (v [p ; t]) ;
12: }
13: }
14: }

The benchmarks executables were compiled with the GNU C compiler
gcc 4.5.2 using the -O3 optimization flag.

All the following charts are done in the following way: The blue
bars visualize the performance numbers for the basic, NUMA-aware par-
allelization scheme, slicing the domain into equally sized subdomains

10.1. PERFORMANCE BENCHMARKS 161

0

5

10

15

20

25

30

35

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Gradient Divergence Laplacian

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Set 1, SP, Strategy 3 on AMD Opteron

Basic +Blocking +SSE +Loop Unrolling Peak

0

2

4

6

8

10

12

14

16

18

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Gradient Divergence Laplacian

D
ou

bl
e

Pr
ec

is
io

n
G

Fl
op

/s

Set 1, DP, Strategy 3 on AMD Opteron

Basic +Blocking +SSE +Loop Unrolling Peak

(a) (b)

Figure 10.1: Set 1 benchmarks on AMD Opteron Magny Cours in single (SP)
and double precision (DP) for Strategy 3.

along the z-axis, the direction in which the indices vary slowest. The pur-
ple bars on top show the performance increase due to blocking, applying
the best blocking size found by the auto-tuner. The red bars visualize the
added benefit of explicit vectorization, additionally to blocking, and the
yellow bars show the performance gain from loop unrolling, on top of
the other optimizations. When shown, the orange plus signs denote the
maximum achievable performance, limited by bandwidth or compute ca-
pability.

For Set 1, we only show the performance results of Strategy 3. The
other strategies gave almost identical figures. Single precision results (SP)
are shown in Fig. 10.1 (a), and double precision results (DP) in Fig. 10.1
(b). The scaling is almost linear in both cases, except when moving from
4 to 6 threads. As the figures show by the orange plus signs, the avail-
able bandwidth is already exhausted when using 4 threads, so increasing
the on-die concurrency further has no added benefit. As the basic par-
allelization scheme already almost reaches the maximum performance,
blocking does not increase performance significantly.

On one die, around 95% of the maximum attainable performance is
reached in double precision. In single precision, both Gradient and Di-
vergence stencils reach also 95%; the “Laplacian” reaches 90%. Using all
24 threads, in both single and double precision around 85% of the peak
performance is reached, except for the single precision Laplacian, which
attains 80%.

162 CHAPTER 10. PERFORMANCE BENCHMARK EXPERIMENTS

0

10

20

30

40

50

60

70

80

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Set 2, SP, Strategy 1 on AMD Opteron

Basic +Blocking +SSE +Loop Unrolling

0

10

20

30

40

50

60

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

D
ou

bl
e

Pr
ec

is
io

n
G

Fl
op

/s

Set 2, DP, Strategy 1 on AMD Opteron

Basic +Blocking +SSE +Loop Unrolling

(a) (b)

0

20

40

60

80

100

120

140

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Set 2, SP, Strategy 2 on AMD Opteron

Basic +Blocking +SSE +Loop Unrolling

0

10

20

30

40

50

60

70

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

D
ou

bl
e

Pr
ec

is
io

n
G

Fl
op

/s

Set 2, DP, Strategy 2 on AMD Opteron

Basic +Blocking +SSE +Loop Unrolling

(c) (d)

0

20

40

60

80

100

120

140

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Set 2, SP, Strategy 3 on AMD Opteron

Basic +Blocking +SSE +Loop Unrolling Peak

0

10

20

30

40

50

60

70

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

D
ou

bl
e

Pr
ec

is
io

n
G

Fl
op

/s

Set 2, DP, Strategy 3 on AMD Opteron

Basic +Blocking +SSE +Loop Unrolling Peak

(e) (f)

Figure 10.2: Set 2 benchmarks on AMD Opteron Magny Cours in single (SP)
and double precision (DP) for all three Strategies.

10.1. PERFORMANCE BENCHMARKS 163

For Set 2, the performance numbers for all of the three Strategies are
given in Fig. 10.2. The Strategies are varied from top to bottom in the
figure; the sub-figures to the left show single precision results (SP), the
sub-figures to the right show double precision results (DP).

Although the basic parallelization delivers the same performance in
all Strategies, vectorization and loop unrolling do not have as large an
effect in Strategy 1 as in the other Strategies, resulting in poorer over all
performance of Strategy 1. This is due to the added control overhead; em-
ulating Strategy 2 with Strategy 1 using the best parameter configuration
shows that the poorer performance is not an artifact of the auto-tuner.

The additional parameter in Strategy 3 gives the stencils in single pre-
cision some additional performance boost over the performance achieved
with Strategy 2, while the double precision results are not affected. The
figures show that the gains in performance in single precision come mostly
from explicit vectorization and from loop unrolling (especially in the
compute-bound Tricubic stencil), whereas in the double precision case the
explicit SSE code cannot improve the performance gained by optimally
blocking the Wave and Upstream stencil codes. In the compute-bound
case, only loop unrolling is able to give a performance gain, the effect of
blocking is negligible.

In the best case, the Wave stencil reaches 65% of the peak on one die
and 60% with all 24 threads in both single and double precision. For
the Upstream stencil, PATUS achieves 65% of the peak in single precision
mode. In double precision the numbers are 80% using one die and 70%
when all threads are used. The bandwidth bound Tricubic stencil runs at
50% of the peak on one die and at 45% using all 24 threads, both in single
and double precision modes.

Analyzing the cache performance (cf. Table 10.2) shows that for the
double precision Wave stencil blocking significantly reduces the number
of L2 misses by around 60%, whereas in single precision mode the L2
misses are not decreased by much. Indeed, for the 2003 problem used in
the benchmarks one plane of data as used in the basic parallelization, has
40, 000 grid points. In single precision, three such planes, each having
a data volume of 160 KB, fit into the Opteron’s 512 KB L2 cache, but in
double precision only one plane (320 KB) fits.

The GNU C compiler auto-vectorizes the code, but using explicit SSE
intrinsics and forcing aligned loads removes slow non-aligned moves. In
SSE, single precision vectors contain 4 data elements, and double preci-
sion vectors contain 2. Thus, higher order stencils with more than the

164 CHAPTER 10. PERFORMANCE BENCHMARK EXPERIMENTS

Wave, 2003 L1 Cache L2 Cache
Accesses�106 Misses�106 Accesses�106 Misses�106

SP
Basic 615 0.74 18.7 0.74
Blocked 624 1.95 21.1 0.51
Vectorized 191 1.52 19.1 0.51

DP
Basic 758 5.13 36.6 5.08
Blocked 627 6.99 38.1 1.94
Vectorized 365 4.78 38.5 1.82

Table 10.2: Numbers (in millions) of L1 and L2 cache accesses and misses for
the single (SP) and double precision (DP) 2003 Wave problem.

immediate neighbors in the unit stride direction (such as the stencils in
Set 2) have higher data reuse in the single precision case (less loads are re-
quired, as neighboring values are brought into the registers automatically
when loading a SIMD vector). Indeed, the cache analysis shows, that the
number of L1 accesses is halved in the double precision case when turn-
ing on explicit vectorization, and divided by 4 in single precision.

10.1.2 Intel Xeon Nehalem Beckton

For the experiments on the Intel Xeon platform, the benchmark executa-
bles were compiled with Intel C compiler icc 11.1, again using the -O3

optimization flag. Thus, we could take advantage of Intel’s OpenMP im-
plementation, which allegedly has less overhead than GNU’s. Also, it
allows us to control thread affinity by setting the KMP AFFINITY environ-
ment variable. We chose the compact scheme, which fills up cores first
(the CPU is uses the Hyper-Threading Technology, thus each core accom-
modates 2 hardware threads), and then sockets. The reverse case, i.e., fill-
ing up sockets first, and then cores, which is implemented by the scatter

scheme, might be the obvious choice for bandwidth-limited compute ker-
nels; however, as we want to run the benchmarks with up to 24 threads,
using all available hardware resources. The choice does not really mat-
ter as long as we are aware of the fact that at some point (which is when
moving from 1 to 2 threads in the compact scheme (cf. Fig. 10.3) and when
moving from 12 to 24 threads in the scatter scheme) the bandwidth does
not scale, thus limiting the performance.

Again, both sets of stencils were auto-tuned and benchmarked in both
precision modes, but we omitted the Strategies 1 and 2, which performed
more poorly. The results are shown in Fig. 10.3.

10.1. PERFORMANCE BENCHMARKS 165

On the Intel platform, explicit vectorization (and also loop unrolling)
is much more pronounced than on AMD, whereas blocking has an al-
most negligible effect. The reason why vectorization has such a large
effect on the Intel platform is that the Intel C compiler does not vectorize
this particular code using the -O3 optimization option. It does, however,
vectorize when compiling with -fast, but in our tests the performance
gain were not substantial. Therefore, explicit SSE intrinsics and forcing
data alignment leverage the full power of the Streaming SIMD Exten-
sions. The effect can be seen in all the benchmarks except for the double
precision Gradient and Divergence stencil, for which already the basic par-
allelization gives the maximum yield.

10.1.3 NVIDIA Fermi GPU (Tesla C2050)

As a proof of concept, GPU results are also included here. While CUDA
programming can be learned relatively easily, experience shows that op-
timizing CUDA C code is non-trivial and a hardware-specific coding
style (e.g., making use of shared memory and registers, adhering to data
alignment rules, etc.) is absolutely essential for well performing GPU
codes. Thus, these results are to be treated as a first step towards GPU
support in PATUS.

The results shown in Fig. 10.4 are again the stencils from Sets 1 (upper
row) and 2 (lower row) in single (to the left) and double precision (to the
right). We used only one Strategy: the one shown in Listing 10.4.

Listing 10.4: Strategy used on the GPU.

1: strategy gpu (domain u , auto int cbx) {
2: // iterate over time steps

3: for t = 1 . . stencil . t_max {
4: // iterate over subdomain

5: for subdomain v (cbx , 1 . . .) in u (: ; t) parallel

6: for point pt in v (: ; t)
7: v [pt ; t+1] = stencil (v [pt ; t]) ;
8: }
9: }

It has only one parallelism level, which then is assigned to the lowest
level in the hierarchy, i.e., to threads. Each thread receives a small subdo-
main of size �cbx, 1, 1� to process, cbx being a parameter to be determined

166 CHAPTER 10. PERFORMANCE BENCHMARK EXPERIMENTS

0

5

10

15

20

25

30

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Gradient Divergence Laplacian

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Set 1, SP, Streategy 3 on Intel Xeon

Basic +Blocking +SSE +Loop Unrolling

0

2

4

6

8

10

12

14

16

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Gradient Divergence Laplacian

D
ou

bl
e

Pr
ec

is
io

n
G

Fl
op

/s

Set 1, DP, Streategy 3 on Intel Xeon

Basic +Blocking +SSE +Loop Unrolling

(a) (b)

0

20

40

60

80

100

120

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Set 2, SP, Strategy 3 on Intel Xeon

Basic +Blocking +SSE +Loop Unrolling

0

10

20

30

40

50

60

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

D
ou

bl
e

Pr
ec

is
io

n
G

Fl
op

/s

Set 2, DP, Streategy 3 on Intel Xeon

Basic +Blocking +SSE +Loop Unrolling

(c) (d)

Figure 10.3: Set 1 and 2 benchmarks on Intel Xeon Nehalem in single (SP) and
double precision (DP) for Strategy 3.

by the auto-tuner, in addition to the thread block size, which is implicit
in this Strategy.

We use the Strategy in three different indexing modes, though, to de-
termine which of the three yields the best performance result. The index-
ing modes are plotted as juxtaposed bars in Fig. 10.4. The 1, 1 indexing
mode maps the 3D domain onto a one-dimensional thread block and one-
dimensional thread index, thus ignoring the fact that thread and thread
block indices can have a higher dimensionality. The 2, 3 indexing mode
uses a 2D grid and 3D thread blocks, which were the highest supported
indexing dimensionalities in pre-Fermi cards and CUDA SDKs before
version 4.0. 2, 3 -indexing means that the third problem dimension is

10.1. PERFORMANCE BENCHMARKS 167

0

5

10

15

20

25

30

35

(1,1) (2,3) (3,3) (1,1) (2,3) (3,3) (1,1) (2,3) (3,3)

Gradient Divergence Laplacian

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Set 1, SP on NVIDIA Fermi GPU

Default +Blocking +Loop Unrolling

0

5

10

15

20

(1,1) (2,3) (3,3) (1,1) (2,3) (3,3) (1,1) (2,3) (3,3)

Gradient Divergence Laplacian

D
ou

bl
e

Pr
ec

is
io

n
G

Fl
op

/s

Set 1, DP on NVIDIA Fermi GPU

Default +Blocking +Loop Unrolling

(a) (b)

0

20

40

60

80

100

120

140

160

180

200

(1,1)(2,3)(3,3) (1,1)(2,3)(3,3) (1,1)(2,3)(3,3)

Wave Upstream Tricubic

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Set 2, SP on NVIDIA Fermi GPU

Default +Blocking +Loop Unrolling

0

20

40

60

80

100

120

(1,1)(2,3)(3,3) (1,1)(2,3)(3,3) (1,1)(2,3)(3,3)

Wave Upstream Tricubic

D
ou

bl
e

Pr
ec

is
io

n
G

Fl
op

/s

Set 2, DP on NVIDIA Fermi GPU

Default +Blocking +Loop Unrolling

(c) (d)

Figure 10.4: Set 1 and 2 benchmarks on NVIDIA Fermi in single (SP) and
double precision (DP) for one GPU strategy in different indexing modes.

emulated by the second grid dimension, cf. Chapter 13.2. Therefore the
index calculations are more complicated than in 3, 3 -indexing mode.

The blue bars show the performance of an arbitrarily chosen default
thread block sizes of 16 4 4 and 200 1 1 for 1, 1 -indexing, re-
spectively — sizes which exhibited reasonable performance, — setting
cbx to 1. On top of that, the purple bars show the performance after
selecting the best thread block size, and the red bars after choosing the
best loop unrolling factor. Loop unrolling included both picking the best
value for cbx and picking the best configuration of unrolling the loop in
the unit stride dimension (which obviously is only possible if cbx 1).
Generally speaking, the charts show that the performance are about on

168 CHAPTER 10. PERFORMANCE BENCHMARK EXPERIMENTS

par for all indexing modes, in most cases, native �3, 3�-indexing performs
slightly better than the other modes, as the index calculations are done
by the hardware to the largest extent. An exception is the double pre-
cision Tricubic stencil, for which two-fold unrolling in �2, 3�-indexing in
fact triples the performance.

There is still room for optimization of the generated code; PATUS cur-
rently reaches between 40% and 60% of the peak for the stencils in Set 1 in
single precision and between 50% and 70% in double precision. The rel-
ative performance of higher-arithmetic intensity kernels in Set 2 is more
disappointing, as only 23%–30% of the maximum is reached.

10.2 Impact of Internal Optimizations

10.2.1 Loop Unrolling

We examine various loop unrolling configurations for the basic paral-
lelization scheme and the blocking configuration that was found to give
the best performance. The benchmarks for this experiment were run on
the AMD Opteron platform using 24 threads. We chose two stencils, the
double precision Laplacian and the single precision Tricubic; the first did
not seem to profit from loop unrolling (cf. Fig. 10.1) whereas the second
did (cf. Fig. 10.2). We want to evaluate by what amount the performance
degrades or improves, and how the performances are distributed.

Figs. 10.5 and 10.6 show heat map plots for the Laplacian and the Tricu-
bic, respectively. The loop unrolling factors are varied among the x-, y-,
and z-axes as powers of 2. The 4 plots in the upper row show the perfor-
mance numbers in the basic parallelization scheme, the lower rows the
numbers after the best block sizes were picked.

As expected, small loop unrolling numbers yield the best performance
for the Laplacian, in both basic and blocked cases. More precisely, any
loop unrolling factor in unit stride direction (along the x-axis) between 1
and 8 gives an acceptable performance as long as in y- and z-directions
the unrolling factors are 1 or 2. This coincides with the deliberation on
spatial data locality along the unit stride direction, which is disrupted
when the stride within the inner loop becomes too large (which is the
case for larger unrolling factors in non-unit stride directions). In both
parallelization schemes, the performance degradation is only to around
67% of the maximum for the examined unrolling factors. For the Tricubic
stencil, in contrast, the performance degrades down to 20% of the maxi-

10.2. IMPACT OF INTERNAL OPTIMIZATIONS 169

8 8.44 8.94 8.26 8.92 8.13 8.75 8.48 8.73 8.90 9.35 8.95 9.16 9.24 9.57 9.41 9.41

4 11.65 11.61 11.16 10.59 9.61 9.69 9.16 9.18 9.29 9.70 9.46 9.53 10.12 10.00 10.06 9.99

2 12.36 12.39 12.39 12.34 11.86 11.80 11.73 11.49 9.67 10.36 10.07 9.92 9.86 10.62 10.48 10.46

1 12.33 12.27 12.32 12.36 11.80 11.78 11.80 11.85 12.04 11.73 11.61 10.39 10.54 9.55 9.97 10.24
y x 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

z � 1 z � 2 z � 4 z � 8

8 11.54 11.79 11.37 12.44 11.09 11.68 11.17 12.05 10.77 11.00 10.65 10.66 10.26 10.29 10.19 10.94

4 14.28 14.12 13.74 12.48 11.58 11.07 10.50 10.54 10.06 10.36 10.12 10.43 11.19 11.20 11.07 11.12

2 14.91 14.83 14.83 14.79 14.65 14.59 14.46 14.16 10.55 11.03 11.01 10.88 11.29 12.07 11.96 12.52

1 14.78 14.77 14.73 14.75 14.63 14.62 14.70 14.63 13.83 13.28 13.19 11.72 12.11 11.10 11.58 12.30
y x 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

z � 1 z � 2 z � 4 z � 8

Figure 10.5: Impact of varying loop unrolling factors on a fixed blocking size.
Double precision Laplacian stencil. Basic parallelization in the upper row, and
best block sizes in the lower row.

8 107.5298.47 61.57 61.50 107.5068.04 64.56 46.12 68.72 62.06 55.85 31.97 64.07 51.68 32.19 32.02

4 104.33106.1294.97 59.50 108.53103.8166.05 63.80 112.4569.21 67.92 62.60 69.61 63.78 54.98 32.20

2 117.02114.54107.6194.09 114.94109.4199.63 64.22 116.52106.0567.68 67.03 114.9168.88 68.64 66.46

1 113.59107.16105.2699.68 133.96127.38120.71104.96 109.76109.7199.61 63.61 109.40106.4765.12 65.21
y x 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

z � 1 z � 2 z � 4 z � 8

8 108.5994.98 62.16 58.84 109.2866.93 65.94 51.09 66.28 56.83 43.72 26.71 60.53 49.48 30.57 26.92

4 109.95106.7286.63 58.23 112.80102.0264.60 61.60 110.9367.23 65.58 57.00 67.93 60.06 44.87 27.94

2 116.87113.01101.7477.43 122.26111.7190.58 59.45 114.79100.0764.06 61.28 109.7166.62 66.00 58.97

1 106.7198.83 96.65 86.47 128.16119.63109.5882.18 111.42108.1687.56 58.42 104.3197.48 62.33 59.52
y x 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

z � 1 z � 2 z � 4 z � 8

Figure 10.6: Impact of varying loop unrolling factors on a fixed blocking size.
Single precision Tricubic stencil. Basic parallelization in the upper row, and
best block sizes in the lower row.

170 CHAPTER 10. PERFORMANCE BENCHMARK EXPERIMENTS

0%

20%

40%

60%

80%

100%

120%

0

10

20

30

40

50

60

50 100 150 200 256 400 50 100 150 200 256 400

Laplaican (DP) Wave (SP)

G
Fl

op
/s

Problem Size Dependence of Configurations

AMD Opteron Magny Cours

Optimal configuration Foreign configuration (of size=200) % of perf. with opt. config.

Figure 10.7: Performance impact of using the optimal configuration for one
problem size for other problem sizes.

mum performance, i.e., loop unrolling has an a lot larger impact on per-
formance. The best performance numbers are achieved for an unrolling
factor of 2 in z-direction. As the unrolling factor in z-direction becomes
larger, the performance decreases rapidly due to the increased register
pressure.

10.3 Impact of Foreign Configurations

After tuning Strategy and code generation characteristics (e.g., block sizes,
loop unrolling factors), the resulting configuration works best if in the
production run the settings are exactly replicated, in particular, if the
problem size is not modified, the number of threads used remains un-
changed, and the program is run on the same hardware platform. In this
section, we evaluate the consequences when one of the characteristics is
changed.

10.3.1 Problem Size Dependence

Fig. 10.7 shows the impact on performance when the problem size is var-
ied for an unchanged parameter configuration obtained for a 2003 prob-
lem. We call this the default configuration. We study two stencils, the dou-
ble precision Laplacian and the single precision Wave kernel. The bench-

10.3. IMPACT OF FOREIGN CONFIGURATIONS 171

marks are run on the AMD Opteron with 24 threads. The blue bars show
the maximum performance obtained by applying the appropriate param-
eter configuration; the overlaid red bars show the performance numbers
obtained when using the default configuration. The yellow line shows
the percentage of the performance that was achieved with the default
configuration; the percentages are given on the right vertical axis. Both
stencils exhibit a significantly above-average maximum performance for
the 1003 problem: evidently a sweet spot on the given architecture; the
line lengths in unit stride direction are long enough to engage the hard-
ware prefetcher, and the problem is still small enough so that the required
planes — after subdividing among the 24 threads — fit into cache so that
temporal data locality could be fully exploited.

Due to the nature of the chosen Strategy, the performance is abysmal
for problem sizes smaller than nominal size: block sizes that are well
suited to the original problem size most likely are too large for the smaller
problem sizes, and a set of threads is underutilized. The performance is
acceptable for problem sizes larger than the nominal one, in particular if
the larger problem size is divisible by the original one.

To deal with multiple problem sizes successfully, all the problem sizes
could be benchmarked for each of the configurations picked by the search
method in the auto-tuning process — provided that the set of admissible
problem sizes is limited and the probability distribution over the problem
sizes is known — and the objective function to maximize would be mod-
ified to be the weighted sum of the performance numbers, with weights
corresponding to the probability distribution.

10.3.2 Dependence on Number of Threads

On a fixed architecture, we could alter the number of threads used for
the computation. The performance behavior for constant block sizes and
varying numbers of threads is shown in Fig. 10.8 for the double precision
Laplacian (a) and the single precision Wave (b) for a 2003 problem run on
the AMD Opteron.

On the horizontal axis in the sub-figures in Fig. 10.8, the configura-
tions are varied (i.e., the caption “1” identifies the configuration obtained
for one thread, etc.), and on the vertical axis the number of threads used
to execute the benchmark program is varied. Thus, the original and high-
est numbers occur on the diagonals. (Interestingly, there is one deviation:
according to Fig. 10.8 (b), the Wave stencil ran faster with two threads us-

172 CHAPTER 10. PERFORMANCE BENCHMARK EXPERIMENTS

Thread configuration
1 2 4 6 12 24

#
T

hr
ea

ds
us

ed 1 1.80 1.75 1.71 1.54 1.56 1.69

2 2.79 2.80 2.75 2.45 2.54 2.70

4 3.63 2.80 3.87 3.37 3.72 3.81

6 3.72 2.85 3.97 4.14 3.97 3.90

12 4.81 3.02 7.66 6.55 7.69 7.63

24 4.81 3.09 14.71 12.74 13.03 14.72

Thread configuration
1 2 4 6 12 24

#
T

hr
ea

ds
us

ed 1 4.37 4.16 4.27 4.32 4.24 4.26

2 4.37 7.56 8.04 7.87 7.41 7.06

4 4.23 11.09 13.00 11.12 11.84 11.21

6 4.23 12.80 12.54 13.94 13.22 12.35

12 4.23 21.31 14.16 17.67 25.11 24.67

24 4.21 31.08 13.96 17.37 46.47 48.55

(a) (b)

Figure 10.8: Varying the number of threads for a fixed configuration. Double
precision Laplacian stencil (a) and single precision Wave stencil (b).

ing the 4-thread configuration than with the native configuration. This is
an auto-tuner artifact.) Ideally, the numbers in a horizontal row would
remain constant. We can observe the tendency that the configurations to
the right of a diagonal element are larger than the ones to the left. This
is again due to the nature of the Strategy, which guides the auto-tuner
to pick larger block sizes for lower concurrencies. The lacking granular-
ity, when switching to a number of threads larger than the nominal one
might cause additional threads to remain idle. In the Laplacian stencil the
effect is particularly pronounced when more than two threads run the
two-thread configuration, and in the Wave stencil when more than one
thread run the one-thread configuration.

On average, 91% (one thread) down to 66% (24 threads) of the perfor-
mance of the best configuration is reached in the double precision Lapla-
cian, and 97% (one thread) down to 47% (24 threads) in case of the single
precision Wave stencil.

10.3.3 Hardware Architecture Dependence

Finally, also the hardware platform can be exchanged. We ran all the
benchmarks with exchanged configuration sets, i.e., the Intel configura-
tions were applied to benchmarks run on the AMD platform and vice
versa. The architectures are quite similar. The major difference is the size
of the L2 cache, which is 512 KB on the Opteron cores, and only 256 KB
on the Nehalem cores, which, in addition, accommodate two hardware
threads each. Thus, we expect that the Intel configurations run reason-
ably well on the AMD processor, but Magny Cours configurations might
degrade the performance on the Intel CPU.

10.3. IMPACT OF FOREIGN CONFIGURATIONS 173

40%
50%
60%
70%
80%
90%
100%

0
5
10
15
20
25
30

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Gradient Divergence Laplacian

SP
 G

Fl
op

/s

Set 1, SP, Intel-conf on AMD Opteron

Native (AMD) Foreign (Intel) % of perf. w/ opt. config.

30%

50%

70%

90%

110%

0

5

10

15

20

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Gradient Divergence Laplacian

D
P

G
Fl

op
/s

Set 1, DP, Intel-conf on AMD Opteron

Native (AMD) Foreign (Intel) % of perf. w/ opt. config.

(a) (b)

30%
40%
50%
60%
70%
80%
90%
100%

0
20
40
60
80
100
120
140

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

SP
 G

Fl
op

/s

Set 2, SP, Intel-conf on AMD Opteron

Native (AMD) Foreign (Intel) % of perf. w/ opt. config.

30%
40%
50%
60%
70%
80%
90%
100%

0
10
20
30
40
50
60
70

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

D
P

G
Fl

op
/s

Set 2, DP, Intel-conf on AMD Opteron

Native (AMD) Foreign (Intel) % of perf. w/ opt. config.

(c) (d)

-20%
0%
20%
40%
60%
80%
100%
120%

0
5
10
15
20
25
30
35

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Gradient Divergence Laplacian

SP
 G

Fl
op

/s

Set 1, SP, AMD-conf on Intel Xeon

Native (Intel) Foreign (AMD) % of perf. w/ opt. config.

20%

40%

60%

80%

100%

0

5

10

15

20

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Gradient Divergence Laplacian

D
P

G
Fl

op
/s

Set 1, DP, AMD-conf on Intel Xeon

Native (Intel) Foreign (AMD) % of perf. w/ opt. config.

(e) (f)

0%
20%
40%
60%
80%
100%
120%

0
20
40
60
80
100
120

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

SP
 G

Fl
op

/s

Set 2, SP, AMD-conf on Intel Xeon

Native (Intel) Foreign (AMD) % of perf. w/ opt. config.

0%
20%
40%
60%
80%
100%
120%

0
10
20
30
40
50
60
70

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

Wave Upstream Tricubic

D
P

G
Fl

op
/s

Set 2, DP, AMD-conf on Intel Xeon

Native (Intel) Foreign (AMD) % of perf. w/ opt. config.

(g) (h)

Figure 10.9: Using optimal configurations on foreign hardware platforms.

174 CHAPTER 10. PERFORMANCE BENCHMARK EXPERIMENTS

Indeed, Fig. 10.9 shows acceptable performance matches of Intel con-
figurations on the AMD Opteron in sub-figures (a)–(d). The matches of
the AMD configurations on the Intel CPU in sub-figures (e)–(h) exhibit
larger deviations.

The blue bars are the native performances in GFlop/s, the overlaid
red bars the foreign ones. The yellow lines visualize the relative perfor-
mance with respect to the native one; the percentages are shown on the
right vertical axis.

Generally, the performance numbers on the Magny Cours are no less
than 60% of the maximum numbers when using the foreign configura-
tions, 80% on average, in both double and single precision modes and for
both sets of stencils. In contrast, on the Intel platform the performance
drops down to almost 20% of the original performance in certain cases;
on average 75% of the original performance is reached. Again, the av-
erage does not change when switching precision modes or stencil sets.
However, we can also observe that the AMD configurations give almost
perfect results on Intel in certain cases, e.g., in case of single precision Gra-
dient or Upstream stencils, or the double precision Tricubic stencil, where
almost 100% of the original performance is brought back for 6, 12, and 24
threads.

Chapter 11

Applications

Without, however, stepping into the region
of conjecture, we will mention a particular
problem which occurs to us at this moment
as being an apt illustration of the use to
which such an engine may be turned for
determining that which human brains find it
difficult or impossible to work out
unerringly.

— Ada Lovelace (1815–1852)

11.1 Hyperthermia Cancer Treatment Planning

Hyperthermia cancer treatment, i.e., application of moderate heat to the
body, is a promising modality in oncology that is used for a wide variety
of cancer types (including pelvic, breast, cervical, uterine, bladder, and
rectal cancers, as well as melanoma and lymphoma). Both animal and
clinical studies have proven that hyperthermia intensifies both radio- and
chemo-therapies by factors of 1.2 up to 10, depending on heating qual-
ity, treatment modality combination, and type of cancer [57, 164, 186].
Hyperthermia is therefore applied in conjunction with both radio- and
chemo-therapies.

176 CHAPTER 11. APPLICATIONS

An effect of hyperthermia treatment is apoptosis of tumor cells, which
have a chaotic vascular structure resulting in poorly perfused regions in
which cells are very sensitive to heat. Hyperthermia further makes the
tumor cells more susceptible to both radiation and certain cancer drugs.
There are a variety of reasons for this. Among others, heat naturally in-
creases blood flow and therefore increases drug delivery to the tumor
cells, and also increases the toxicity of some drugs. The effect of radia-
tion is amplified as a result of improved oxygenation due to increases in
blood flow. In our setting, we are dealing with local hyperthermia where
the aim is to focus the energy noninvasively only at the tumor location.
This is done by creating a constructive interference at the tumor location
using nonionizing electromagnetic radiation (microwaves) and thereby
aiming at heating the tumor to 42� 43�C, but even lower temperatures
can be beneficial.

Figure 11.1: Head and neck hyperthermia applicator HYPERcollar developed
at the Hyperthermia Group of Erasmus MC (Daniel den Hoed Cancer Center),
Rotterdam, the Netherlands.

Cylindrical applicators, such as one shown in Fig. 11.1, which shows
the HYPERcollar applicator developed for head and neck hyperthermia
treatment at the Hyperthermia Group of Erasmus MC (Daniel den Hoed
Cancer Center) in Rotterdam, the Netherlands [132, 133], feature a num-

11.1. HYPERTHERMIA CANCER TREATMENT PLANNING 177

ber of dipole antennae arranged on the circumference of the applicator,
whose amplitudes and phase shifts can be controlled to create the de-
sired electric field inducing heat. Here the aim is to avoiding cold spots
within the tumor and hotspots in healthy tissue to maximize tumor heat-
ing and limit pain and tissue damage. The water bolus between the pa-
tient’s skin and the applicator prevents heating of the skin and more im-
portantly, from an engineering point of view, it is an efficient transfer
medium for the electromagnetic waves into the tissue: it reduced reflec-
tions and allows for smaller antenna sizes. In treatment planning, it is
therefore highly relevant to determine the therapeutically optimal an-
tenna settings, given the patient geometry. This leads to a large-scale
nonlinear, nonconvex PDE-constrained optimization problem, the PDE
being the thermal model shown in Eqn. 11.1, which is known as Pennes’s
bioheat equation [134], or a variant thereof. Another important aspect of
treatment planning is simulating the temperature distribution within the
human body given the antenna parameters, which has been successfully
demonstrated to accurately predict phenomena occurring during treat-
ment [150, 119]. Simulations are helpful in order to determine the cor-
rect doses and help to overcome the difficulty of temperature monitoring
during treatment. Other benefits include assistance in developing new
applicators and training staff.

In this chapter, we focus on the simulation only. The thermal model
is given by the parabolic partial differential equation

ρCp
�u
�t

� ∇ � �k ∇u� � ρbW�u�Cb�u � Tb� � ρQ � σ
2‖E‖2, (11.1)

which is the simplest thermal model. On the boundary we impose Dirich-
let boundary conditions to model constant skin temperature, Neumann
boundary conditions, which account for constant heat flux through the
skin surface, or convective boundary conditions [120]. In Eqn. 11.1, u
is the temperature field, for which the equation is solved, ρ is density,
Cp is the specific heat capacity, k is thermal conductivity, W�u� is the
temperature-dependent blood perfusion rate, Tb is the arterial blood tem-
perature (the subscript “b” indicates blood properties), Q is a metabolic
heat source, σ is electric conductivity, and E is the electric field gener-
ated by the antenna. The electric field has to be calculated (by solving
Maxwell’s equations) before computing the thermal distribution. More
elaborate models include, e.g., temperature-dependent material parame-

178 CHAPTER 11. APPLICATIONS

Figure 11.2: Model of a boy and the HYPERcollar applicator. The left image
shows the model and FD discretization, the right images show simulation re-
sults. Lighter colors correspond to higher temperatures.

ters or tensorial heat conductivity to account for the directivity of blood
flow [169].

We use a finite volume method for discretizing Eqn. 11.1. The blood
perfusion is modeled as a piecewise linear function of the temperature.
As a discretized version of Eqn. 11.1 we obtain the stencil expression

u n 1
i,j,k u n

i,j,k ai,j,ku n
i,j,k bi,j,k ci,j,k (11.2)

di,j,ku n
i 1,j,k ei,j,ku n

i 1,j,k

fi,j,ku n
i,j 1,k gi,j,ku n

i,j 1,k

hi,j,ku n
i,j,k 1 li,j,ku n

i,j,k 1.

Note that the coefficients a, . . . , l depend on their location in space. The
PDE in Eqn. 11.1 is solved with a simple explicit Euler time integration
scheme. Each evaluation of the stencil expression amounts to 16 floating
point operations.

11.1.1 Benchmark Results

Performance results for the hyperthermia stencil from Eqn. 11.2 on the
AMD Opteron Magny Cours and on the NVIDIA C2050 Fermi GPU are
shown in Fig. 11.3. The performance numbers and scalings are given

11.1. HYPERTHERMIA CANCER TREATMENT PLANNING 179

0

5

10

15

20

1 2 4 6 12 24 1 2 4 6 12 24

Double precision Single precision

G
Fl

op
/s

Hyperthermia Stencil
AMD Opteron “Magny Cours”

Naive +Blocking +SSE +Loop Unrolling Peak

0

5

10

15

20

25

30

(1,1) (2,3) (3,3) (1,1) (2,3) (3,3)

Double precision Single precision

G
Fl

op
/s

Hyperthermia Stencil
NVIDIA Tesla C2050

Default +Blocking +Loop Unrolling Peak

Figure 11.3: Performance results for the Hyperthermia stencil on the AMD
Opteron Magny Cours and on the NVIDIA Fermi GPU.

for both double (left half of the graphs) and single (right half) precision
data types, as the data type can be changed in the solver’s user interface.
Usually, single precision is sufficient in practice. The performance results
were obtained for a problem domain of 2003 grid points.

The orange bars mark the maximum reachable performance for the
stencil’s arithmetic performance (0.16 Flop/Byte for double precision and
0.33 Flop/Byte for single precision — or 1.33 Flops per transferred data
element, accounting for write allocate traffic). The graphs show that in
both cases (single and double precision) on the AMD Opteron around
85% of the optimal performance was reached when using all available
NUMA domains. Using only one NUMA domain (one to six threads in
the figure), around 90% of the maximum performance is reached. Note
that using more than 4 threads on one NUMA domain does not increase
performance. The two remaining threads could be used to stream data
into the caches and thereby to potentially increase the performance by
perfectly overlapping computation and communication.

For double precision, blocking gives a moderate performance increase
of 16% over the base line with 24 threads. In the single precision case,
vectorization and blocking help to increase the performance by around
40%. This suggests that padding the grids correctly so that no unaligned
vector loads have to be carried out yields a major performance gain.

Similarly, on the GPU around 80% of the attainable performance was
reached. Interestingly, switching indexing modes did not change the per-
formance. The default thread block sizes (200 in the 1D indexing case

180 CHAPTER 11. APPLICATIONS

and 16� 4� 4 in the other cases) gave no relevant performance increase,
meaning that the default choice was already a good choice for the thread
block size. Indeed, for both indexing modes, the auto-tuner changed
the default configuration only slightly to 16� 2� 6 (and alternatively to
72� 2� 2, which performed equally well). In the single precision case,
however, the thread block size was increased to 40–50 for both indexing
modes, so that in both single and double precision modes about the equal
amount of contiguous memory was accessed. Making explicit use of the
GPU’s shared memory might increase the performance further.

11.2 Anelastic Wave Propagation

The Anelastic Wave Propagation code AWP-ODC of the Southern Cali-
fornia Earthquake Center (SCEC), which was developed by Olsen, Day,
Cui, and Dalguer [49] is a scientific modeling code for simulating both
dynamic rupture and earthquake wave propagation. It has been used to
conduct numerous significant simulations at the SCEC. It provides the
capability of simulating the largest earthquakes expected around the San
Andreas Fault in southern California at high shaking frequencies (up to
2 Hz in the simulation described below), which allow scientists to under-
stand seismic risks, and thereby help mitigate life and property losses,
and let scientists gain new insight about ground motion levels to be ex-
pected for a great earthquake along the fault.

The largest simulations done was a simulation of a magnitude-8 earth-
quake rupturing the entire San Andreas Fault from central California to
the Mexican border, a fault length of 545 km. The result is shown in Fig.
11.4. A full description and discussion of the simulation can be found
in [49]. The simulation required a discretization of a 810� 405� 85 km3

volume with a 40 m-resolution mesh, resulting in 4.4 � 1011 voxels. The
simulation was executed in a 24 hour production run — corresponding
to 6 minutes of wave propagation — on around 223, 000 nodes of Jaguar,
a Cray XT5 supercomputer, operated at the Oak Ridge National Labo-
ratory in Oak Ridge, Tennessee, USA. On Jaguar, the code achieved a
sustained performance of 220 TFlop/s. Simultaneously with this simu-
lation, the code (Fortran, parallelized with MPI) was shown to be highly
scalable.

The model’s governing elastodynamic equations is the following sys-

11.2. ANELASTIC WAVE PROPAGATION 181

Figure 11.4: Peak ground velocities derived from a magnitude-8 earthquake
simulation along the southern California San Andreas Fault with seismograms
and peak velocities for selected locations.
Image courtesy: Southern California Earthquake Center, Y. Cui, K. B. Olsen,
T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G. Ely, D. K. Panda, A.
Chourasia, J. Levensque, S. M. Day, and P. Maechling [49].

182 CHAPTER 11. APPLICATIONS

tem of PDEs [49, 50]:

� �u
�t

� ρ�1∇ � σ (11.3)

�σ

�t
� λ�∇ � �u�I � μ�∇ �u �∇ �uᵀ�.

The dependent variables are the velocity vector field �u �
�

�ux, �uy, �uz
�

and

the stress tensor σ �

�
σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

�
. λ and μ are the Lamé coefficients, ρ is

the density, and I is the identity tensor.
The equations are discretized in the finite difference method — ac-

cording to [49] the best trade-off between accuracy (fourth-order dis-
cretizations of differential operators in space and second-order discretiza-
tions in time are used throughout the code), computational efficiency
(stencil codes map well to parallel architectures without large overhead
such as graph partitioning required for finite element codes), and ease
of implementation. The velocity-stress wave equations are solved with
an explicit scheme on a staggered grid with equidistant mesh points. A
split-node approach is used to model dynamic fault ruptures [50]. As ab-
sorbing boundary conditions, the code uses perfectly matched layers or
dampening within a sponge layer.

11.2.1 Benchmark Results

We selected 4 kernels (corresponding to 4 Fortran routines in the origi-
nal code) for the benchmarks, which are the 3D stencil routines in which
most of the compute time is spent. Table 11.1 shows an overview of the
kernels. The corresponding stencil specifications can be found in Ap-
pendix C, which are translations to the PATUS stencil specification DSL
from the original Fortran code. The discretization of Eqns. 11.3 can be
found in [50] and [49].

The stencils are all fourth-order discretizations of the spatial differen-
tial operators. The kernels listed in Table 11.1 are to be understood as
prototypes; e.g., the actual code contains three variants of uxx1 — which
calculates the velocity field �ux in x-dimension, — namely two more for
the y and z-dimensions, which are almost identical to uxx1. We therefore
expect a similar performance and scaling behavior for these related ker-
nels. Similarly, there are two other variants of xy1. xy1 computes the σxy

component of the stress tensor, the other variants compute σxz and σyz.
Note that the stress tensor σ is symmetric. Both xyz1 and xyzq compute

11.2. ANELASTIC WAVE PROPAGATION 183

Name Description Flops/Stencil Arith. Int.
uxx1 Velocity in x-dimension 20 0.70 Flop/B
xy1 Stress tensor component σxy 16 0.65 Flop/B
xyz1 Stress tensor components σxx, σyy, σzz 90 1.58 Flop/B
xyzq Stress tensor components σxx, σyy, σzz 129 1.22 Flop/B

in viscous mode

Table 11.1: Summary of the AWP kernels which were used in the performance
benchmarks.

0

5

10

15

20

25

30

35

40

45

1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24 1 2 4 6 12 24

uxx1 xy1 xyz1 xyzq

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Performance and Scaling of AWP-ODC Kernels
AMD Opteron “Magny Cours”

Patus, Basic Cache Blocking +SSE +Loop Unrolling Peak Reference (Fortran)

Figure 11.5: AWP kernel benchmarks on the AMD Opteron Magny Cours.

the remaining components of the stress tensor, σxx, σyy, σzz, all in one
kernel.

The performance benchmarks were done only in single precision, since
the original application only uses that precision mode. Again, the or-
ange markers show the maximum attainable performance for the lower
arithmetic intensity kernels. On one die (6 threads) the uxx1 and xy1 ker-
nels reach around 80% of the peak and around 70% if all 24 threads are
used. The theoretical maximum is quite high for the xyz* kernels, and
the reason why only a fraction (around 40%–50%) of the maximum was
achieved lies in the arithmetic operations: the kernels contain many divi-
sions (18 in both cases), which are notorious for incurring pipeline stalls.
In this case, many of the divisions could be removed by pre-computing
and storing the inverses of the Lamé parameters. This manual optimiza-

184 CHAPTER 11. APPLICATIONS

0

10

20

30

40

50

60

70

80

(1,1) (2,3) (3,3) (1,1) (2,3) (3,3) (1,1) (2,3) (3,3) (1,1) (2,3) (3,3)

uxx1 xy1 xyz1 xyzq

Si
ng

le
 P

re
ci

si
on

 G
Fl

op
/s

Performance of AWP-ODC Kernels

NVIDIA Tesla C2050

Default +Blocking +Loop Unrolling

Figure 11.6: AWP kernel benchmarks on the NVIDIA Tesla C2050 Fermi GPU.

tion was indeed carried out in an optimized version of the AWP-ODC
code.

A possible way for PATUS to remove divisions automatically is to re-
write arithmetic expressions by virtue of the equality α

a
β
b

αb βa
ab .

This transformation removes one division, but introduces three multi-
plications. For similar transformation of larger sums i

αi
ai

there is also
a tuning opportunity: finding the right trade-off between the number of
divisions removed and the number of multiplications added.

The green line shows the performance of the reference Fortran code,
which was parallelized by inserting an OpenMP sentinel above the outer
most spatial loop. No NUMA optimization was done, which is evident
from the scaling behavior of the reference uxx1 and xy1 kernels. The
arithmetic intensities of the xyz* kernels are higher; hence the NUMA ef-
fect is mitigated to some extent by the relatively high number of floating
point operations, and the performance can increase further when going
to 2 and 4 NUMA domains (12 and 24 threads, respectively).

The blue bars show the performances of auto-tuned blocked codes,
including the NUMA optimization, and relying on the compiler (GNU
gfortran/gcc 4.5.2 with the -O3 optimization flag, for both the reference
codes and the generated PATUS codes) to do the vectorization. With the
NUMA optimization enabled, the performance scales almost linearly up
to 24 threads. Fig. 11.5 shows that explicit use of SSE intrinsics and

11.2. ANELASTIC WAVE PROPAGATION 185

padding for optimal vector alignment results in a significant performance
boost, in particular for the xyz1 kernel, where explicit vectorization gave
a performance increase of 150%. Activating and tuning for loop unrolling
gave another slight gain in performance.

Overall, PATUS achieved speedups between 2.8� and 6.6� when 24
threads were used on the AMD Opteron Magny Cours with the NUMA
optimization and a cache blocking Strategy.

The GPU performance results are shown in Fig. 11.6. Again, the
results are for single precision stencils, and the three indexing modes
were used: one-dimensional thread blocks and grids, three-dimensional
thread blocks and a two-dimensional grid, and both three-dimensional
thread blocks and grids, supported as of CUDA 4.0 on Fermi GPUs. For
both the uxx1 and xy1 kernels, the default thread block size of 16� 4� 4
threads was an adequate choice, and tuning the thread block sizes in-
creased the performance only slightly. In both cases, the fully 3D index-
ing mode outperformed the �2, 3�-dimensional indexing by a tight mar-
gin due to the simplified index calculation code. Surprisingly, the fully
3D indexing delivered worse performance in the xyz* kernels. Loop un-
rolling could compensate for the loss in performance for the “xyz1” ker-
nel — the only case in which loop unrolling really showed a significant
benefit. Also in this case we hope to be able to increase the performance
in the future by making use of the GPU’s shared memory.

Part IV

Implementation Aspects

Chapter 12

Patus Architecture Overview

The distinctive characteristic of the
Analytical Engine, and that which has
rendered it possible to endow mechanism
with such extensive faculties as bid fair to
make this engine the executive right-hand of
abstract algebra, is the introduction into it of
the principle which Jacquard devised for
regulating, by means of punched cards, the
most complicated patterns in the fabrication
of brocaded stuffs.

— Ada Lovelace (1815–1852)

PATUS is built from four core components as shown in the high-level
overview in Fig. 12.1: the parsers for the two input files, the stencil def-
inition and the Strategy, the actual code generator, and the auto-tuner.
PATUS is written in Java and can be therefore run on any major current
operating system including Linux, MacOS, and Microsoft Windows. PA-
TUS uses Coco/R [116] as generator for the stencil specification and Strat-
egy parsers, and also for the parser used to interface with the computer
algebra system Maxima [20], which is used as a powerful expression sim-
plifier. The Cetus framework ([157, 11]), a compiler infrastructure for
source-to-source transformations, provides Java classes for the internal
representations for both the Strategies and the generated code, i.e., the

190 CHAPTER 12. PATUS ARCHITECTURE OVERVIEW

Figure 12.1: A high-level overview over architecture of the PATUS framework.

Strategy parse tree and the abstract syntax tree of the generated code,
and Cetus also provides the mechanism for unparsing the internal repre-
sentation of the generated code.

The internal representation of the stencil specification consists of the
domain size and number-of-iterations attributes and a graph represen-
tation of the actual stencil parts described in the stencil operation. This
will be discussed in detail in section 12.1. The Strategy is transformed to
an abstract syntax tree that is used as a template by the code generator.
These structures are passed as input to the code generator, along with an
additional configuration describing the characteristics of the hardware
and the programming model used to program the architecture and spec-
ifies the code generation back-end to use. The code generator produces
C code for variants of the stencil kernel and also creates an initialization
routine that implements a NUMA-aware data initialization based on the
parallelization scheme used in the kernel routine.

Along with an implementation for the stencil kernel, the code gen-
erator also creates a benchmarking harness from an architecture- and
programming model-specific template into which the dynamic memory
allocations, the grid initializations, and the kernel invocation are substi-
tuted. The benchmarking harness expects the problem-specific parame-
ters related to the domain size (specified in the stencil specification), the
Strategy-specific auto parameters, as well as internal code generation pa-
rameters (currently loop unrolling factors) to be provided to the bench-

12.1. PARSING AND INTERNAL REPRESENTATION 191

marking executable as command line arguments.
Currently, the post-code generation compilation and auto-tuning pro-

cesses have yet to be initiated manually; as of yet, the auto-tuner is still
a decoupled part of the system. In consequence, also the feedback loop,
returning the set of parameters for which the generated stencil kernel
performs well to the code generator in order to substitute them into the
parametrized code, has not been implemented yet. Note that it might not
even be desirable to do so in a fully automated fashion, since the code
generator and the auto-tuning system (and consequently the benchmark-
ing executable) might run on different systems. Also, the auto-tuning
subsystem can be used independently for tuning existing parametrized
codes not generated by PATUS.

12.1 Parsing and Internal Representation

12.1.1 Data Structures: The Stencil Representation

The stencil specification parser turns a stencil specification into an ob-
ject structure for which the class diagram is shown in Fig. 12.2. The
StencilCalculation encapsulates the entire specification including the
domain size and the number of iterations, a list of arguments, which will
be reflected in the function signature of the generated stencil kernel func-
tion, and the actual stencil structure represented by the StencilBundle.
As an operation in the stencil specification can have not only one, but
multiple stencil expressions that are computed within a single stencil ker-
nel, the StencilBundle contains a list of Stencil objects, which are both a
graph representation of the geometrical structure of stencil and an arith-
metic expression (a Cetus Expression object). The graph structure is rep-
resented by sets of StencilNodes, one set of input nodes, i.e., the nodes
whose values are read, and one set of output nodes, the nodes to which
values are written in the computation.

Stencil nodes represent a position in the grid relative to the center
point, both in space and time. Additionally, they capture which grid is
accessed by accessing a stencil node’s value. In a mathematical notation,
let

N :� Zd
�Z�N

be the index space consisting of a d-dimensional spatial component, a
temporal component and a natural-numbered counting component. Then,

192 CHAPTER 12. PATUS ARCHITECTURE OVERVIEW

St
en
ci
l

#
m

_e
dS

te
nc

ilC
al

cu
la

tio
n:

 E
xp

re
ss

io
nD

at
a

#
m

_s
et

Al
lIn

pu
tN

od
es

:
Se

t<
St

en
ci

lN
od

e>
#

m
_s

et
O

ut
pu

tN
od

es
:

Se
t<

St
en

ci
lN

od
e>

+
ad

dI
np

ut
N

od
e(

no
de

:
St

en
ci

lN
od

e)
 :

 v
oi

d
+

ad
dO

ut
pu

tN
od

e(
no

de
:

St
en

ci
lN

od
e)

 :
 v

oi
d

+
ite

ra
to

r(
)

:
It

er
at

or
<

St
en

ci
lN

od
e>

+
ge

tD
im

en
si

on
al

ity
()

 :
 b

yt
e

+
of

fs
et

In
Ti

m
e(

nT
im

eO
ff

se
t:

 in
t)

 :
 v

oi
d

+
of

fs
et

In
Sp

ac
e(

rg
Sp

ac
eO

ff
se

t:
 in

t[
])

 :
 v

oi
d

+
ge

tM
in

Sp
ac

eI
nd

ex
()

 :
 in

t[
]

+
ge

tM
ax

Sp
ac

eI
nd

ex
()

 :
 in

t[
]

+
ge

tM
in

Sp
ac

eI
nd

ex
By

Ti
m

eI
nd

ex
(n

Ti
m

eI
nd

ex
:

in
t)

 :
 in

t[
]

+
ge

tM
ax

Sp
ac

eI
nd

ex
By

Ti
m

eI
nd

ex
(n

Ti
m

eI
nd

ex
:

in
t)

 :
 in

t[
]

+
is

Ti
m

eb
lo

ck
in

gA
pp

lic
ab

le
()

 :
 b

oo
le

an

St
en
ci
lB
un
dl
e

-
m

_s
te

nc
ilF

us
ed

:
St

en
ci

l
-

m
_l

is
tS

te
nc

ils
:

Li
st

<
St

en
ci

l>

+
ad

dS
te

nc
il(

st
en

ci
l:

St
en

ci
l)
 :

 v
oi

d

«i
nt

er
fa

ce
»

IS
te
nc
ilO
pe
ra
tio
ns

+
of

fs
et

In
Ti

m
e(

nT
im

eO
ff

se
t:

 in
t)

 :
 v

oi
d

+
of

fs
et

In
Sp

ac
e(

rg
Sp

ac
eO

ff
se

t:
 in

t[
])

 :
 v

oi
d

+
ge

tD
im

en
si

on
al

ity
()

 :
 b

yt
e

+
ge

tM
in

Sp
ac

eI
nd

ex
()

 :
 in

t[
]

+
ge

tM
ax

Sp
ac

eI
nd

ex
()

 :
 in

t[
]

+
ge

tM
in

Sp
ac

eI
nd

ex
By

Ti
m

eI
nd

ex
(n

Ti
m

eI
nd

ex
:

in
t)

 :
 in

t[
]

+
ge

tM
ax

Sp
ac

eI
nd

ex
By

Ti
m

eI
nd

ex
(n

Ti
m

eI
nd

ex
:

in
t)

 :
 in

t[
]

+
is

Ti
m

eb
lo

ck
in

gA
pp

lic
ab

le
()

 :
 b

oo
le

an

«i
nt

er
fa

ce
»

IS
te
nc
ilS
tr
uc
tu
re

+
ad

dI
np

ut
N

od
e(

no
de

:
St

en
ci

lN
od

e)
 :

 v
oi

d
+

ad
dO

ut
pu

tN
od

e(
no

de
:

St
en

ci
lN

od
e)

 :
 v

oi
d

+
ite

ra
to

r(
)

:
It

er
at

or
<

St
en

ci
lN

od
e>

+
ge

tD
im

en
si

on
al

ity
()

 :
 b

yt
e

St
en
ci
lN
od
e

-
m

_s
pe

cT
yp

e:
 S

pe
ci

fie
r

-
m

_i
nd

ex
:

In
de

x

+
is

Sc
al

ar
()

 :
 b

oo
le

an In
de
x

-
m

_n
Ti

m
eI

nd
ex

:
in

t
-

m
_r

gS
pa

ce
In

de
x:

 in
t[

]
-

m
_n

Ve
ct

or
In

de
x:

 in
t

+
of

fs
et

In
Ti

m
e(

nT
im

eO
ff

se
t:

 in
t)

 :
 v

oi
d

+
of

fs
et

In
Sp

ac
e(

rg
Sp

ac
eO

ff
se

t:
 in

t[
])

 :
 v

oi
d

Id
en
tif
ie
rCe

tu
s

IR
 c

la
ss

St
en
ci
lC
al
cu
la
tio
n

-
m

_s
tr

N
am

e:
 S

tr
in

g
-

m
_b

ox
D

om
ai

n:
 B

ox
-

m
_e

xp
rM

ax
It

er
:

Ex
pr

es
si

on
-

m
_l

is
tA

rg
um

en
ts

:
Li

st
<

St
rin

g>

+
lo

ad
(s

tr
Fi

le
na

m
e:

 S
tr

in
g,

 o
pt

io
ns

:
Co

de
G

en
er

at
io

nO
pt

io
ns

)
:

St
en

ci
lC

al
cu

la
tio

n

1
0.

.*

1.
.*

1

Fi
gu

re
12

.2
:U

M
L

cl
as

s
di

ag
ra

m
of

th
e

in
te

rn
al

re
pr

es
en

ta
tio

n
of

th
e

st
en

ci
ls

pe
ci

fic
at

io
n.

12.1. PARSING AND INTERNAL REPRESENTATION 193

a stencil node is an element of N . Furthermore, let

α : N � Zd,

τ : N � Z,

ι : N � N

be the canonical projections onto the spatial, temporal, and counting com-
ponent, respectively. The spatial component defines the spatial location
of the stencil node relative to the center node, the temporal component
specifies to which temporal instance of the grid, relative to the current
time step, the stencil node belongs, and the counting component distin-
guishes between different grids. For instance, a stencil for the divergence
operator, which maps a vector field to a function, in a d-dimensional set-
ting requires a vector-valued input grid with d components, or, equiva-
lently, d input grids, which are numbered by the counting component.

Definition 12.1. A stencil is denoted by a triple �Σi, Σo, Φ�, where Σi, Σo � N
are finite subsets of N ; Σi is the set of input stencil nodes and Σo is the set of
output stencil nodes. The mapping

Φ : 2Σi
��

�
f : R

�
�
�2Σi

�
�
�
� R

�
� 2Σo

assigns a real-valued function in the input stencil nodes (the actual stencil ex-
pression), and a set of output stencil nodes (the nodes to which the value is
assigned after evaluation of the function) to a subset of input stencil nodes.

In the UML class diagram in Fig. 12.2, Φ corresponds to the stencil
expression m edStencilExpression in the Stencil class.

Each Stencil instance in the list of stencils in the StencilBundle repre-
sents an object

�
Σi
�, Σo

�, Φ�

�
, � � 1, . . . , k. The fused stencil, m stencilFused,

contained in the StencilBundle is a stencil structure synthesized from all
the stencils within the specification, Σ�

fused :�
�k

��1 Σ�

� . Reasoning about
which grids are used or transferred is done based on the fused stencil.

The stencil node n with spatial component 0 � Zd, i.e., α�n� � 0 is
called the center node; it corresponds to a grid access at [x,y,z] in the
stencil specification of a 3-dimensional stencil. For each output stencil
node no � Σo we require that the temporal index is larger than max

ni
�Σi
	τ�ni�
.

(Note that if this requirement is not fulfilled, the method would not be an
explicit method and would require solving a system of equations.)

194 CHAPTER 12. PATUS ARCHITECTURE OVERVIEW

Internally, the stencil node components are normalized by shifting the
spatial and temporal components in Σi and Σo such that the spatial in-
dices of the output stencil nodes are 0 � Zd, and the largest temporal
component is 0, i.e.,

α�n� � 0 �n � Σo,

max
n�Σo

τ�n� � 0.

The notion of stencil nodes, in conjunction with a Strategy, enables
us to map grids, or parts of grids, to arrays which are stored physically
in main memory or temporarily in some local memory. In section 13.1
we will discuss in detail how this is done. Also, stencil nodes provide
a mechanism to determine the size of an input subdomain required to
calculate a result subdomain of a certain size. The fused stencil holds the
information for all the subdomain that need to be kept in (local) memory
at a given point in time.

12.1.2 Strategies

The Coco/R-based Strategy parser creates a traditional parse tree com-
posed of Cetus IR objects. To encapsulate the special, PATUS Strategy-
specific loop structures, additional IR classes have been added. Specif-
ically, RangeIterators represent traditional for loops, and SubdomainIt-

erators represent loops that iterate a smaller subdomain over a parent
domain.

Both RangeIterators and SubdomainIterators extend the class Loop

which encapsulates the common attributes as shown in Fig. 12.3: the
number of threads, chunk size (i.e., the number of consecutive iterates
assigned to one thread), and the level of parallelism on which the loop
was defined. RangeIterators extend the list of attributes to the loop in-
dex variable, start and end expressions and the step by which the index
variable is incremented in each iteration. A SubdomainIterator has two
special identifier objects representing the parent domain and the subdo-
main being iterated within the parent domain. A SubdomainIdentifier

inherits from the Cetus IR class Identifier and adds specific attributes:
spatial and temporal offsets as defined in the Strategy and a list of in-
dices through which an array of subdomain identifiers in the Strategy is
accessed. This is not to be confused with a stencil node’s counting index;
a Strategy subdomain is a placeholder for all the stencil grids (defined in
the stencil specification) simultaneously.

12.1. PARSING AND INTERNAL REPRESENTATION 195

Loop

m_exprNumThreads: Expression
m_exprChunkSize: Expression
m_nParallelismLevel: int

CompoundStatement

RangeIterator

m_idLoopIndex: Identifier
m_exprStart: Expression
m_exprEnd: Expression
m_exprStep: Expression

IdentifierCetus IR
Classes

SubdomainIterator

m_sdidDomain: SubdomainIdentifier
m_sdidIterator: SubdomainIdentifier
m_sdTotalDomain: Subdomain
m_borderDomain: Border

SubdomainIdentifier

- m_subdomain: Subdomain
- m_rgSpatialOffset: Expression[]
- m_exprTemporalIndex: Expression
- m_listVectorIndices: List<Expression>

Subdomain

- m_sdParent: Subdomain
- m_size: Size
- m_ptRefParent: Point
- m_ptRefGlobal: Point
- m_bIsBaseGrid: boolean

Parent

Child

Figure 12.3: UML class diagram for Strategy loop IR classes.

For representing the stencil calls and arithmetic expressions, stan-
dard Cetus IR class instances are used. The internal representation of
the Strategy is used as a template by the code generator into which the
concrete stencil computation and the concrete grids are substituted: spe-
cial Strategy-specific IR objects are gradually replaced by Cetus IR ob-
jects that have a C representation. For instance, Strategy-type loops are
converted to C for loops, and grid-stencil node pairs are converted to
linearly indexed grid arrays.

The Strategy parser exploits the fact that the stencil representation is
already constructed when the Strategy is being parsed. Hence, stencil
properties (e.g., dimensionality, minimum and maximum spatial sten-
cil node coordinates) and aspects of the Strategy that depend on sten-
cil properties, such as vectors of length d specifying Strategy subdomain
sizes, where d is the dimensionality of the stencil, or vector subscripts
depending on d, are instantiated concretely. For instance, if d is known
to be 3, the Strategy subscript expression (1 ...) becomes (1, 1, 1) at
the time of parsing, or a variable b of type dim becomes (b x, b y, b z).
Thus, Strategy subscript expressions are resolved at parse time, and the
internal representation only holds the concrete instantiations.

196 CHAPTER 12. PATUS ARCHITECTURE OVERVIEW

12.2 The Code Generator

The objective of the code generator is to translate the Strategy into which
the stencil has been substituted, into the final C code. In particular, it
transform Strategy loops into C loops and parallelizes them according to
the specification in the Strategy, and it unrolls and vectorizes the inner-
most loop containing the stencil calculation if desired; it determines which
arrays to use based on the Strategy structure and the grids defined in the
stencil specification and calculates the indices for the array accesses. The
code generator classes are contained in the package ch.unibas.cs.hpwc.

patus.codegen.
Fig. 12.4 shows the UML class diagram of the code generation pack-

age. CodeGeneratorMain is the main entry point of the PATUS code gen-
eration module. The method generateCode parses both the stencil and
Strategy files and invokes the actual code generator CodeGenerator. The
generate method of the latter first “resolves” the Strategy parallel key-
word: by means of the ThreadCodeGenerator an internal representation
for the per-thread code of the kernel function is created based on the
internal representation of the Strategy. The ThreadCodeGenerator class
provides methods for parallelizing range iterators and subdomain itera-
tors. The resulting AST is processed by the SingleThreadCodeGenerator,
which invokes the specialized sub-code generators:

• The class SubdomainIteratorCodeGenerator translates Strategy sub-
domain iterators to C loop constructs. For an iterator over a d-
dimensional subdomain, it creates a loop nest with d loops, infer-
ring the loop bounds from the surrounding subdomain iterator or
from the problem domain. The inner-most loop is both unrolled
and vectorized if these transformations are enabled in the code gen-
eration configuration. More details on unrolling and vectorization
are given in Chapters 14.1 and 14.3. The actual code generation is
done recursively in the inner CodeGenerator class.

• The LoopCodeGenerator is the counterpart for range iterators, which
are simply expanded to C for loops. No unrolling or vectorization
is done.

• The StencilCalculationCodeGenerator substitutes stencil nodes con-
stituting the stencils by accesses to the arrays that contain the grid
values. The actual code generation is done within the inner Code-

12.2. THE CODE GENERATOR 197

C
od
eG
en
er
at
or

-
m

_c
gT

hr
ea

dC
od

e:
 T

hr
ea

dC
od

eG
en

er
at

or
-

m
_d

at
a:

 C
od

eG
en

er
at

or
Sh

ar
ed

O
bj

ec
ts

+
ge

ne
ra

te
(u

ni
t:

 T
ra

ns
la

tio
nU

ni
t,

 b
In

cl
ud

eA
ut

ot
un

eP
ar

am
et

er
s:

 b
oo

le
an

)
:

vo
id

#
cr

ea
te

Fu
nc

tio
nP

ar
am

et
er

Li
st

()
 :

 v
oi

d
#

op
tim

iz
eC

od
e(

sl
bI

np
ut

:
St

at
em

en
tL

is
tB

un
dl

e)
 :

 v
oi

d

In
de
xC
al
cu
la
to
rC
od
eG
en
er
at
or

-
m

_d
at

a:
 C

od
eG

en
er

at
or

Sh
ar

ed
O

bj
ec

ts

+
ca

lc
ul

at
eI

nd
ic

es
(s

iz
eD

om
ai

n:
 S

iz
e)

 :
 E

xp
re

ss
io

n[
]

+
ca

lc
ul

at
eS

iz
es

(s
iz

eD
om

ai
n:

 S
iz

e)
 :

 E
xp

re
ss

io
n[

]
+

ca
lc

ul
at

eO
ne

To
M

ul
ti(

ex
pr

In
de

x:
 E

xp
re

ss
io

n,
 r

gS
iz

es
:

Ex
pr

es
si

on
[]

,
rg

St
rid

es
:

Ex
pr

es
si

on
[]

)
:

Ex
pr

es
si

on
[]

+
ca

lc
ul

at
eM

ul
tiT

oO
ne

(r
gI

nd
ex

:
Ex

pr
es

si
on

[]
,
rg

Si
ze

s:
 E

xp
re

ss
io

n[
])

 :
 E

xp
re

ss
io

n

Si
ng
le
Th
re
ad
C
od
eG
en
er
at
or

-
m

_d
at

a:
 C

od
eG

en
er

at
or

Sh
ar

ed
O

bj
ec

ts

+
ge

ne
ra

te
()

 :
 S

ta
te

m
en

tL
is

tB
un

dl
e

#
ge

ne
ra

te
R
an

ge
It

er
at

or
()

 :
 S

ta
te

m
en

tL
is

tB
un

dl
e

#
ge

ne
ra

te
Su

bg
rid

It
er

at
or

()
 :

 S
ta

te
m

en
tL

is
tB

un
dl

e
#

ge
ne

ra
te

Ex
pr

es
si

on
()

 :
 S

ta
te

m
en

tL
is

tB
un

dl
e

Th
re
ad
C
od
eG
en
er
at
or

-
m

_d
at

a:
 C

od
eG

en
er

at
or

Sh
ar

ed
O

bj
ec

ts

+
ge

ne
ra

te
()

 :
 C

om
po

un
dS

ta
te

m
en

t
#

ge
ne

ra
te

R
an

ge
It

er
at

or
()

 :
 v

oi
d

#
ge

ne
ra

te
Su

bg
rid

It
er

at
or

()
 :

 v
oi

d

C
od
eG
en
er
at
or
M
ai
n

-
m

_s
te

nc
il:

 S
te

nc
ilC

al
cu

la
tio

n
-

m
_s

tr
at

eg
y:

 S
tr

at
eg

y
-

m
_h

ar
dw

ar
eD

es
cr

ip
tio

n:
 I

Ar
ch

ite
ct

ur
eD

es
cr

ip
tio

n
-

m
_d

at
a:

 C
od

eG
en

er
at

or
Sh

ar
ed

O
bj

ec
ts

-
m

_o
pt

io
ns

:
Co

de
G

en
er

at
io

nO
pt

io
ns

+
m

ai
n(

ar
gs

:
St

rin
g[

])
 :

 v
oi

d
-

ge
ne

ra
te

Co
de

()
 :

 v
oi

d

D
at
at
ra
ns
fe
rC
od
eG
en
er
at
or

-
m

_d
at

a:
 C

od
eG

en
er

at
or

Sh
ar

e.
..

+
al

lo
ca

te
Lo

ca
lM

em
or

yO
bj

ec
ts

()
 .
..

+
lo

ad
D

at
a(

)
:

vo
id

+
st

or
eD

at
a(

)
:

vo
id

+
w

ai
tF

or
()

 :
 v

oi
d

Fu
se
M
ul
tip
ly
A
dd
C
od
eG
en
er
at
or

-
m

_d
at

a:
 C

od
eG

en
er

at
or

Sh
ar

ed
O

bj
ec

ts

+
ap

pl
yF

M
As

(e
xp

re
ss

io
n:

 E
xp

re
ss

io
n,

 s
pe

cD
at

at
yp

e:
 S

pe
ci

fie
r)

 :
 E

xp
re

ss
io

n

C
od
eG
en
er
at
or
s

-
m

_b
ac

ke
nd

Co
de

G
en

er
at

or
:

IB
ac

ke
nd

-
m

_l
oo

pC
od

eG
en

er
at

or
:

Lo
op

Co
de

G
en

er
at

or
-

m
_i

nd
ex

Ca
lc

ul
at

or
:

In
de

xC
al

cu
la

to
rC

od
eG

en
er

at
or

-
m

_s
te

nc
ilC

od
eG

en
er

at
or

:
St

en
ci

lC
al

cu
la

tio
nC

od
eG

en
er

at
or

-
m

_f
m

aC
od

eG
en

er
at

or
:

Fu
se

M
ul

tip
ly

Ad
dC

od
eG

en
er

at
or

-
m

_d
at

at
ra

ns
fe

rC
od

eG
en

er
at

or
:

D
at

at
ra

ns
fe

rC
od

eG
en

er
at

or
-

m
_c

on
st

Co
de

G
en

er
at

or
:

Co
ns

ta
nt

G
en

er
at

ed
Id

en
tif

ie
rs

-
m

_S
IM

D
Sc

al
ar

Co
de

G
en

er
at

or
:

SI
M

D
Sc

al
ar

G
en

er
at

ed
Id

en
tif

ie
rs

-
m

_u
nr

ol
le

dI
ds

Co
de

G
en

er
at

or
:

U
nr

ol
lG

en
er

at
ed

Id
en

tif
ie

rs

C
od
eG
en
er
at
or

#
m

_e
xp

r:
 E

xp
re

ss
io

n
#

m
_s

gi
dS

te
nc

ilA
rg

:
Su

bg
rid

Id
en

tif
ie

r

+
ge

ne
ra

te
()

 :
 v

oi
d

#
ge

ne
ra

te
Si

ng
le

Ca
lc

ul
at

io
n(

)
:

vo
id

#
re

pl
ac

eS
te

nc
ilN

od
es

()
 :

 E
xp

re
ss

io
n

#
cr

ea
te

SI
M

D
St

en
ci

lN
od

e(
)

:
Ex

pr
es

si
on

St
en
ci
lC
od
eG
en
er
at
or

In
iti
al
iz
eC
od
eG
en
er
at
or

«i
nt

er
fa

ce
»

IB
ac
ke
nd

C
od
eG
en
er
at
or
Sh
ar
ed
O
bj
ec
ts

-
m

_s
te

nc
il:

 S
te

nc
ilC

al
cu

la
tio

n
-

m
_s

tr
at

eg
y:

 S
tr

at
eg

y
-

m
_h

ar
dw

ar
eD

es
cr

ip
tio

n:
 I

Ar
ch

ite
ct

ur
eD

es
cr

ip
tio

n
-

m
_o

pt
io

ns
:

Co
de

G
en

er
at

io
nO

pt
io

ns
-

m
_g

en
er

at
or

s:
 C

od
eG

en
er

at
or

s
-

m
_d

at
a:

 C
od

eG
en

er
at

or
D

at
a

C
od
eG
en
er
at
or
R
un
tim
eO
pt
io
ns

C
od
eG
en
er
at
or
D
at
a

-
m

_g
en

er
at

ed
G

lo
ba

lId
en

tif
ie

rs
:

G
lo

ba
lG

en
er

at
ed

Id
en

tif
ie

rs
-

m
_g

en
er

at
ed

Id
en

tif
ie

rs
:

Su
bg

rid
G

en
er

at
ed

Id
en

tif
ie

rs
-

m
_m

oM
an

ag
er

:
M

em
or

yO
bj

ec
tM

an
ag

er

C
od
eG
en
er
at
io
nO
pt
io
ns

Su
bd
om
ai
nI
te
ra
to
rC
od
eG
en
er
at
or

-
m

_c
gP

ar
en

t:
 I

Co
de

G
en

er
at

or
-

m
_d

at
a:

 C
od

eG
en

er
at

or
Sh

ar
ed

O
bj

ec
ts

+
ge

ne
ra

te
()

 :
 S

ta
te

m
en

tL
is

tB
un

dl
e

C
od
eG
en
er
at
or

-
m

_s
gI

te
ra

to
r:

 S
ub

gr
id

It
er

at
or

+
ge

ne
ra

te
()

 :
 S

ta
te

m
en

tL
is

tB
un

dl
e

-
ge

ne
ra

te
In

ne
r(

)
:

St
at

em
en

tL
is

tB
un

dl
e

-
ge

ne
ra

te
It

er
at

or
Fo

rD
im

en
si

on
()

 :
 S

ta
t.

..

Lo
op
C
od
eG
en
er
at
or

-
m

_d
at

a:
 C

od
eG

en
er

at
or

Sh
ar

ed
O

bj
ec

ts

+
ge

ne
ra

te
()

 :
 S

ta
te

m
en

tL
is

tB
un

dl
e

St
en
ci
lC
al
cu
la
tio
nC
od
eG
en
er
at
or

-
m

_d
at

a:
 C

od
eG

en
er

at
or

Sh
ar

ed
O

bj
ec

ts

+
ge

ne
ra

te
()

 :
 S

ta
te

m
en

tL
is

tB
un

dl
e

Fi
gu

re
12

.4
:U

M
L

cl
as

s
di

ag
ra

m
of

th
e

co
de

ge
ne

ra
to

r
cl

as
se

s.

198 CHAPTER 12. PATUS ARCHITECTURE OVERVIEW

Generator class, which has two specializations, StencilCodeGen-

erator, which creates the code used in the stencil kernel function,
and InitializeCodeGenerator, which is responsible for the initial-
ization of the grid arrays in the initialization function thus provid-
ing the NUMA-aware initialization. The code generator takes care
of stencil node offsets due to loop unrolling and vectorization.

• The actual array indices are calculated by the IndexCalculatorCode-
Generator. In the generated code, the index calculations are placed
just before the stencil evaluation, i.e., within the inner-most loop.
We count on the compiler to perform loop-invariant code motion
and pull the bulk of the index calculation out of the loop. All the
compilers which have been tested (GNU 4.4, Intel icc 11.1, Microsoft
cl 16) were able to perform this transformation. The details how the
indices are calculated are given in Chapter 13.2.

• The FuseMultiplyAddCodeGenerator creates fused multiply adds for
architectures which have a corresponding intrinsic by replacing mul-
tiply-add combinations in the internal representation, and

• The DatatransferCodeGenerator creates the code responsible for
copying data to and from memory on other levels of the memory
hierarchy, e.g., from global to shared memory on a GPU. The ac-
tual implementation depends on the architecture and is therefore
provided by an instance of a back-end code generator IBackend.

The code generation options are controlled by the settings in CodeGen-

erationOptions and CodeGeneratorRuntimeOptions. The former contains
the settings for the global options (e.g., whether or not to vectorize and
in which way, how to unroll the inner-most loops, whether to create a
function interface that is compatible with Fortran, etc.). The latter spec-
ifies the local options for the current code generation pass. For instance,
if the user wants the code generator to unroll loops, there are most likely
multiple unrolling configurations, and the local options specify the un-
rolling configuration which is currently generated. An instance of the
CodeGeneratorRuntimeOptions class is passed to the generate methods
of the code generators; due to space limits the arguments to the code
generator methods were omitted in the UML class diagram in Fig. 12.4.

All the code generator objects receive an instance of CodeGenerator-
SharedObjects when they are constructed. Such an object encapsulates
the “common knowledge” of the code generators, in particular the stencil

12.3. CODE GENERATION BACK-ENDS 199

representation, the internal representation of the Strategy, and the hard-
ware architecture description. Identifiers created during code generation
are stored in CodeGeneratorData.

12.3 Code Generation Back-Ends

The code generation back-ends are responsible for providing the details
to effect the parallelization in the respective programming model, for im-
plementing data movement functions if needed or desired, for convert-
ing arithmetic operations and standard function calls into intrinsics and
for mapping the standard floating point data types to native data types
if necessary. For instance, if explicit vectorization is turned on and the
vectorization is done using SSE, an addition is no longer written using
the “+” operator, but using the mm addpd intrinsic function instead, and
as arguments this function expects two m128ds, so a double — or rather
a SIMD vector of 2 doubles — has to be converted to the SSE data type

m128d.
Also, the code generation back-ends provide implementations of func-

tions not specific to the compute kernel: the benchmarking harness needs
to allocate memory for the grids and free it again, or it needs to create
metrics expressions for the stencil, such as the number of Flops per sten-
cil evaluation or the expression computing the performance number.

The code generation back-ends consist of multiple interwoven parts.
The Java back-end code generator is chosen by the architecture descrip-
tion. The backend attribute of the codegenerator tag (cf. Listing 12.1)
defines the back-end ID for which the BackendFactory will return an in-
stance of the corresponding back-end implementation.

Listing 12.1: An excerpt of a PATUS architecture description.

1: <?xml version ="1.0"?>
2: <architectureTypes >
3: <!-- Intel x86_64 architecture with SSE ,
4: OpenMP parallelization -->
5: <architectureType name="Intel x86_64 SSE">
6: <codegenerator backend="OpenMP" src -suffix="c" .../>
7: ...
8: <intrinsics >
9: <!-- intrinsics for double precision arithmetic

10: operations -->
11: <intrinsic baseName="plus" name="_mm_add_pd"
12: datatype="__m128d"/>

200 CHAPTER 12. PATUS ARCHITECTURE OVERVIEW

Listing 12.1: An excerpt of a PATUS architecture description. (cont.)

13: ...
14: </intrinsics >
15: <includes >
16: <include file="omp.h"/>
17: <include file="xmmintrin.h"/>
18: <include file="emmintrin.h"/>
19: </includes >
20: <build harness -template -dir="arch/CPU_OpenMP" .../>
21: </architectureType >
22: </architectureTypes >

Conversely, the Java back-end implementation (in the package ch.

unibas.cs.hpwc.patus.codegen.backend; a UML class diagram is shown
in Fig. 12.5) is backed by the architecture description, which provides
back-end details such as a mapping between arithmetic operators and
their replacing intrinsic functions, and a mapping between primitive data
types and their native representation as shown in Listing 12.1. The base-

Names in the intrinsic tags correspond to the methods of IArithmetic.
The default implementation in the class AbstractArithmeticImpl con-
verts unary and binary arithmetic operators to function calls with func-
tions named as specified in the architecture description. If certain oper-
ators require special treatment (e.g., there is no SSE intrinsic to negate
the SSE vector entries), the corresponding IArithmetic method can be
overwritten in the concrete back-end implementation, which will then be
used instead of the default.

Apart from providing architecture-specific bindings for use within the
stencil kernel function, the back-end generator also provides mechanisms
used to create the benchmarking harness. Details are described in Chap-
ter 12.4.

The IBackend interface is composed of logically separated sub-inter-
faces:

• IParallel defines code generation methods related to paralleliza-
tion, such as synchronization constructs.

• IDataTransfer provides code generation related to data movement
between memories in the memory hierarchy.

• IIndexing defines how subdomain indices are calculated. In the
CPU multicore realm, each thread has a one-dimensional ID. In
CUDA, on the other hand, there are two levels of indices: thread

12.3. CODE GENERATION BACK-ENDS 201

«i
nt

er
fa

ce
»

IN
on
K
er
ne
lF
un
ct
io
ns

+
fo

rw
ar

dD
ec

ls
()

 :
 S

ta
te

m
en

tL
is

t
+

de
cl

ar
eG

rid
s(

)
:

St
at

em
en

tL
is

t
+

al
lo

ca
te

G
rid

s(
)

:
St

at
em

en
tL

is
t

+
in

iti
al

iz
eG

rid
s(

)
:

St
at

em
en

tL
is

t
+

se
nd

D
at

a(
)

:
St

at
em

en
tL

is
t

+
re

ce
iv

eD
at

a(
)

:
St

at
em

en
tL

is
t

+
co

m
pu

te
St

en
ci

l()
 :

 S
ta

te
m

en
tL

is
t

+
va

lid
at

eC
om

pu
ta

tio
n(

)
:

St
at

em
en

tL
is

t
+

de
al

lo
ca

te
G

rid
s(

)
:

St
at

em
en

tL
is

t
+

ge
tF

lo
ps

Pe
rS

te
nc

il(
)

:
Ex

pr
es

si
on

+
ge

tG
rid

Po
in

ts
Co

un
t(

)
:

Ex
pr

es
si

on
+

ge
tB

yt
es

Tr
an

sf
er

re
d(

)
:

Ex
pr

es
si

on
+

ge
tD

oV
al

id
at

io
n(

)
:

Ex
pr

es
si

on
+

ge
tV

al
id

at
es

()
 :

 E
xp

re
ss

io
n

A
bs
tr
ac
tN
on
K
er
ne
lF
un
ct
io
ns
Im
pl

A
bs
tr
ac
tA
rit
hm
et
ic
Im
pl

«i
nt

er
fa

ce
»

IB
ac
ke
nd

A
bs
tr
ac
tB
ac
ke
nd

O
pe
nM
PC
od
eG
en
er
at
or

C
U
D
A
C
od
eG
en
er
at
or

B
ac
ke
nd
Fa
ct
or
y

+
cr

ea
te

(s
tr

Ba
ck

en
d:

 S
tr

in
g)

 :
 I

Ba
ck

en
d

«i
nt

er
fa

ce
»

IA
dd
iti
on
al
K
er
ne
lS
pe
ci
fic

+
ge

tA
dd

iti
on

al
Ke

rn
el

Sp
ec

ifi
cC

od
e(

)
:

St
rin

g

«i
nt

er
fa

ce
»

IP
ar
al
le
l

+
ge

tB
ar

rie
r(

)
:

St
at

em
en

t

«i
nt

er
fa

ce
»

ID
at
aT
ra
ns
fe
r

+
al

lo
ca

te
D

at
a(

)
:

vo
id

+
lo

ad
D

at
a(

)
:

vo
id

+
st

or
eD

at
a(

)
:

vo
id

+
w

ai
tF

or
()

 :
 v

oi
d

«i
nt

er
fa

ce
»

IA
rit
hm
et
ic

+
cr

ea
te

Ex
pr

es
si

on
(e

xp
rI

n:
 E

xp
re

ss
io

n,
 s

pe
cD

at
at

yp
e:

 S
pe

ci
fie

r,
 b

Ve
ct

or
iz

e:
 b

oo
le

an
)

:
Ex

pr
es

si
on

+
pl

us
(e

xp
r:

 E
xp

re
ss

io
n,

 s
pe

cD
at

at
yp

e:
 S

pe
ci

fie
r,

 b
Ve

ct
or

iz
e:

 b
oo

le
an

)
:

Ex
pr

es
si

on
+

m
in

us
(e

xp
r:

 E
xp

re
ss

io
n,

 s
pe

cD
at

at
yp

e:
 S

pe
ci

fie
r,

 b
Ve

ct
or

iz
e:

 b
oo

le
an

)
:

Ex
pr

es
si

on
+

ad
d(

ex
pr

1:
 E

xp
re

ss
io

n,
 e

xp
r2

:
Ex

pr
es

si
on

, s
pe

cD
at

at
yp

e:
 S

pe
ci

fie
r,

 b
Ve

ct
or

iz
e:

 b
oo

le
an

)
:

Ex
pr

es
si

on
+

su
bt

ra
ct

(e
xp

r1
:

Ex
pr

es
si

on
, e

xp
r2

:
Ex

pr
es

si
on

, s
pe

cD
at

at
yp

e:
 S

pe
ci

fie
r,

 b
Ve

ct
or

iz
e:

 b
oo

le
an

)
:

Ex
pr

es
si

on
+

m
ul

tip
ly

(e
xp

r1
:

Ex
pr

es
si

on
, e

xp
r2

:
Ex

pr
es

si
on

, s
pe

cD
at

at
yp

e:
 S

pe
ci

fie
r,

 b
Ve

ct
or

iz
e:

 b
oo

le
an

)
:

Ex
pr

es
si

on
+

di
vi

de
(e

xp
r1

:
Ex

pr
es

si
on

, e
xp

r2
:

Ex
pr

es
si

on
, s

pe
cD

at
at

yp
e:

 S
pe

ci
fie

r,
 b

Ve
ct

or
iz

e:
 b

oo
le

an
)

:
Ex

pr
es

si
on

+
fm

a(
ex

pr
1:

 E
xp

re
ss

io
n,

 e
xp

r2
:

Ex
pr

es
si

on
, e

xp
r3

:
Ex

pr
es

si
on

, s
pe

cD
at

at
yp

e:
 S

pe
ci

fie
r,

 b
Ve

ct
or

iz
e:

 b
oo

le
an

)
:

Ex
pr

es
si

on
+

sq
rt

(e
xp

r:
 E

xp
re

ss
io

n,
 s

pe
cD

at
at

yp
e:

 S
pe

ci
fie

r,
 b

Ve
ct

or
iz

e:
 b

oo
le

an
)

:
Ex

pr
es

si
on

+
sh

uf
fle

(e
xp

r1
:

Ex
pr

es
si

on
, e

xp
r2

:
Ex

pr
es

si
on

, s
pe

cD
at

at
yp

e:
 S

pe
ci

fie
r,

 n
O

ff
se

t:
 in

t)
 :

 E
xp

re
ss

io
n

+
sp

la
t(

ex
pr

:
Ex

pr
es

si
on

, s
pe

cD
at

at
yp

e:
 S

pe
ci

fie
r)

 :
 T

ra
ve

rs
ab

le

«i
nt

er
fa

ce
»

IIn
de
xi
ng

+
ge

tI
nd

ex
in

gL
ev

el
sC

ou
nt

()
 :

 in
t

+
ge

tI
nd

ex
in

gL
ev

el
(n

In
de

xi
ng

Le
ve

l:
in

t)
 :

 I
In

de
xi

ng
Le

ve
l

+
ge

tI
nd

ex
in

gL
ev

el
Fr

om
Pa

ra
lle

lis
m

Le
ve

l(n
Pa

ra
lle

lis
m

Le
ve

l:
in

t)
 :

 I
In

de
xi

ng
Le

ve
l

+
ge

tT
hr

ea
di

ng
()

 :
 E

Th
re

ad
in

g

m
ix

in

m
ix

in

Fi
gu

re
12

.5
:U

M
L

cl
as

s
di

ag
ra

m
of

th
e

co
de

ge
ne

ra
to

r
ba

ck
-e

nd
s.

202 CHAPTER 12. PATUS ARCHITECTURE OVERVIEW

and thread block indices, which can be one-, two-, or three-dimen-
sional. IIndexing takes care of how to map these programming
model-specific peculiarities.

• IArithmetic provides the mapping between arithmetic operators
and their architecture-specific native nature as intrinsic as discussed
above.

• INonKernelFunctions deals with the architecture-specific function-
alities related to the benchmarking harness rather than the actual
stencil kernel.

AbstractBackend provides a base for concrete back-end implementa-
tions and mixes in the methods of AbstractArithmeticImpl and Abstract-

NonKernelFunctionsImpl. Currently, an OpenMP back-end for shared
memory CPU systems and a C for CUDA back-end for NVIDIA graphics
processing units are implemented as concrete back-end classes.

12.4 Benchmarking Harness

The benchmarking harness is generated from an architecture-specific tem-
plate consisting of a set of C (or C for CUDA) files and a Makefile within
a directory. The architecture description file specifies the directory in
which the code generator will look for the template files to process in the
harness-template-dir attribute of the build tag in Listing 12.1. The code
generator (ch.unibas.cs.hpwc.patus.codegen.benchmark.BenchmarkHar-
ness) looks for patus pragmas and identifiers starting with PATUS in the
C files and replaces them with actual code, depending on the stencil spec-
ification.

A simple benchmarking harness template for OpenMP is shown in
Listing 12.2.

Listing 12.2: Sample OpenMP benchmarking harness template.

1: #pragma patus forward_decls

2: int main (int argc , char * * argv)
3: {
4: // prepare grids

5: #pragma patus declare_grids

6: #pragma patus allocate_grids

7:

12.4. BENCHMARKING HARNESS 203

Listing 12.2: Sample OpenMP benchmarking harness template. (cont.)

8: // initialize

9: #pragma omp parallel

10: {
11: #pragma patus initialize_grids

12: }
13:
14: long nFlopsPerStencil = PATUS_FLOPS_PER_STENCIL ;
15: long nGridPointsCount = 5 * PATUS_GRID_POINTS_COUNT ;
16: long nBytesTransferred = 5 * PATUS_BYTES_TRANSFERRED ;
17:
18: // run the benchmark

19: tic () ;
20: #pragma omp parallel private (i)
21: for (i = 0 ; i < 5 ; i++) {
22: #pragma patus compute_stencil

23: #pragma omp barrier

24: }
25: toc (nFlopsPerStencil , nGridPointsCount , nBytesTransferred) ;
26:
27: // free memory

28: #pragma patus deallocate_grids

29: return 0 ;
30: }

The pragmas create forward declarations for the functions contained
in the kernel file, declare the grid arrays, allocate, initialize, and free
them. The pragma compute stencil is replaced by the call to the kernel
function.

In the code generator, both the patus pragmas and the PATUS * identi-
fiers are mapped to INonKernelFunctions methods in the Java part, which
are invoked while scanning the template files. The INonKernelFunctions

interface defines the functions corresponding to the pragmas and iden-
tifiers shown in Listing 12.2, but should additional stencil- or Strategy-
dependent code substitutions for the benchmarking harness be neces-
sary for an architecture, methods named as the pragmas or identifiers
can simply be added to the corresponding implementation of the back-
end code generator (the implementation of INonKernelFunctions), which
are called by reflection by the framework�.

�The underscores in the pragmas and identifiers are removed and the names are
converted to camel-case to meet Java conventions. Thus, e.g., the method in the

204 CHAPTER 12. PATUS ARCHITECTURE OVERVIEW

«interface»

IOptimizer

+ optimize(run: IRunExecutable) : void
+ getResultParameters() : int[]
+ getResultTiming() : double

«interface»

IRunExecutable

+ execute(rgParams: int[], sbResult: StringBuilder, bCheckBounds: boolean) : double
+ getParameterValueLowerBounds() : int[]
+ getParameterValueUpperBounds() : int[]
+ getParameterLowerBounds() : int[]
+ getParameterUpperBounds() : int[]
+ setParameterSets(listParamSets: List<int[]>) : void

StandaloneAutotuner

+ main(args: String[]) : void
+ run() : void
- parseCommandLine(args: String[]) : void
- optimize() : void

MetaHeuristicOptimizer

+ optimize(run: IRunExecutable) : void

OptimizerFactory

+ getOptimizer(strOptimizerKey: String) : IOptimizer

RunExecutable

+ execute(rgParams: int[], sbResult: StringBuilder, bCheckBounds: boolean) : double

... and other search
method
implementations ...

Figure 12.6: UML class diagram of the auto-tuner subsystem.

Optionally, the code generator can generate code validating the re-
sult of the generated kernel function against a naı̈ve sequential version
of the stencil. If validation is turned on, the grid declarations and ini-
tializations are duplicated to accommodate both the result computed by
the optimized kernel and the reference solution. The validation code,
which is inserted directly into the benchmarking harness source, com-
putes the reference solution based on a naı̈ve sequential Strategy, which
is constructed internally. Then, it compares the values of the inner grid
points of the result returned by the kernel function to the values of the
reference grids. More precisely, the relative error is computed, and if it
exceeds a certain predefined threshold, the computation implemented in
the kernel function is assumed to be faulty, and the validation fails.

12.5. THE AUTO-TUNER 205

12.5 The Auto-Tuner

The implementation of the PATUS auto-tuner module is contained in the
Java package ch.unibas.cs.hpwc.patus.autotuner. Architecturally, the
main parts of the auto-tuner are two Java interfaces, IOptimizer and
IRunExecutable, and the OptimizerFactory. The latter instantiates an
object implementing the IOptimizer interface, i.e., the class implement-
ing a search method. The optimizer is started by invoking IOptimizer’s
only method, optimize, and passing it an instance of a class implement-
ing IRunExecutable. The interface does the evaluation of the objective
function, i.e., in the context of auto-tuning, runs the benchmarking ex-
ecutable. The default implementation simply starts the executable and
reads its output, which must include the time measurement. The time
measurement is taken as the value of the objective function for the given
set of parameters (objective function arguments). Additional program
output is saved (at least for the current best evaluation), which in case
of the default benchmarking harness includes some metrics of the com-
putation (number of grid points, Flops per stencil, total Flops), and the
performance in GFlop/s.

The RunExecutable class, which is the default implementation for I-

RunExecutable, separates the parameter space for the actual program ex-
ecution from the space of decision variables, which the optimizer classes
see. The actual parameter space for the program execution might be an
arbitrary list of integers per parameter. The StandaloneAutotuner, which
is instantiated when the PATUS auto-tuner is invoked from the command
line, accepts parameter ranges that are parts of arithmetic or geometric
sequences, or a list of arbitrary integers (cf. Appendix A.2). Each of these
ranges is mapped onto a set of consecutive integers, which is what the
search methods see.

RunExecutable caches execution times (assuming that the variation
in execution time is negligible) and returns the cached value if the ex-
ecutable has been started with the same parameters in a previous run
to save time. Also, before executing, constraints are checked, and if a
constraint is violated a penalty value is returned. Constraints are com-
parison expressions containing references to the benchmark executable
parameters (cf. Appendix A.2). At runtime, the concrete parameter val-
ues are substituted for the references, and Cetus’s simplifier is used to

IBackend implementation corresponding to the compute stencil pragma should be
computeStencil.

206 CHAPTER 12. PATUS ARCHITECTURE OVERVIEW

check whether the comparison expression is satisfied.

Chapter 13

Generating Code: Instantiating

Strategies

Those who may have the patience to study a
moderate quantity of rather dry details will
find ample compensation. . .

— Ada Lovelace (1815–1852)

13.1 Grids and Iterators

In Chapters 12.1.2 and 12.2 we discussed how strategies are represented
internally in PATUS and how C code is generated using a Strategy as a
template. In this Chapter, we want to give some more details how the
stencil specification and the Strategy play together. In particular, the
mechanism is presented, how a subdomain iterator together with a sten-
cil node induces the notion of a memory object: a (possibly local) array
which holds the data for computation or the result of the computation.

The notion of stencil nodes enables us to map grids, or parts of grids,
to arrays which are stored physically in main memory or some local
memory. In Chapter 6 we discussed how portions of the grids can be laid
out in memory, e.g., in cache. It has been argued that it is not necessary
to bring an entire cube-shaped subdomain into memory, but rather, e.g.,

208 CHAPTER 13. GENERATING CODE: INSTANTIATING STRATEGIES

for a 7-point stencil in 3D with stencil nodes �0, 0,�1;�1; ��, �0, 0, 0;�1; ��,
��1, 0, 0;�1; ��, �0,�1, 0;�1; ��, �0, 0, 1;�1; ��, 3 input planes or data points
are required to produce one output plane. Assume that the planes are or-
thogonal to the z-axis. Then, these 3 planes, P

�1, P0, P1, contain the stencil
nodes

P
�1 � ��0, 0,�1;�1; ���,

P0 � ��0, 0, 0;�1; ��, ��1, 0, 0;�1; ��, �0,�1, 0;�1; ���,

P1 � ��0, 0, 1;�1; ���.

Conversely, if we know that we want to cut the domain into planes, we
can infer the planes required from the set of stencil nodes, and therefore
the space in memory required and also the memory layout. We call a
portion of a grid stored in an array in some memory a memory object. In
general, we define a memory object as follows:

Definition 13.1. Let n 	 Σ� be a stencil node and let A : Zd
� Zd be a
projection. The memory object for n under A is the equivalence class Σ��A :

�A�α�n�� : n 	 Σ��.

Formally, we denote the d-dimensional subdomain iterator

for subdomain v (s) in u (: ; t) . . .

by a d-dimensional vector s defining the size of the subdomain v being
iterated within its parent subdomain u, as v
 �s1, . . . , sd� 	 Nd with
s1, . . . , sd � 1.

Definition 13.2. Let v
 �s1, . . . , sd� be a subdomain iterator. The projection
mask π 	 Zd�d associated with v is the diagonal d � d matrix over Z defined
by

πii :

�
1 if si
 1,

0 otherwise.

In this way, every subdomain iterator gives rise to a projection, which,
as per Definition 13.1, can be applied to a stencil node, and we obtain a
memory object; in fact we obtain the memory object containing that sten-
cil node when iterating over the parent domain. The idea behind Defini-
tion 13.2 is the following. In 3D, we assume that a subdomain iterator is
either a plane (a slice of width 1, no matter how it is oriented, but orthog-
onal to some coordinate axis — if exactly one coordinate si is set to 1), a

13.1. GRIDS AND ITERATORS 209

Figure 13.1: Memory objects (MOs) and memory object classes obtained by pro-
jecting stencil nodes using the projections π and I ρ induced by the subdomain
iterator.

line (a stick with exactly two coordinates set to 1), or a point (if all 3 co-
ordinates are set to 1). All other configurations are assumed to be boxes
which contain as least as many points such that a stencil can be evaluated
using the points within the box.

Thus, if, e.g., v s1, s2, 1 is a plane subdomain iterator (with plane
orthogonal to the z-axis), the associated projection mask is the projection

0
0

1
. Applying the projection to the stencil nodes of the 3D 7-point

stencil mentioned above, we retrieve three memory objects, correspond-
ing to the P 1, P0, P1 from above. The four stencil nodes 1, 0, 0; 1; ,
0, 1, 0; 1; , being projected to 0, 0, 0; 1; , are “masked out,” hence

the name of the projection.
Fig. 13.1 shows an example of a subdomain iterator v s1, 1, 1 .

The projection mask is π
0

1
1

, hence there are five memory ob-
jects (MOs) , 1, 0 , , 0, 0 , , 0, 1 as shown in the figure. The sten-
cil nodes 0, 0, 0; 1; and 1, 0, 0; 1; are collapsed into the single
memory object , 0, 0 . (Although the memory object space Σ π is 2-
dimensional, we keep the coordinate which was projected to zero in the
notation for clarity and mark it by an asterisk.)

The way subdomain iterators are constructed, we can identify the
reuse direction, the direction in which data from memory objects into which
data was loaded previously, can be reused. The reuse direction is the first
direction with a unit step progression. In Fig. 13.1, the x-direction is
fully spanned by the subdomain iterator, and the first unit step direction
is along the y-axis. Hence, in this example, the reuse direction is the y-
direction. This motivates the definition of the reuse mask:

Definition 13.3. The reuse mask ρ Zd d for the subdomain iterator v is the

210 CHAPTER 13. GENERATING CODE: INSTANTIATING STRATEGIES

diagonal d� d matrix over Z defined by

ρii :�

�
1 if πii � 1 and πjj � 0 for j � i,

0 otherwise,

i.e., ρ has exactly one non-zero entry at the first non-zero position in π.

Applying the projection �I � ρ� � π to the set of stencil nodes Σ� gives
rise to memory object equivalence classes

Σ�� ��I � ρ� � π�

within which memory objects can be reused cyclically. I is the identity
matrix.

The structure labeled “MO classes” in Fig. 13.1 show the three classes
into which memory objects are divided, ��, �,	1� and ��, �, 0� after apply-

ing the projection I � ρ �
�

1
1

1

�
�
� 0

1
0

�
�

�
1

0
1

�
to the memory

objects ��,	1, 0�, ��, 0, 0�, ��, 0,	1�. The lower and upper classes ��, �,	1�
symbolized with a purple bullet contain one memory object each, which
means that there is no data reuse from the respective memory objects
when the subdomain iterator is advanced by one step (which is in y-
direction). The middle class symbolized by the pink bullet, however,
contains three memory objects ��, 0, 0�, ��,	1, 0�. When the iterator pro-
gresses one step, two of the memory objects within the class can be reused,
namely ��, 0, 0� and ��, 1, 0�, and only one, the one with the oldest data,
has to be loaded newly. Of course, the same theory also applies to other
subdomain iterator shapes.

For overlapping computation and data transfers, the reuse direction
gives rise to preload memory objects, memory objects which are pre-loaded
with data before they are consumed in the next iteration step. In Fig. 13.1
they are drawn in dotted lines and labeled accordingly. The set of pre-
load memory objects can be found by advancing the spatial coordinates
of the stencil nodes by 1 in the reuse direction and subtracting the original
set from the union:

Preload �
��

n � �ρ1; 0; 0� : n � Σ�
 � Σ�

�
� Σ�

��
π.

Here, 1 is the vector �1, . . . , 1�ᵀ � Zd.

13.2. INDEX CALCULATIONS 211

13.2 Index Calculations

Another concern in the code generator is calculating indices into subdo-
mains and into memory objects. We declare all the arrays used for the
computation as one-dimensional arrays, thus a the d-dimensional index-
ing in the stencil specification and the Strategy has to be converted to
one linear index. Internally, subdomains keep their d-dimensional in-
dexing, but when assigning subdomains to parallel entities (threads or
thread blocks), the hardware- or programming model-specific indexing
has to be converted to the d-dimensional indexing of the subdomains. In
OpenMP we have one level of one-dimensional indexing: each thread is
assigned a linear index. In CUDA, however, there are two levels of index-
ing, one for the thread blocks and one for the threads. Moreover, thread
block indices are natively two-dimensional prior to version 4 of CUDA
(but the programmer could discard the second dimension), and threads
are indexed by 1, 2, or 3-dimensional indices. Hence, a two-level �2, 3�-
dimensional index has ultimately to be converted to a d-dimensional in-
dex. In CUDA 4.0 the grid dimensionality was extended to 3 dimen-
sions for Fermi GPUs, so the source is a �3, 3�-dimensional index. In this
chapter, a general framework for converting between multi-level multi-
dimensional indices is established.

A linearized index i is calculated from a d-dimensional index �i1, . . . , id�

in a domain sized �N1, . . . , Nd� by means of the formula

i � i1 � n1�i2 � n2�� � � �id�1 � nd�1id� � � � ��. (13.1)

We do not need multi-level indices to calculate the linear memory object
index, since we always know the global coordinates.

However, we do need multi-level indices to compute a subdomain
target index from a hardware index, such as a thread ID. Let D be the
dimensionality of the target index (e.g., 3 for 3-dimensional stencil com-
putations). Assume there are L indexing levels. Let d��� be the minimum
of the index dimensionality of the indexing level �, � � 1, 2, . . . , L, and
the target dimensionality D. By taking the minimum, excess hardware
indices are simply ignored.

Example 13.1: NVIDIA GPUs

On a pre-Fermi NVIDIA GPU with two indexing levels, thread
blocks and the grid of blocks, threads within a block can be addressed

212 CHAPTER 13. GENERATING CODE: INSTANTIATING STRATEGIES

Example 13.1: NVIDIA GPUs (cont.)

with 3-dimensional indices, and the blocks in a grid can be addressed
with 2-dimensional indices. So for this example, L � 2 and d�1� �
3, d�2� � 2.

By
�

i���1 , i���2 , . . . , i���
d���

�
� Nd���

we denote an actual index for indexing

level �, and by
�

n���1 , n���2 , . . . , n���
d���

�
the block size, i.e., the bounds for the

indices, 0 � i���j � n���j , for j � 1, 2, . . . , d���. Also, denote the full domain
size by �N1, N2, . . . , ND�.

We create the D-dimensional target index from the hierarchical source
indices, whose dimensions are dictated by the hardware, in two steps.
First, we expand the source indices

�
i���1 , i���2 , . . . , i�j�

d���

�
, � � 1, . . . , L, to in-

dices of dimension D. For the source indices where � � L, we append
zeros so that the index has the desired dimensionality. For the last in-
dexing level (� � L), we emulate the possibly missing dimensions by
extrapolating the last dimension. The block sizes are expanded similarly.
Secondly, we calculate the total global index from the expanded indices.

In detail, for all indexing levels � � 1, . . . , L � 1, but the last, we ex-
tend the dimensionalities to the target dimensionality D of the indices by
defining

ĩ�j :�

�
i���j if 1 � j � d���,

0 if d��� � 1 � j � D,

ñ���j :�

�
n���j if 1 � j � d���,

1 if d��� � 1 � j � D.

We assume that the block sizes
�

n���1 , n���2 , . . . , n���
d���

�
are given (dic-

tated by the hardware) for � � 1, . . . , L� 1. For the block sizes in the last
indexing level L, we calculate how many level L� 1 blocks are needed in
each dimension by

ñ�L�j �

�
Nj

�
L�1�
��1

ñ���j

�
for j � 1, . . . , d�L� � 1

ñ�L�
d�L� �

D�
k�d�L�

�
Nk

�
L�1�
��1

ñ���k

�
. (13.2)

13.2. INDEX CALCULATIONS 213

Up to the dimensionality minus 1 of the last indexing level, the number
of �L � 1�-level blocks is just the domain size divided by the size of the
�L � 1�-level block. The size of an �L � 1�-level block is the product over
all levels of the number of blocks. In the last dimension we emulate the
dimensions that are possibly missing in the last indexing level, hence the
product over the last (d�L�) and possibly missing dimensions (d�L�, . . . , D).

The index
�

ĩ�L�1 , ĩ�L�2 , . . . , ĩ�L�D

�
on the last indexing level is calculated

for j � D, D � 1, . . . , d�L� � 1, d�L� in decrementing order, by the recursion

ĩ�L�j �

����
�
�i�L�

d�L� �
D�

k�j�1

ĩ�L�k σk�1

�
	
σj�1

���� , (13.3)

with strides (i.e., the total number of level L blocks in the grid in the
emulated directions � j)

σj :�

���
���

1 for 0 � j � d�L� � 1,

σj�1 �

�
Nj

L�1�
��1

ñ���j

�
for d�L� � j � D

(13.4)

For 1 � j � d�L� � 1, we set ĩ�L�j � i�L�j .
Note that the factor in the definition of σj corresponds to the number

of blocks being multiplied together in Eqn. 13.2. Also note that Eqn. 13.3
solves the equation

i�L�
d�L� �

D�
k�d�L�

ĩ�L�k σk�1

iteratively for the unknowns ĩ�L�
d�L� , ĩ�L�

d�L��1
, . . . ĩ�L�D�1, ĩ�L�D . This equation cor-

responds to the calculation of a linearized index (Eqn. 13.1), with the
block sizes n� written as strides σ�. (Indeed, set nj �

�
Nj

��L�1
��1 ñ���j

�
and cf. Eqn. 13.4.) In this case, however, the linearized index (the left
hand side) is given, and the coordinates of the multi-dimensional index
are sought.

Now, the total global index
�
î1, î2, . . . , îD

�
is calculated using the ex-

panded indices and block sizes by

îj :� ĩ�1�j � ñ�1�j

�
ĩ�2�j � ñ�2�j

�
� � �
�

ĩ�L�1�
j � ñ�L�1�

j � ĩ�L�j

�
� � �
��

�j � 1, . . . , D�.

214 CHAPTER 13. GENERATING CODE: INSTANTIATING STRATEGIES

Example 13.2: Calculating a 3D index from a 1D OpenMP thread ID.

The target dimensionality is D � 3, and we have one indexing
level, hence L � 1. Also, d�1� � min�1, 3� � 1. i�1�1 � thdid and
n�1�

1 � numthds.

ñ�1�
1 �

3�
k�1

�Nk�1� � N1N2N3

σ0 � 1, σ1 � σ0 �N1�1� � N1, σ2 � σ1 �N2�1� � N1N2

z � ĩ�1�3 �
��

i�1�1 � 0
��

σ2

�
� �thdid�σ2�

y � ĩ�1�2 �
��

i�1�1 � ĩ�1�3 σ2

��
σ1

�
�
�
thdid� ĩ�1�3 σ2

�
N1

�

x � ĩ�1�1 �
��

i�1�1 � ĩ�1�2 σ1 � ĩ�1�3 σ2

��
σ0

�
� thdid� ĩ�1�2 σ1 ĩ�1�3 σ2.

Example 13.3: Some concrete numbers...

In Example 13.2, set N1 � 4, N2 � 3, N3 � 2. Then, σ0 � 1,
σ1 � N1 � 4, σ2 � N1N2 � 12. In the figure we can see that the thread
with ID 23 is mapped to the coordinates �3, 2, 1�. Indeed, from the
formulae in Example 13.2 we have

z � �23�12� � 1
y � ��23 � 1 � 12��4� � 2
x � 23 � 1 � 12 � 2 � 4 � 3.

Example 13.4: 1D indexing on a CUDA GPU for blocks and grids. 3D target.

Here, again D � 3 and L � 2, but we set d�1� � d�2� � 1.
Level 1: i�1�1 � threadIdx.x, n�1�

1 � blockDim.x.
Level 2: i�2�1 � blockIdx.x, n�2�

1 � gridDim.x.

13.2. INDEX CALCULATIONS 215

Example 13.4: 1D indexing on a CUDA GPU for blocks and grids. 3D target. (cont.)

To compute the global index �x, y, z�, we calculate

σ0 � 1,

σ1 � σ0 � �N1�blockDim.x� ,

σ2 � σ1 � �N2�1� � σ1N2

ĩ�2�3 �
�
i�2�1

�
σ2

�
� �blockIdx.x�σ2�

ĩ�2�2 �
��

i�2�2 � ĩ�2�3 � σ2

��
σ1

�

ĩ�2�1 � i�2�2 � ĩ�2�2 � σ1 � ĩ�2�3 � σ2

x � threadIdx.x� blockDim.x � ĩ�2�1

y � 0� 1 � ĩ�2�2 � ĩ�2�2

z � 0� 1 � ĩ�2�3 � ĩ�2�3

Example 13.5: CUDA GPU with 3D thread blocks and 2D grids. 3D target.

The target dimensionality is specified to be 3, so D � 3. We have
two levels of indices, threads and blocks, hence L � 2. Furthermore,
we have d�1� � min�3, 3� � 2 and d�2� � min�2, 3� � 2.

Level 1:�
i�1�1 , i�1�2 , i�1�3

�
� �threadIdx.x, threadIdx.y, threadIdx.z�,�

n�1�
1 , n�1�

2 , n�1�
3

�
� �blockDim.x, blockDim.y, blockDim.z�.

Level 2:�
i�2�1 , i�2�2

�
� �blockIdx.x, blockIdx.y�,�

n�2�
1 , n�2�

2

�
� �gridDim.x, gridDim.y�.

The global index �x, y, z� is calculated as follows:

σ1 � 1

σ2 � σ1 � �N2�blockDim.y�

216 CHAPTER 13. GENERATING CODE: INSTANTIATING STRATEGIES

Example 13.5: CUDA GPU with 3D thread blocks and 2D grids. 3D target. (cont.)

ĩ�2�3 �

�
i�2�2

�
σ2

�
� �blockIdx.y�σ2�

ĩ�2�2 �
��

i�2�2 � ĩ�2�3 � σ2

��
σ1

�
� i�2�2 � ĩ�2�3 � σ2

x � threadIdx.x� blockDim.x � blockIdx.x

y � threadIdx.y� blockDim.y � ĩ�2�2

z � threadIdx.z� blockDim.z � ĩ�2�3

Chapter 14

Internal Code Optimizations

Still it is a very important case as regards the
engine, and suggests ideas peculiar to itself,
which we should regret to pass wholly
without allusion. Nothing could be more
interesting than to follow out, in every detail,
the solution by the engine of such a case as
the above; but the time, space and labour this
would necessitate, could only suit a very
extensive work.

— Ada Lovelace (1815–1852)

In this chapter, code transformations are described which are not con-
trolled by Strategies. They are complementary optimizations, which the
user can control on the PATUS command line when the code is gener-
ated. Currently, these code optimizations comprise loop unrolling and
(explicit) vectorization.

In contrast to the optimization concepts provided by Strategies, in-
ternal code optimizations are not parameterizable in the same way as,
e.g., cache block sizes. Parameters defined in a Strategy can be incorpo-
rated symbolically into the generated code and do not need to be known
at code generation time, whereas the internal code optimizations alter
the structure of the generated code. Hence parameters to internal code
optimizations need to be known at code generation time. The optimiza-

218 CHAPTER 14. INTERNAL CODE OPTIMIZATIONS

tions described here generate multiple code variants, from which one is
selected when the program is run. In the file containing the generated
kernels there will indeed by one function for each loop unrolling variant,
provided that different loop unrolling configurations are to be generated,
along with one master function selecting one of the variants based on a pa-
rameter.

14.1 Loop Unrolling

Assuming that the stencil on the grid points can be evaluated in any or-
der (e.g., using the Jacobi iteration, the loops sweeping over the spatial
domain are fully permutable), we can do loop unrolling not only in one,
the inner-most, loop, but also unroll the enclosing loops, while collaps-
ing the inner loops and pull the loop bodies, the actual computation, into
the inner-most loop in an unroll-and-jam [29] kind of way. Hence, all d
loops sweeping over a d-dimensional block of data are unrolled simulta-
neously, thus providing another level of blocking. This transformation is
also referred to as register blocking [52]. The idea is illustrated in Listing
14.1 for d � 2 and unrolling factors of 2 for each of the loops in the nest.

Listing 14.1: Unrolling a loop nest.

1: // original loop nest

2: for i = imin . . imax

3: for j = jmin . . jmax

4: S (i , j)
5:
6: // unrolled loop nest

7: for i = imin . . imax by 2
8: for j = jmin . . jmax by 2
9: S (i , j)

10: S (i , j+1)
11: S (i+1 ,j)
12: S (i+1 ,j+1)

Special treatment is required when the number of iterations is not di-
visible by the unrolling factor. In that case, cleanup loops have to be
added which handle the remaining iterations. Algorithm 14.1 shows the
method PATUS uses to unroll loop nests. Creating the unrolled and the

14.1. LOOP UNROLLING 219

cleanup loops is done recursively. Unrolling is only applied to the inner-
most subdomain iterator of a Strategy containing a stencil call.

Algorithm 14.1: Creating an unrolled loop nest in PATUS.

1: function UNROLL(it, config, dim, unroll)
2: AST � ��

3: if dim � 0 then � create unrolled loop
4: loopunrolled � createLoopHead (it, dim, unrolldim)
5: loopunrolled.setBody (unroll (it, config��unrolldim�, dim �1))
6: AST.add (loopunrolled)
7: if unrolldim � 1 then � create cleanup loop
8: loopcleanup � createLoopHead (it, dim, 1)
9: loopcleanup.setBody (unroll (it, config��1�, dim �1))

10: AST.add (loopcleanup)
11: end if
12: else
13: AST.add (generateUnrolledLoopBody (it, config))
14: end if
15: return AST
16: end function

The function UNROLL expects three parameters, the subdomain iter-
ator it, which we want to unroll, a configuration config, which encodes
which loops being unrolled in the current state of the recursion, and for
which loops cleanup loops are being generated. The parameter dim spec-
ifies which dimension of the subdomain iterator it is to be processed, and
unroll is the desired unrolling configuration for the loop nest. For in-
stance, if it is a 3-dimensional subdomain iterator and we want to unroll
twice in the first dimension and four times in the second and third, unroll
would be the vector �2, 4, 4	. The initial call to the function is

UNROLL�it, ��, d, desired unrolling configuration	,

where d is the dimensionality of the block the subdomain iterator it it-
erates through, and an empty set is passed as configuration. An empty
local AST is created, to which the loop head of the unrolled loop and the
cleanup loop are added, and which is returned by the function. The bod-
ies of the unrolled and cleanup loops are the recursively generated ASTs
by UNROLL with dim decremented, or the actual computation if dim has
reached 0 at the leafs of the recursion tree.

220 CHAPTER 14. INTERNAL CODE OPTIMIZATIONS

The listing in Example 14.1 shows the code generated by UNROLL for
a 3-dimensional subdomain iterator v with unroll � �4, 4, 4�. Every for

loop in which the loop index is incremented by 4 is therefore an unrolled
loop, all the loops with one increments are cleanup loops. Note that in the
unrolled loops the original upper loop bounds were reduced by 3 (which
is unrolldim � 1) so that the upper bounds are not overshot, and that the
initialization of the loop index in the cleanup loops is omitted so that the
cleanup loops pick up where the unrolled loops left off.

Example 14.1: Loop nests produced by unrolling.

This listing shows an inner-most loop nest over points p �

�p idx x, p idx y, p idx z� in a 3D subdomain v � �v idx x,
v idx y, v idx z�:

1: for (p_idx_z = v_idx_z ; p_idx_z < v_idx_z_max � 3 ;
2: p_idx_z += 4)
3: {
4: for (p_idx_y = v_idx_y ; p_idx_y < v_idx_y_max � 3 ;
5: p_idx_y += 4)
6: {
7: for (p_idx_x = v_idx_x ; p_idx_x < v_idx_x_max � 3 ;
8: p_idx_x += 4)
9: {

10: // (4, 4, 4)-unrolled stencil code

11: }
12: for (; p_idx_x < v_idx_x_max ; p_idx_x += 1)
13: // (1, 4, 4)-unrolled stencil code

14: }
15: for (; p_idx_y < v_idx_y_max ; p_idx_y += 1) {
16: for (p_idx_x = v_idx_x ; p_idx_x < v_idx_x_max � 3 ;
17: p_idx_x += 4)
18: {
19: // (4, 1, 4)-unrolled stencil code

20: }
21: for (; p_idx_x < v_idx_x_max ; p_idx_x += 1)
22: // (1, 1, 4)-unrolled stencil code

23: }
24: }
25: for (; p_idx_z < v_idx_z_max ; p_idx_z += 1) {
26: for (p_idx_y=v_idx_y ; p_idx_y < v_idx_y_max � 3 ;
27: p_idx_y += 4)
28: {
29: for (p_idx_x = v_idx_x ; p_idx_x < v_idx_x_max � 3 ;
30: p_idx_x += 4)

14.2. DEALING WITH MULTIPLE CODE VARIANTS 221

Example 14.1: Loop nests produced by unrolling. (cont.)

31: {
32: // (4, 4, 1)-unrolled stencil code

33: }
34: for (; p_idx_x < v_idx_x_max ; p_idx_x += 1)
35: // (1, 4, 1)-unrolled stencil code

36: }
37: for (; p_idx_y<v_idx_y_max ; p_idx_y += 1) {
38: for (p_idx_x = v_idx_x ; p_idx_x < v_idx_x_max � 3 ;
39: p_idx_x += 4)
40: {
41: // (4, 1, 1)-unrolled stencil code

42: }
43: for (; p_idx_x < v_idx_x_max ; p_idx_x += 1)
44: // (1, 1, 1)-unrolled stencil code

45: }
46: }

14.2 Dealing With Multiple Code Variants

Having code generation options which create a multitude of code vari-
ants is managed in the internal representation through statement list bun-
dles: each element of the bundle corresponds to one configuration in the
product space of the code generation options. This allows us to do only
one code generation pass through the Strategy tree instead of as many as
there are code variants. Adding a statement to a bundle means adding
the statement to all the statement lists within the bundle. Adding a state-
ment specific to one configuration of a code generation option means
adding that statement to only the elements in the bundle with the match-
ing configuration of that code generation option.

Suppose there are two code generation options generating multiple
code variants, loop unrolling and software prefetching, for which a num-
ber of different implementations are provided�. Then, the stencil call
within the inner-most spatial loop affects loop unrolling, but not soft-
ware prefetching. For each loop unrolling configuration, the same un-
rolled statements are added to each of the statement lists within the bun-
dle, which are tagged with the respective loop unrolling configuration,

�This example is just for illustration; currently no software prefetching has been
implemented in PATUS.

222 CHAPTER 14. INTERNAL CODE OPTIMIZATIONS

but regardless of the configuration of the lists software prefetching op-
tion tag, i.e., it is added to as many statement lists as there are software
prefetching configurations.

14.3 Vectorization

Stencil computations naturally exhibit a large amount of data parallelism:
the same arithmetic operations are performed on each point of the input
grids (again assuming that the spatial loops are fully permutable). In
particular, if we are free to traverse the grid in any order, we may choose
to group consecutive elements in unit stride direction, and the compu-
tation becomes highly vectorizable. (In a red-black Gauss-Seidel scheme
which computes only every other element within a sweep, vectorization
obviously becomes less straightforward, though.)

For instance, when vectorized, the scalar assignment statement of a
1D 3-point stencil

u�x; t� 1� � u�x� 1; t� � u�x; t� � u�x� 1; t�

becomes

u�x : x� 3; t� 1� � u�x� 1 : x� 2; t� � u�x : x� 3; t� � u�x� 1 : x� 4; t�

if the length of a SIMD vector is 4 as is the case for the SSE single preci-
sion floating point data type. Unlike the general Fortran vector notation,
when making use of low-level optimizations such as explicitly generat-
ing SSE code, the length of the vectors is dictated by the hardware and
fixed.

In practice, there are at least two issues which make vectorization
more complicated than illustrated above. Firstly, the number of grid
points to compute may not be a multiple of the SIMD vector length. Thus,
the excess grid points need to be treated specially in an epilogue loop,
which does the computation in a scalar fashion. Secondly, the hardware
may impose alignment restrictions. In SSE, if a vector read or written
is not aligned at 16 Byte boundaries, which is the width of SSE vectors,
there is a performance penalty. In fact, there are two specialized SSE in-
structions, movaps, which loads only aligned single precision data into an
SSE register, and movups, which can also load unaligned data. movaps is
fast, but the processor throws an exception if the alignment restriction is
violated. movups has several cycles more latency, but it works in any case.

14.3. VECTORIZATION 223

On other hardware, such as the Cell Broadband Engine Architecture, un-
aligned moves are not possible, i.e., if not correctly aligned data is tried
to be brought into a register, always an exception will be thrown.

In the above example, if x � 0 mod 4, u�x : x � 3; t� is a SIMD vector
aligned at vector boundaries, but both u�x � 1 : x � 2; t� and u�x � 1 :
x � 4; t� are not. These vectors could be loaded with a slower unaligned
move instruction. Shuffle or select instructions, respectively, are another
way around this: using such instructions, a new vector can be created
from two input operands and a mask that specifies which bits of the two
inputs are copied to which bits of the output. PATUS uses this approach
and expects a recipe for using shuffle intrinsics in the code generation
back-end for the respective architecture. For mixed-type computations
for data types with SIMD vector lengths λ1, . . . , λk, we require that the
alignment restriction requirements be replaced by Λ :� lcm�λ1, . . . , λk�.

In multiple dimensions, as the data is stored linearly in memory, it
makes sense to do the vectorization only in the unit stride dimension.
Alignment considerations, however, apply to any dimension: in 3D, as-
suming that x is the unit stride dimension and that z is the dimension
varying slowest in memory, whether or not u�x, y � δ, z; t� is aligned at
SIMD vector boundaries, does not depend on δ alone, but on the number
of in-memory grid points in the x direction, X. In particular, if X is di-
visible by the SIMD vector length, then u�x, y � δ, z; t� is aligned for any
δ 	 Z. Note that in that case u�x, y, z � δ; t� is aligned as well. There-
fore, PATUS assumes that X is a multiple of the SIMD vector length, thus
shuffle instructions or unaligned moves are not necessary in the y and z
dimensions. This requirement is not as restrictive as it may seem; it does
not require that the number of computed grid points in the unit stride
dimension is a multiple of the SIMD vector length, only that the num-
ber of elements in memory meets the condition. This can be achieved
by padding the grid array in the unit stride direction�. Yet, compilers
have to err on the conservative side and cannot make such assumptions.
Even when a simple stencil code is automatically vectorized by a com-
piler, the performance benefit is not drastic. In fact, Intel’s C compiler,
icc v11.1, refuses to vectorize the code when compiled with the -O3 op-
timizing option. It does vectorize when optimization is set to -fast, but
the performance gain is negligible.

�The benchmarking harness does not do the padding automatically. If SIMD code is
generated and the condition is not met, a warning is displayed, and the benchmarking
executable terminates.

224 CHAPTER 14. INTERNAL CODE OPTIMIZATIONS

Figure 14.1: Alignments in native SIMD data type vectorization mode.

PATUS supports two modes of vectorization. Either native SIMD data
types are used throughout the kernel, which also implies that the stencil
kernel function expects grid arrays typed as native SIMD vectors (e.g.,

m128 in case of SSE). The other mode allows grids to be declared as
arrays of “regular” data types, which are then re-interpreted as SIMD
vectors for the calculation.

Native SIMD Data Types

In this mode, a SIMD vector is treated as an entity, and the inner most
loop in the generated code containing the stencil expression iterates over
vectors of grid points. Using native SIMD data types automatically en-
sures that data is aligned at SIMD vector boundaries. However, the PA-
TUS code generator expects that certain alignment properties are met in
unit stride direction (which have to be fulfilled by the code calling the
generated stencil kernel): as shown in Fig. 14.1, the start of the interior
area must be aligned at a SIMD vector boundary, and the size of the in-
terior of the domain has to be divisible by the SIMD vector width. The
domain boundaries and ghost zones have to be padded to full multiples
of SIMD vector lengths. If parallelization along the unit stride direction
is done, PATUS will automatically take care of dividing the domain along
SIMD vector boundaries and of adding the appropriate ghost zones.

This version of vectorization carries less overhead; there are no cleanup
loops which are required to deal with non-native SIMD data types. How-
ever, code vectorized in this fashion is not trivial to integrate into existing
codes. On the command line, native SIMD data type vectorization can be

14.3. VECTORIZATION 225

turned on by setting the option --use-native-simd-datatypes=yes. It is
turned off by default. Also, the benchmark results presented in Chapter
10 were not done in this mode.

Non-Native SIMD Data Types

In non-native SIMD data type mode, grids are declared as arrays of regu-
lar floating point data types (float, double) and passed as as such to the
stencil kernel function. In this mode we do not make any assumptions
on the alignment of inner nodes as restrictive as in native SIMD mode.
However, we make the assumption that the number of grid points in the
full grid in unit stride direction is divisible by the SIMD vector length.
This requirement allows to forgo shuffle or unaligned move instructions
when accessing neighboring points in non-unit stride directions as dis-
cussed above.

Non-native SIMD data type vectorization is associated and tightly in-
tegrated with loop unrolling. It only affects the inner-most loop directly
containing the stencil call, though. This loop is split into three loops:

• The prologue loop does scalar stencil computations for as many iter-
ations until the output grid node is aligned at a vector boundary.
The number of iterations in the prologue loop is determined by the
address of the first output grid node to which data is written to
and the SIMD vector width. We assume that all the grids passed to
the stencil kernel are aligned at vector boundaries. An example is
shown in Example 14.2. Assuming a SIMD vector is 16 Bytes long
and idx0 points to the first computed grid point in u, prologend
calculates the end index for the prologue loop.

• The main loop is the loop which does the bulk of the computation in
a vectorized fashion, and which also is unrolled if the loop unrolling
configuration asks to unroll the inner-most loop. In the listing in
Example 14.2, the loop is unrolled twice, and hence the index of the
main loop is incremented by twice the SSE single precision vector
length after each iteration.

• The epilogue loop is what corresponds to the cleanup loop for loop
unrolling. It processes the remaining iterates in a scalar manner. If
the main loop was unrolled, the first iterates of the epilogue loop
could be vectorized, but this was omitted in favor of less loop con-
trol overhead.

226 CHAPTER 14. INTERNAL CODE OPTIMIZATIONS

Example 14.2: Non-native SIMD data type vectorization.

This listing shows the prologue, main, and epilogue loops in non-
native SIMD data type vectorization.

1: prologend = min (
2: v_idx_x + (16 � (((uintptr_t) &u [idx0]) + 15) & 15) /
3: sizeof (float) ,
4: v_idx_x_max) ;
5:
6: // prolog loop

7: for (p_idx_x = v_idx_x ; p_idx_x < prologend ; p_idx_x++) {
8: // scalar stencil code

9: }
10:
11: // main loop

12: for (; p_idx_x < v_idx_x_max � 7 ; p_idx_x += 8) {
13: // vectorized and unrolled stencil code

14: }
15:
16: // epilog loop

17: for (; p_idx_x < v_idx_x_max ; p_idx_x++) {
18: // scalar stencil code

19: }

The length of data vectors per data type is specified by the architecture
description. It also provides a mapping from arithmetic operation-data
type pairs to vector intrinsics replacing the arithmetic operation. Addi-
tionally, if there is no intrinsic available for a certain type of operation,
the code generator back-end can also be modified so as to provide an
architecture-specific implementation for that operation. In this way, flex-
ibility is guaranteed that the vectorization can be mapped to any archi-
tecture supporting a SIMD mode and to any implementation of the SIMD
mode, such as SSE or AVX.

Listing 14.2 is an extract from an architecture description and shows
how scalar data types, float and double, are mapped to their respec-
tive SSE data types, m128 and m128d, of SIMD vector length 4 and
2, respectively; and it shows how arithmetic operations (addition, sub-
traction, multiplication, division, and a function — exemplified by the
square root extraction) are mapped onto the double precision SSE intrin-
sics mm add pd, mm sub pd, mm mul pd, mm div pd, mm sqrt pd.

14.3. VECTORIZATION 227

Listing 14.2: Mapping primitive types and operators to SSE equivalents.

1: <?xml version ="1.0"?>
2: <architectureTypes >
3: <!-- Intel x86_64 architecture with SSE ,
4: OpenMP parallelization -->
5: <architectureType name="Intel x86_64 SSE">
6: <datatypes >
7: <datatype basetype="float" name="__m128"
8: simdVectorLength="4"/>
9: <datatype basetype="double" name="__m128d"

10: simdVectorLength="2"/>
11: </datatypes >
12: <intrinsics >
13: <intrinsic baseName="plus" name="_mm_add_pd"
14: datatype="__m128d"/>
15: <intrinsic baseName="minus" name="_mm_sub_pd" .../>
16: <intrinsic baseName="multiply" name="_mm_mul_pd" .../>
17: <intrinsic baseName="divide" name="_mm_div_pd" .../>
18: <intrinsic baseName="sqrt" name="_mm_sqrt_pd" .../>
19: ...
20: </intrinsics >
21: ...
22: </architectureType >
23: </architectureTypes >

As with any form of parallel execution involving floating point arith-
metic, it cannot be guaranteed that the result of the computation is the
same as if the computation had been carried out sequentially. This is
due to the fact that floating point arithmetic breaks the associativity law,
i.e., the sequence of operations has an influence on the result. In particu-
lar, PATUS’s stencil specification parser interprets non-bracketed expres-
sions (e.g., a1 � a2 � a3 � . . .) in such a way that a balanced expression
tree is created, i.e., has as minimum depth. For instance, the expression
a1 � a2 � a3 � a4 would be interpreted as ��a1 � a2� � �a3 � a4��. This is
done in the hope that as many temporary subexpressions as possible can
be calculated independently and therefore that instruction level paral-
lelism is maximized. As binary expressions are translated from this rep-
resentation to vector intrinsics, the shape of the expression tree dictates
the sequence in which the vector intrinsics are executed, which might
differ from the sequence which a vectorizing compiler would generate or
from the sequence the expression is executed using scalar values.

228 CHAPTER 14. INTERNAL CODE OPTIMIZATIONS

14.4 NUMA-Awareness

NUMA-Awareness of the stencil code is achieved by providing a data
initialization function along with the actual stencil compute kernel func-
tion, which is also parallelized in the same way as the compute kernel
and initializes all the grids used by the stencil kernel. Using the same par-
allelization as the stencil function ensures that the data used for compu-
tation later on is made local to the CPU cores as detailed in Chapter 6.4.2
— as long as the system implements a first touch policy. The user should
invoke this initialization function directly after allocating the data. If pos-
sible, the initialization routine can also be modified to reflect the actual
application-specific initial conditions. This can have a beneficial impact
on the cache performance. If the data is initialized with the real initial
conditions separately and later, the cache data locality established in the
initialization function provided by PATUS might be destroyed (in partic-
ular, if the real initialization is done sequentially).

Part V

Conclusions & Outlook

Chapter 15

Conclusion and Outlook

While parallel machines of yesteryear may
have been constructed of enchanted metals
and powered by unicorn tears, today’s
parallel machines are as common — and
nearly as inexpensive — as hamburgers.

Steve Teixeira, April 19, 2010

In this thesis, we presented PATUS, a software framework for gener-
ating stencil codes from a high-level, portable specification in a domain
specific language (DSL). By using this approach, we expressed our be-
lief that domain specific languages are an effective means to bridge pro-
grammer productivity, reusability, and the ability to deliver performance,
albeit sacrificing generality of the language.

Developments in hardware have driven us to a point at which it be-
comes troublesome to write programs which can fully exploit a machine’s
compute power. Parallelization, sophisticated program transformations,
and hardware-specific optimizations are required, which, however, are
error-prone and at odds with the need for productivity: carrying out
these transformations manually not only render the code unmaintain-
able, but also tie it to the particular platform for which it has been crafted,
i.e., the code becomes non-portable. Recently, the comeback of hardware
accelerators, which show a tremendous performance potential for certain
types of code structures and therefore can be highly attractive, has added

232 CHAPTER 15. CONCLUSION AND OUTLOOK

to complicate the picture. Typically they require their own programming
model; thus heterogeneous hardware has to be addressed in a heteroge-
neous coding style.

Traditionally, the burden of transforming a portable code (e.g., writ-
ten in ANSI C or Fortran, which are still the prevalent languages in sci-
entific computing) into a code adapted to the target hardware platform
was laid on the compiler. Yet, we have come to accept that sophisticated
transformations, in particular parallelization, which might require new,
specifically tailored algorithms, are beyond the compiler’s reach. Hence,
we believe that concentrating on a specific domain for which we possess
the knowledge of applicable, aggressive transformation and optimization
techniques, which might not be generally applicable, and encapsulating
these domains in concise domain specific languages, is a way to go for-
ward in maintaining both productivity and performance.

While complementary ongoing research focuses on the development
of new parallel languages, experience with these new languages — such
as Chapel — has shown that embracing productivity and generality comes,
at least to some extent, at the expense of performance. For instance, in an
experiment conducted with the students of the high performance com-
puting course at the University of Basel, we could observe that Chapel,
although it was given good productivity grades by the students, still lags
behind other programming models — in particular the DSL approach —
in terms of performance [27].

Domain specific languages are robust enough to support portability
across hardware platforms, therefore enabling code reusability: once a
port of the back-end to the target platform exists, any implementation in
the respective domain specific language automatically runs on the new
hardware. Thus, when the underlying hardware changes, or when a new
architecture emerges, domain specific languages are a way to support it
without having to rewrite the entire application.

We implemented this DSL idea exemplarily for the class of stencil
computations, the core computation of the structured grid motif in the
Berkeley terminology. Especially in scientific computing, but also in con-
sumer codes, stencil computations are an important class of computa-
tions. Indeed, the two applications presented in this thesis, which are
based on stencil computations, are targeted at medically, scientifically,
and socially relevant questions. Stencil computations arise in finite dif-
ference-type PDE solvers, and despite the finite element method being en
vogue, finite differences still enjoy considerable popularity for the sim-

233

plicity of the mathematical method and the simplicity of transferring it
to computer code.

We deliberately separated the algorithmic implementation from the
computation from the pointwise specification of the stencil structure, as
they are orthogonal concepts. In PATUS, an algorithmic implementation
is called a Strategy. Strategies are independent of both the stencil speci-
fication and of the hardware platform; to guarantee performance porta-
bility, auto-tuning is the methodology of choice: given a benchmark ex-
ecutable created from the stencil specification and the Strategy, we em-
ploy a search method to find the Strategy parameter combination (and
even possibly a Strategy from a predefined set) which delivers the best
performance on the hardware platform under consideration. The auto-
tuning methodology has been adopted successfully in a number of sci-
entific libraries, and we believe that auto-tuners will play an increasingly
important role, complementing and supporting compilers, or in the fu-
ture of increasingly complex and diverse hardware architectures. Using
this combined DSL and auto-tuning approach, we were able to present
some promising results in terms of performance for a broad range of sten-
cils on three different hardware platforms.

Looking Forward

The work described in this thesis is but a beginning, and a lot remains
to be done. In the near future, technicalities, such as CUDA-specific opti-
mizations (taking care of hardware particularities, e.g., alignment of data,
making use of shared memory and registers) or a distributed memory
back-end need to be addressed, and extending the code generator to fully
support temporally blocked methods.

Boundary conditions are a concern as they are one of the defining as-
pects of stencil codes. So far, PATUS can handle boundaries only by defin-
ing specific boundary stencils, which then are applied to the the bound-
ary data after doing the inner sweep, or by incorporating the boundary
calculation into coefficient data. The two real-world application codes
incidentally met this assumption. However, multi-time step methods
clearly cannot be applied in the former approach. Hence, when going
forward to supporting such methods through strategies, boundary han-
dling within the stencil kernel becomes essential, albeit non-trivial.

The auto-tuner should support tuning multiple stencils or multiple

234 CHAPTER 15. CONCLUSION AND OUTLOOK

problem sizes at once by tuning over distributions rather than a single
stencil and problem size. Also, we need to make advances in automating
parts of the tool that have to be done manually for the time being, such as
devising a method to generate an auto-tuner configuration script based
on the Strategy.

Programming more complex Strategies could prove to error-prone,
and errors might be hard to detect. Sketching, i.e., leaving hard-to-get-
right expressions unspecified and rely on a SAT solver for finding the
correct completions based on a reference implementation is an appealing
option to be explored, as it was successfully applied to stencil computa-
tions in [148], although without the idea of separating the actual stencil
expression from the algorithm.

For production use of the tool, tighter integration of PATUS into ex-
isting tool chains might be desirable. We chose to define our own do-
main specific language for stencil specifications. This more light weight
approach has the advantage that we have the guarantee that the input
is indeed as stencil, rendering the need for additional code analysis de-
tecting stencil expressions unnecessary. It also guarantees that we are
given exact control over the supported computation structures. This fa-
cilitates code generator features such as vectorization. However, the in-
ternal representation of a stencil is not tied to the stencil specification lan-
guage. Therefore, PATUS can be extended modularly to support other
stencil specification syntaxes by providing the corresponding parser; the
actual code generator, the Strategy machinery, and the back-ends do not
have to be touched. For instance, a parser could be added which accepts
annotated Fortran as input format. This, of course, changes nothing in
the philosophy of the approach: the stencil is still specified in a domain
specific language, now embedded into a host language (Fortran).

Thinking further in this direction, we also may want to consider com-
posability of DSLs, realizing that real applications have a variety of com-
ponents which could be captured by (a variety of) DSLs. Language vir-
tualization is an appealing concept which could provide this. However,
the performance aspect currently ties the target language to a selection
of low-level, close-to-the-metal languages. Language virtualization does
allow a code generation approach by lifting the program to an internal
AST-like representation, but an effective mechanism must be found for
the interoperability between the host language and the generated code.

In a broader context, as parallel computing becomes the norm rather

235

than the exception, the disciplines of software engineering and high per-
formance computing will have to inspire each other. For instance, today,
high performance computing applications are typically monolithic pieces
of software; the typical established reuse and composability principles
in scientific computing are through library calls, and even when using
parallel libraries technical difficulties need to be overcome: threaded li-
braries are parallelized with OpenMP, Intel’s Threading Building Blocks,
Cilk++, or some other threading library, and contain their own resource
management. Thus, when an application utilizes multiple threaded li-
braries, the performance can suffer from destructive interference of the
libraries caused by over-subscription of the hardware resources. The
problem really lies in the way how operating systems virtualize hard-
ware resources. Two or more software threads sharing a single hardware
thread force frequent context switches and abet cache trashing, thus de-
grading performance. Therefore it is desirable that libraries rely on a
common resource management infrastructure such as Lithe [128], which
advocates that the caller allocates resources for the callee and provides
a mechanism precluding over-subscription of the hardware resources. It
proposes the use of actual hardware threads (“harts”) rather than virtual
software threads.

Altering scientific questions to be answered by a simulation might en-
tail non-trivial modifications of the simulation software. If a simulation
could be pieced together from black box components which are accessi-
ble through a well-defined interface, they would become faster to build
and more maintainable. Efforts in the direction of composable scientific
software are addressed by the Common Component Architecture Forum
[1]. In consumer and business informatics, such component systems are
known in the form of the service-oriented architecture (SOA) architec-
tural pattern. For instance, web services are a concrete instantiation of
SOA. The interface of a web service is exposed through a clearly defined
description in an interface definition language: the web service descrip-
tion language (WDSL), which eases the composability of web services
without the need of knowing their internals.

Other inter-disciplinary cooperations must include tight integration
of the hardware- and software design processes. One of the problems en-
countered when microprocessor manufacturers and software developers
each go their own way in optimizing their designs is that processors are
optimized based on fixed benchmark codes, or even fixed benchmark bi-

236 CHAPTER 15. CONCLUSION AND OUTLOOK

naries, and software is optimized for a given, existing hardware platform.
A path is taken in the hardware/software design space that successively
builds on results of the complementary domain, and is prone to steer to-
wards a local optimum.

With this difficulty in mind, one of the ideas for implementing an exa-
scale system by the end of the decade is an approach which brings both
areas together: hardware/software co-design. The hope is that, based
on design interaction, a path can be taken towards a global rather than
merely a local optimum and that the development cycle can be substan-
tially accelerated.

In the past, such approaches have been taken. A prominent exam-
ple is the Gravity Pipe — short: GRAPE — computer, a hardware specif-
ically designed for computing stellar dynamics calculations. The project
was started in 1989 and won the Gordon Bell Prize in the special-purpose
machines category in 1995 and in the price performance category in 1999
[147]. However, GRAPE was overtaken by the brute-force improvements
of clock frequency scaling in the commodity market.

Now that frequency scaling has come to a halt, the idea for special-
purpose machines has become attractive again. Rather than limiting prob-
lems that can be solved on current machines, the relevant question to
answer relevant scientific issues — such as climate change — is what
machine is needed to address that scientific problem. Many of today’s
outstanding scientific questions call for substantially increased compute
requirements so that they can be answered. Greenflash [168] is a project
that works in the direction of a special-purpose hardware platform for
climate simulations. A study has been conducted for an application-
targeted exa-scale machine implemented by using mainstream embed-
ded design processes. The study concluded that in this particular case a
custom system consisting of Tensilica XTensa processors with small cores,
tailored to the computational requirements following an embedded de-
sign philosophy, has both a considerably lower cost and is significantly
more power efficient than AMD Opteron-based or a Blue Gene/P system
with comparable application-specific performance characteristics.

Processor performance emulation based on the target application prior
to manufacturing the actual hardware allows efficient design process iter-
ations. However, emulating a system, especially a large parallel system,
in software is too slow to be practical. As a remedy, in [167] a research
accelerator for multi-processors (“RAMP”) is proposed. RAMP is a sys-
tem which emulates microprocessors based on FPGAs. This reduces the

237

slowdown compared to the actual system to a feasible range of 1–2 orders
of magnitude. It therefore permits performance assessment of the entire
application rather than of simplified kernels. It also allows an effective
co-tuning approach: decisions about the hardware design can be made
based on performance data from (auto-) tuned code instead of fixed code
instances.

For a broader context than one specific target application, motifs can
be helpful in the co-design process. The intention behind TORCH [91]
is to create a kernel reference testbed to drive hardware/software co-
design. To this end, it provides a high-level description of algorithmic in-
stances within motifs, reference implementations, generators for scalable
input data sets, and verification mechanisms. As a basis for hardware
and software optimization research, it aims at being agnostic of hard-
ware and software instances and of algorithms developed and tuned for
these ecosystems.

Whether scientific simulations, which are to run on large supercom-
puter systems, or personal computing is targeted, the current hardware
trends dictate that parallel computing permeate all disciplines in com-
puter science. Parallelism has grown from the niche reserved to scien-
tific computing and supercomputing specialists to a crosscutting concern;
parallelism has become a mainstream matter. Gradually, parallel con-
structs have begun to seep into standard APIs, e.g., in the form of Java’s
concurrency package or as new features of Microsoft’s Visual Studio in
the form of the parallel .NET extensions or parallel libraries, and tak-
ing advantage of new language constructs to ease parallel programming,
such as lambda expressions defined in the upcoming C++0x standard
[158]. Simultaneously, new languages with inherent support for concur-
rency are being developed.

The ubiquity of parallelism obviously has consequences for educa-
tion as well. Instead of being taught in advanced classes in the com-
puter science curriculum, parallel programming needs to be integrated
as one of the pillars in computer science and treated as self-evidently in
the undergraduate program, which is for instance proposed by the NSF-
TCPP [156]. It is encouraging to see that these ideas are gradually being
adopted worldwide.

Thus, there is hope that advances in other fields of computer science,
especially in software and algorithm engineering, can stimulate parallel
computing and vice versa, and that the general computer science com-

238 CHAPTER 15. CONCLUSION AND OUTLOOK

munity can ingest the lessons learned by the community of parallel com-
puting.

Bibliography

[1] The Common Component Architecture Forum. http://www.cca-forum.

org/. Accessed August 2011. [cited at p. 235]

[2] LANL Advanced Computing Laboratory. POOMA. http://acts.nersc.
gov/pooma/. Accessed July 2011. [cited at p. 52]

[3] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov. Numerical Linear Algebra on Emerg-
ing Architectures: The PLASMA and MAGMA Projects. J. Phys. Conf. Ser.,
180(1):1–5, July 2009. [cited at p. 51]

[4] Y. Ajima, S. Sumimoto, and T. Shimizu. Tofu: A 6D Mesh/Torus Inter-
connect for Exascale Computers. Computer, 42:36–40, November 2009.
[cited at p. 15]

[5] J. Allen. Dependence analysis for subscripted variables and its application to
program transformations. PhD thesis, Rice University, Houston, TX, USA,
1983. [cited at p. 36]

[6] G. Amdahl. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In Proc. AFIPS Spring Joint Computer Con-
ference 1967, pages 483–485, New York, NY, USA, 1967. ACM. [cited at p. 18]

[7] J. Ansel, Y. Won, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe.
Language and Compiler Support for Auto-Tuning Variable-Accuracy Al-
gorithms. Technical Report MIT-CSAIL-TR-2010-032, Massachusetts In-
stitute of Technology, Cambridge, MA, July 2010. [cited at p. 44]

[8] Applied Numerical Algorithms Group (ANAG), Lawrence Berkeley Na-
tional Laboratory, Berkeley, CA. Chombo Website. http://seesar.lbl.

gov/anag/chombo. Accessed July 2011. [cited at p. 87]

240 BIBLIOGRAPHY

[9] K. Asanović, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,
D. Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick. The Land-
scape of Parallel Computing Research: a View from Berkeley. Technical
Report UCB/EECS-2006-183, Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, December 2006. [cited at p. 4,

13, 45, 46, 50, 51]

[10] D. Bacon, S. Graham, and O. Sharp. Compiler Transformations for High-
Performance Computing. ACM Comput. Surv., 26:345–420, December
1994. [cited at p. 33, 34]

[11] H. Bae, L. Bachega, C. Dave, S. Lee, S. Lee, S. Min, R. Eigenmann, and
S. Midkiff. Cetus: A Source-to-Source Compiler Infrastructure for Multi-
cores. In Proc. Int’l Workshop on Compilers for Parallel Computing (CPC 2009),
2009. [cited at p. 189]

[12] G. Ballard, J. Demmel, and I. Dumitriu. Minimizing Communica-
tion for Eigenproblems and the Singular Value Decomposition. CoRR,
abs/1011.3077:1–44, 2010. [cited at p. 31]

[13] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Communication-
optimal Parallel and Sequential Cholesky Decomposition. SIAM J. Sci.
Comp., 32(6):3495–3523, 2010. [cited at p. 31]

[14] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, Norwell, MA, USA, 1988. [cited at p. 36]

[15] J. Barnes and P. Hut. A hierarchical O�N log N� force-calculation algo-
rithm. Nature, 324(6096):446–449, December 1986. [cited at p. 48]

[16] A. Basumallik, S. Min, and R. Eigenmann. Programming Distributed
Memory Sytems Using OpenMP. In Proc. IEEE Int’l Parallel & Distributed
Processing Symposium (IPDPS 2007), pages 1–8. IEEE Computer Society,
2007. [cited at p. 27]

[17] N. Bell and M. Garland. Efficient Sparse Matrix-Vector Multiplication on
CUDA. Technical report, NVIDIA Corporation, Santa Clara, CA, USA,
December 2008. [cited at p. 47]

[18] J. Berenger. A Perfectly Matched Layer for the Absorption of Electromag-
netic Waves. J. Comput. Phys., 114:185–200, October 1994. [cited at p. 69]

[19] M. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic Partial
Differential Equations. J. of Comput. Phys., 53:484–512, 1984. [cited at p. 49]

BIBLIOGRAPHY 241

[20] L. Beshenov. Maxima, a Computer Algebra System. http://maxima.

sourceforge.net/. Accessed July 2011. [cited at p. 189]

[21] A. Bhatele, P. Jetley, H. Gahvari, L. Wesolowski, W.D. Gropp, and L.V.
Kalé. Architectural Constraints to Attain 1 Exaflop/s for Three Scientific
Application Classes. In Proc. IEEE Int’l Parallel & Distributed Processing
Symposium (IPDPS 2011), May 2011. [cited at p. 9]

[22] C. Blum and A. Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput. Surv., 35:268–308,
September 2003. [cited at p. 130, 137]

[23] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A Prac-
tical Automatic Polyhedral Parallelizer and Locality Optimizer. In Proc.
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2008), 2008. [cited at p. 24, 87]

[24] U. Brüning. Exascale Computing - What is required for HW? Presentation,
Int’l Supercomputing Conference (ISC 2011), 2011. [cited at p. 15]

[25] W. Burger and M. Burge. Digital image processing: an algorithmic introduc-
tion using Java. Springer, 2008. [cited at p. 66]

[26] M. Burke and R. Cytron. Interprocedural dependence analysis and par-
allelization. In Proc. SIGPLAN Symposium on Compiler Construction (SIG-
PLAN 1986), pages 162–175. ACM, 1986. [cited at p. 36]

[27] H. Burkhart, M. Christen, M. Rietmann, M. Sathe, and O. Schenk. Run,
Stencil, Run! A Comparison of Modern Parallel Programming Paradigms.
In PARS-Mitteilungen 2011, 2011. [cited at p. 232]

[28] H. Burkhart, R. Frank, and G. Hächler. ALWAN: A Skeleton Programming
Language. In P. Ciancarini and C. Hankin, editors, Coordination Languages
and Models, volume 1061 of Lecture Notes in Computer Science, pages 407–
410. Springer Berlin / Heidelberg, 1996. [cited at p. 28]

[29] S. Carr and Y. Guan. Unroll-and-jam using uniformly generated sets. In
Proc. ACM/IEEE Int’l Symposium on Microarchitecture (MICRO 30), pages
349–357. IEEE Computer Society, 1997. [cited at p. 218]

[30] B. Catanzaro, S. Kamil, Y. Lee, K. Asanović, J. Demmel, K. Keutzer, J. Shalf,
K. Yelick, and A. Fox. SEJITS: Getting Productivity and Performance with
Selective Embedded JIT Specialization. In Proc. First Workshop on Pro-
grammable Models for Emerging Architecture (PMEA) at the ACM Int’l Confer-
ence on Parallel Architectures and Compilation Techniques (PACT 2009), 2009.
[cited at p. 44]

242 BIBLIOGRAPHY

[31] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. Sujeeth, P. Hanrahan,
M. Odersky, and K. Olukotun. Language Virtualization for Heteroge-
neous Parallel Computing. In Proc. ACM Int’l Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA 2010), pages
835–847, 2010. [cited at p. 43, 44]

[32] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and
the Chapel Language. Int. J. High Perform. Comput. Appl., 21:291–312, Au-
gust 2007. [cited at p. 30]

[33] B. Chamberlain, S. Choi, E. Lewis, L. Snyder, W. Weathersby, and C. Lin.
The Case for High-Level Parallel Programming in ZPL. IEEE Comput. Sci.
Eng., 5:76–86, July 1998. [cited at p. 30, 31]

[34] P. Charles, P. Cheng, C. Donawa, J. Dolby, P. Gallop, C. Grothoff, A. Kiel-
stra, and F. Pizlo. Report on the Experimental Language X10. Technical
report, IBM, 2006. [cited at p. 31]

[35] R. Chau. Integrated CMOS Tri-Gate Transistors. http://www.intel.

com/technology/silicon/integrated_cmos.htm. Accessed August 2011.
[cited at p. 11, 13]

[36] M. Christen, N. Keen, T. Ligocki, L. Oliker, J. Shalf, B. Van Straalen, and
S. Williams. Automatic Thread-Level Parallelization in the Chombo AMR
Library. Technical report, Lawrence Berkeley National Laboratory, Berke-
ley CA, USA / University of Basel, Switzerland, 2011. [cited at p. 87]

[37] M. Christen, O. Schenk, and H. Burkhart. Automatic Code Generation
and Tuning for Stencil Kernels on Modern Microarchitectures. In Proc.
Int’l Supercomputing Conference (ISC 2011), volume 26, pages 205–210, 2011.
[cited at p. 61]

[38] M. Christen, O. Schenk, and H. Burkhart. PATUS: A Code Generation
and Autotuning Framework For Parallel Iterative Stencil Computations
on Modern Microarchitectures. In Proc. IEEE Int’l Parallel & Distributed
Processing Symposium (IPDPS 2011), pages 1–12, 2011. [cited at p. 61]

[39] M. Christen, O. Schenk, and H. Burkhart. PATUS: A Code Generation and
Auto-Tuning Framework For Parallel Stencil Computations. In Proc. Cetus
Users and Compiler Infastructure Workshop, pages 1–5, 2011. [cited at p. 61]

[40] M. Christen, O. Schenk, P. Messmer, E. Neufeld, and H. Burkhart. Ac-
celerating Stencil-Based Computations by Increased Temporal Locality
on Modern Multi- and Many-Core Architectures. In High performance

BIBLIOGRAPHY 243

and hardware aware computing: Proceedings of the First International Work-
shop on New Frontiers in High-performance and Hardware-aware Computing
(HipHaC’08), pages 47–54. Universitätsverlag Karlsruhe, 2008. [cited at p. 97,

99, 119]

[41] M. Christen, O. Schenk, E. Neufeld, P. Messmer, and H. Burkhart.
Parallel Data-Locality Aware Stencil Computations on Modern Micro-
Architectures. In Proc. IEEE Int’l Parallel & Distributed Processing Sympo-
sium (IPDPS 2009), pages 1–10, May 2009. [cited at p. 97, 99, 119]

[42] M. Christen, O. Schenk, E. Neufeld, M. Paulides, and H. Burkhart. Many-
core Stencil Computations in Hyperthermia Applications. In J. Dongarra,
D. Bader, and J. Kurzak, editors, Scientific Computing with Multicore and
Accelerators, pages 255–277. CRC Press, 2010. [cited at p. 97, 99]

[43] P. Colella. Defining Software Requirements for Scientific Computing. Pre-
sentation, 2004. [cited at p. 45]

[44] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini,
and B. Van Straalen. Chombo Software Package for AMR Applications:
Design Document. http://davis.lbl.gov/apdec/designdocuments/

chombodesign.pdf. Accessed July 2011. [cited at p. 52, 87]

[45] UPC Consortium. UPC Specifications, v1.2. Technical Report LBNL-
59208, Lawrence Berkeley National Laboratory, 2005. [cited at p. 29]

[46] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes.
Cache Hierarchy and Memory Subsystem of the AMD Opteron Processor.
IEEE Micro, 30:16–29, 2010. [cited at p. 151]

[47] J. Cooley and J. Tukey. An Algorithm for the Machine Calculation of Com-
plex Fourier Series. Math. Comput., 19(90):297–301, April 1965. [cited at p. 47]

[48] Standard Performance Evaluation Corporation. Standard performance
evaluation corporation. http://www.spec.org. Accessed July 2011.
[cited at p. 45]

[49] Y. Cui, K. Olsen, T. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G. Ely,
D. Panda, A. Chourasia, J. Levesque, S. Day, and P. Maechling. Scalable
Earthquake Simulation on Petascale Supercomputers. In Proc. ACM/IEEE
Int’l Conference for High Performance Computing, Networking, Storage and
Analysis (SC 2010), pages 1–20, Washington, DC, USA, 2010. IEEE Com-
puter Society. [cited at p. 180, 181, 182]

[50] L. Dalguer. Staggered-Grid Split-Node Method for Spontaneous Rupture
Simulation. J. Geophys. Res., 112(B02302):1–15, 2007. [cited at p. 182]

244 BIBLIOGRAPHY

[51] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Opti-
mization and Performance Modeling of Stencil Computations on Modern
Microprocessors. SIAM Review, 51(1):129–159, 2009. [cited at p. 97]

[52] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and
K. Yelick. Auto-tuning Stencil Computations on Diverse Multicore Archi-
tectures. In Parallel and Distributed Computing. IN-TECH Publishers, 2009.
[cited at p. 218]

[53] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and K. Yelick.
Auto-tuning Stencil Computations on Multicore and Accelerators. In
J. Dongarra, D. Bader, and J. Kurzak, editors, Scientific Computing with
Multicore and Accelerators, pages 219–253. CRC Press, 2010. [cited at p. 84,

109]

[54] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51:107–113, January 2008. [cited at p. 50]

[55] D. Delling, A. Goldberg, A. Nowatzyk, , and R. Werneck. PHAST:
Hardware-Accelerated Shortest Path Trees. In Proc. IEEE Int’l Paral-
lel & Distributed Processing Symposium (IPDPS 2011), pages 1–11, 2011.
[cited at p. 56, 57]

[56] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-
Optimal Parallel and Sequential QR and LU Factorizations. Technical Re-
port EECS-2008-89, Electrical Engineering and Computer Sciences, Uni-
versity of California at Berkeley, 2008. [cited at p. 31]

[57] M. Dewhirst, Z. Vujaskovic, E. Jones, and D. Thrall. Re-setting the Biolog-
ical Rationale for Thermal Therapy. Int. J. Hyperthermia, 21:779–790, 2005.
[cited at p. 175]

[58] E. Dijkstra. A note on two problems in connexion with Graphs. Numer.
Math., 1(1):269–271, December 1959. [cited at p. 55]

[59] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine. Single-Source
Shortest Paths with the Parallel Boost Graph Library. In The Ninth DI-
MACS Implementation Challenge: The Shortest Path Problem, Piscataway, NJ,
November 2006. [cited at p. 56, 57]

[60] K. Fatahalian, D. Horn, T. Knight, L. Leem, M. Houston, J. Park, M. Erez,
M. Ren, A. Aiken, W. Dally, and P. Hanrahan. Sequoia: Programming
the Memory Hierarchy. In Proc. ACM/IEEE Int’l Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC 2006), pages 1–13.
ACM, 2006. [cited at p. 32]

BIBLIOGRAPHY 245

[61] L. Flynn. Intel Halts Development of 2 New Microprocessors. The New
York Times, May, 8 2004. http://www.nytimes.com/2004/05/08/business/
08chip.html. [cited at p. 11]

[62] Center for Discrete Mathematics & Theoretical Computer Science. 9th DI-
MACS Implementation Challenge — Shortest Paths. http://www.dis.

uniroma1.it/˜challenge9/index.shtml, 2006. Accessed August 2011.
[cited at p. 56]

[63] International Technology Roadmap for Semiconductors. 2010 Ta-
bles, Lithography. http://www.itrs.net/Links/2010ITRS/2010Update/

ToPost/2010Tables_LITHO_FOCUS_D_ITRS.xls, 2011. [cited at p. 11]

[64] Consortium for small-scale modelling. Core Documentation of
the COSMO-Model. http://cosmo-model.cscs.ch/content/model/

documentation/core/default.htm. Accessed July 2011. [cited at p. 64, 158]

[65] M. Frigo and S. Johnson. The Design and Implementation of FFTW3.
P. IEEE — Special issue on Program Generation, Optimization, and Platform
Adaptation, 93(2):216–231, 2005. [cited at p. 52, 77, 128]

[66] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In Proc.
ACM Int’l Conference on Supercomputing (ICS 2005), pages 361–366, 2005.
[cited at p. 85, 101, 102]

[67] M. Frigo and V. Strumpen. The Cache Complexity of Multithreaded
Cache Oblivious Algorithms. In Proc. ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2006), pages 271–280. ACM, 2006.
[cited at p. 85, 102]

[68] J. Gablonsky. Modifications of the DIRECT Algorithm. PhD thesis, North
Carolina State University, 2001. [cited at p. 137]

[69] M. Gardner. The Fantastic Combinations of John Conway’s New Solitaire
Game “Life”. Scientific American, 223:120–123, October 1970. [cited at p. 67]

[70] K. Gatlin. Power Your App with the Programming Model and Com-
piler Optimizations of Visual C++. http://msdn.microsoft.com/en-us/

magazine/cc163855.aspx#S4, 2005. [cited at p. 33]

[71] G. Goff, K. Kennedy, and C. Tseng. Practical Dependence Testing. In Proc.
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 1991), pages 15–29. ACM, 1991. [cited at p. 36]

[72] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel
Computing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edition, 2003. [cited at p. 53, 56]

246 BIBLIOGRAPHY

[73] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations.
J. Comput. Phys., 73:325–348, December 1987. [cited at p. 48]

[74] M. Griebl, C. Lengauer, and S. Wetzel. Code Generation in the Polytope
Model. In Proc. ACM Int’l Conference on Parallel Architectures and Compila-
tion Techniques (PACT 1998), pages 106–111. IEEE Computer Society, 1998.
[cited at p. 39]

[75] L. Grigori, J. Demmel, and H. Xiang. Communication avoiding Gaus-
sian elimination. In Proc. ACM/IEEE Int’l Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2008), pages 1–12, 2008.
[cited at p. 31]

[76] M. Gschwind. Chip multiprocessing and the cell broadband engine. In
Proc. ACM Conference on Computing Frontiers (CF 2006), pages 1–8. ACM,
2006. [cited at p. 13, 99]

[77] Richard Günther. FreePOOMA — Parallel Object Oriented Methods and
Applications. http://www.nongnu.org/freepooma/. Accessed July 2011.
[cited at p. 52]

[78] John L. Gustafson. Reevaluating Amdahl’s Law. Commun. ACM, 31:532–
533, May 1988. [cited at p. 22]

[79] G. Hächler and H. Burkhart. Implementing the ALWAN Communica-
tion and Data Distribution Library Using PVM. In A. Bode, J. Dongarra,
T. Ludwig, and V. Sunderam, editors, Parallel Virtual Machine – EuroPVM
’96, volume 1156 of Lecture Notes in Computer Science, pages 243–250.
Springer Berlin / Heidelberg, 1996. [cited at p. 28]

[80] M. Hall, J. Chame, C. Chen, J. Shin, Gabe Rudy, and Malik Khan. Loop
Transformation Recipes for Code Generation and Auto-Tuning. In Guang
Gao, Lori Pollock, John Cavazos, and Xiaoming Li, editors, Languages and
Compilers for Parallel Computing, volume 5898 of Lecture Notes in Computer
Science, pages 50–64. Springer Berlin / Heidelberg, 2010. [cited at p. 87, 127,

129]

[81] Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Multicore Era.
Computer, 41:33–38, July 2008. [cited at p. 20, 21]

[82] R. Hooke and T. A. Jeeves. Direct Search Solution of Numerical and Sta-
tistical Problems. J. ACM, 8(2):212–229, April 1961. [cited at p. 133]

[83] IBM. X10: Performance and Productivity at Scale. http://www.x10-lang.
org/. Accessed July 2011. [cited at p. 30]

BIBLIOGRAPHY 247

[84] Intel. High-κ and Metal Gate Research. http://www.intel.com/

technology/silicon/high-k.htm. Accessed August 2011. [cited at p. 11]

[85] Intel. Intel® Advanced Vector Extensions Programming Reference. http:
//software.intel.com/file/35247/. Accessed June 2011. [cited at p. 41]

[86] Intel. Interprocedural Optimization (IPO) Overview. http:

//software.intel.com/sites/products/documentation/studio/

composer/en-us/2009/compiler_c/optaps/common/optaps_ipo_mult.htm.
Accessed August 2011. [cited at p. 33]

[87] Intel. Moore’s law — 40th anniversary. http://www.intel.com/

pressroom/kits/events/moores_law_40th/, 2005. Accessed August 2011.
[cited at p. 12]

[88] Intel. Petascale to Exascale — Extending Intel’s Commitment.
http://download.intel.com/pressroom/archive/reference/ISC_2010_

Skaugen_keynote.pdf, 2010. Presentation, Accessed August 2011.
[cited at p. 11]

[89] G. Jin, J. Mellor-Crummey, and R. Fowler. Increasing Temporal Locality
with Skewing and Recursive Blocking. In Proc. ACM/IEEE Int’l Conference
for High Performance Computing, Networking, Storage and Analysis (SC 2001),
pages 43–43. ACM, 2001. [cited at p. 94]

[90] D. Jones, C. Perttunen, and B. Stuckman. Lipschitzian Optimization With-
out the Lipschitz Constant. J. Optim. Theory Appl., 79:157–181, October
1993. [cited at p. 137]

[91] A. Kaiser, S. Williams, K. Madduri, K. Ibrahim, D. Bailey, J. Demmel,
and E. Strohmaier. TORCH Computational Reference Kernels: A Testbed
for Computer Science Research. Technical Report UCB/EECS-2010-144,
EECS Department, University of California, Berkeley, December 2010.
[cited at p. 45, 237]

[92] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An Auto-tuning
Framework For Parallel Multicore Stencil Computations. In Proc. IEEE
Int’l Parallel & Distributed Processing Symposium (IPDPS 2010), pages 1–12,
April 2010. [cited at p. 52, 84, 85]

[93] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Architec-
tures: A Dependence-Based Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2002. [cited at p. 34, 38]

[94] D. Keyes. Exaflop/s: The Why and the How. C. R. Mec., 339:70–77, 2011.
[cited at p. 9]

248 BIBLIOGRAPHY

[95] Khronos OpenCL Working Group. The OpenCL Specification, December, 8
2008. [cited at p. 28, 122]

[96] K. Kusano, M. Sato, T. Hosomi, and Y. Seo. The Omni OpenMP Com-
piler on the Distributed Shared Memory of Cenju-4. In R. Eigenmann and
M. Voss, editors, OpenMP Shared Memory Parallel Programming, volume
2104 of Lecture Notes in Computer Science, pages 20–30. Springer Berlin /
Heidelberg, 2001. [cited at p. 27]

[97] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming
and Tuning for GPUs. In Proc. ACM/IEEE Int’l Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC 2010), pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society. [cited at p. 27]

[98] R. Lewis, V. Torczon, and M. Trosset. Direct search methods: then and
now. J. Comput. Appl. Math., 124(1-2):191–207, 2000. [cited at p. 131]

[99] Z. Li and Y. Song. Automatic Tiling of Iterative Stencil Loops. ACM Trans.
Program. Lang. Syst., 26(6):975–1028, November 2004. [cited at p. 52, 87]

[100] Z. Li and P. Yew. Some results on exact data dependence analysis. In
Proc.: Selected Papers of the Second Workshop on Languages and Compilers for
Parallel Computing, pages 374–401, London, UK, 1990. Pitman Publishing.
[cited at p. 36]

[101] Z. Li, P. Yew, and C. Zhu. Data dependence analysis on multi-dimensional
array references. In Proc. ACM Int’l Conference on Supercomputing (ICS
1989), pages 215–224. ACM, 1989. [cited at p. 36]

[102] Y. Lin, C. Dimitrakopoulos, K. Jenkins, D. Farmer, H. Chiu, A. Grill, and
P. Avouris. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Sci-
ence, 327(5966):662, 2010. [cited at p. 11]

[103] C. Mack. Seeing Double. IEEE Spectrum, 45:47–51, November 2008.
[cited at p. 10]

[104] K. Madduri, D. Bader, J. Berry, and J. Crobak. Parallel Shortest Path Al-
gorithms for Solving Large-Scale Instances. In The Ninth DIMACS Imple-
mentation Challenge: The Shortest Path Problem, Piscataway, NJ, November
2006. [cited at p. 56, 57]

[105] D. Maydan, J. Hennessy, and M. Lam. Efficient and exact data dependence
analysis. In Proc. ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI 1991), pages 1–14. ACM, 1991. [cited at p. 36]

BIBLIOGRAPHY 249

[106] J. McCalpin. STREAM: Sustainable Memory Bandwidth in High-
Performance Computers. http://www.cs.virginia.edu/stream/. Ac-
cessed July 2011. [cited at p. 73, 149, 151, 153]

[107] J. McCalpin and D. Wonnacott. Time skewing: A value-based approach
to optimizing for memory locality. Technical Report DCS-TR-379, Depart-
ment of Computer Science, Rutgers University, 1998. [cited at p. 94]

[108] P. McKenney and M. Michael. Is Parallel Programming Hard, And If So,
Why? http://www.cs.pdx.edu/pdfs/tr0902.pdf. Accessed July 2011.
[cited at p. 42]

[109] K. Meffert. JGAP — Java Genetic Algorithm Package. http://jgap.

sourceforge.net/. Accessed July 2011. [cited at p. 138]

[110] J. Meng and K. Skadron. A Performance Study for Iterative Stencil Loops
on GPUs with Ghost Zone Optimizations. Int. J. Parallel Prog., 39:115–142,
February 2011. 10.1007/s10766-010-0142-5. [cited at p. 86, 99]

[111] Message Passing Interface Forum. The Message Passing Interface (MPI)
standard. http://www.mcs.anl.gov/research/projects/mpi/. Accessed
July 2011. [cited at p. 26]

[112] D. Miles, B. Leback, and D. Norton. Optimizing Application Performance
on x64 Processor-based Systems with PGI Compilers and Tools. Technical
report, The Portland Group, 2008. [cited at p. 33]

[113] F. Miller, A. Vandome, and J. McBrewster. AltiVec. Alpha Press, 2010.
[cited at p. 41]

[114] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing
Communication in Sparse Matrix Solvers. In Proc. ACM/IEEE Int’l Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC
2009), pages 1–12, 2009. [cited at p. 31]

[115] G. Moore. Cramming more components onto integrated circuits. Electron-
ics, 38(8):114–117, April 1965. [cited at p. 10]

[116] H. Mössenböck, M. Löberbauer, and A. Wöß. The Compiler Genera-
tor Coco/R. http://www.ssw.uni-linz.ac.at/coco. Accessed July 2011.
[cited at p. 189]

[117] M. Müller-Hannemann and S. Schirra, editors. Algorithm Engineering:
Bridging the Gap between Algorithm Theory and Practice. Springer-Verlag,
Berlin, Heidelberg, 2010. [cited at p. 54]

250 BIBLIOGRAPHY

[118] J. A. Nelder and R. Mead. A simplex method for function minimization.
Comput. J., 7:308–313, 1965. [cited at p. 131, 136]

[119] E. Neufeld. High Resolution Hyperthermia Treatment Planning. PhD thesis,
ETH Zurich, August 2008. [cited at p. 177]

[120] E. Neufeld, N. Chavannes, T. Samaras, and N. Kuster. Novel conformal
technique to reduce staircasing artifacts at material boundaries for FDTD
modeling of the bioheat equation. Phys. Med. Biol., 52(15):4371, 2007.
[cited at p. 98, 177]

[121] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-D Blocking
Optimization for Stencil Computations on Modern CPUs and GPUs. In
Proc. ACM/IEEE Int’l Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC 2010), pages 1–13, Washington, DC, USA,
2010. IEEE Computer Society. [cited at p. 97, 119]

[122] R. Numrich and J. Reid. Co-array Fortran for Parallel Programming. SIG-
PLAN Fortran Forum, 17:1–31, August 1998. [cited at p. 29]

[123] NVIDIA. NVIDIA CUDA™ — NVIDIA CUDA C Programming Guide.
http://developer.download.nvidia.com/compute/DevZone/docs/html/

C/doc/CUDA_C_Programming_Guide.pdf. Accessed July 2011. [cited at p. 27,

155]

[124] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architec-
ture: Fermi. http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf. Accessed July
2011. [cited at p. 154]

[125] M. Odersky. Scala. http://www.scala-lang.org. Accessed July 2011.
[cited at p. 44]

[126] K. Olukotun, P. Hanrahan, Hassan Chafi, N. Bronson, A. Sujeeth, and
D. Makarov. Delite. http://ppl.stanford.edu/wiki/index.php/Delite.
Accessed July 2011. [cited at p. 44]

[127] OpenMP Architecture Review Board. The OpenMP® API Specification
for Parallel Programming. http://www.openmp.org. Accessed July 2011.
[cited at p. 26]

[128] H. Pan, B. Hindman, and K. Asanović. Lithe: Enabling Efficient Compo-
sition of Parallel Libraries. In Proc. USENIX Workshop on Hot Topics in Par-
allelism (HotPar’09), pages 1–11. USENIX Association, 2009. [cited at p. 235]

BIBLIOGRAPHY 251

[129] Z. Pan and R. Eigenmann. PEAK – A Fast and Effective Performance Tun-
ing System via Compiler Optimization Orchestration. ACM Trans. Pro-
gram. Lang. Syst., 30:1–43, May 2008. [cited at p. 33, 128, 132]

[130] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Dover Pub-
lications, Inc., 1998. [cited at p. 130]

[131] D. Patterson and J. Hennessy. Computer Organization and Design: The
Hardware/Software Interface, chapter 7.1: Roofline: A Simple Performance
Model, pages 667 – 675. Morgan Kaufmann, 4 edition, November 2008.
[cited at p. 71]

[132] M. Paulides, J. Bakker, E. Neufeld, J. van der Zee, P. Jansen, P. Levendag,
and G. van Rhoon. The HYPERcollar: A novel applicator for hyperther-
mia in the head and neck. Int. J. Hyperther., 23:567 – 576, 2007. [cited at p. 176]

[133] M. Paulides, J. Bakker, A. Zwamborn, and G. van Rhoon. A head and neck
hyperthermia applicator: Theoretical antenna array design. International
Journal of Hyperthermia, 23(1):59–67, 2007. [cited at p. 176]

[134] H. H. Pennes. Analysis of Tissue and Arterial Blood Temperatures in the
Resting Human Forearm. J. Appl. Physiol., 1(2):93–122, 1948. [cited at p. 177]

[135] D. Playner and K. Hawick. Auto-Generation of Parallel Finite-
Differencing Code for MPI, TBB and CUDA. In Proc. Int’l Workshop on
High-Level Parallel Programming Models and Supportive Environments (HIPS
2011), pages 1–8, 2011. [cited at p. 86]

[136] M. Powell. An efficient method for finding the minimum of a function of
several variables without calculating derivatives. Comput. J., 7(2):155–162,
January 1964. [cited at p. 135]

[137] C. Price, B. Robertson, and M. Reale. A hybrid Hooke and Jeeves — Di-
rect Method for Non-Smooth Optimization. Adv. Model. Optim., 11, 2009.
[cited at p. 133]

[138] W. Pugh. The Omega Test: a Fast and Practical Integer Programming
Algorithm for Dependence Analysis. In Proc. ACM/IEEE Int’l Conference
for High Performance Computing, Networking, Storage and Analysis (SC 1991),
pages 4–13. ACM, 1991. [cited at p. 36]

[139] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson, and N. Rizzolo.
SPIRAL: Code generation for DSP transforms. P. IEEE — Special issue on
Program Generation, Optimization, and Platform Adaptation, 93(2):232–275,
2005. [cited at p. 52, 128]

252 BIBLIOGRAPHY

[140] M. Ren, J. Y. Park, M. Houston, A. Aiken, and W. Dally. A Tuning Frame-
work for Software-Managed Memory Hierarchies. In Proc. ACM Int’l
Conference on Parallel Architectures and Compilation Techniques (PACT 2008),
pages 280–291, 2008. [cited at p. 32]

[141] L. Renganarayanan, D. Kim, S. Rajopadhye, and M. Strout. Parameter-
ized Tiled Loops for Free. In Proc. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2007), pages 405–414, New
York, NY, USA, 2007. ACM. [cited at p. 87]

[142] G. Rivera and C. Tseng. Tiling optimizations for 3D scientific computa-
tions. In Proc. ACM/IEEE Conference on Supercomputing (SC 2000), 2000.
[cited at p. 90]

[143] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Pub. Co., 1996.
[cited at p. 69]

[144] Palash Sarkar. A brief history of cellular automata. ACM Comput. Surv.,
32:80–107, March 2000. [cited at p. 66]

[145] V. Sarkar. Language and Virtual Machine Challenges for Large-scale
Parallel Systems. Presentation, http://www.research.ibm.com/vee04/

Sarkar.pdf. Accessed July 2011. [cited at p. 30]

[146] N. Savage. First Graphene Integrated Circuit. IEEE Spectrum, 48, June
2011. [cited at p. 11]

[147] Supercomputing Conference Series. Gordon Bell Prize Winners. http:

//www.sc2000.org/bell/pastawrd.htm. Accessed July 2011. [cited at p. 236]

[148] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. Saraswat, and S. Se-
shia. Sketching stencils. In Proc. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2007), pages 167–178.
ACM, 2007. [cited at p. 234]

[149] Y. Song and Z. Li. New Tiling Techniques to Improve Cache Temporal Lo-
cality. In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 1999), 1999. [cited at p. 87]

[150] G. Sreenivasa, J. Gellermann, B. Rau, J. Nadobny, P. Schlag, P. Deuflhard,
R. Felix, and P. Wust. Clinical use of the hyperthermia treatment plan-
ning system HyperPlan to predict effectiveness and toxicity. Int. J. Radiat.
Oncol. Biol. Phys., 55:407–419, February 2003. [cited at p. 177]

[151] J. Strachan, D. Strukov, J. Borghetti, J. Yang, G. Medeiros-Ribeiro, and
R. Williams. The Switching Location of a Bipolar Memristor: Chemical,

BIBLIOGRAPHY 253

Thermal and Structural Mapping. Nanotechnology, 22(25):254015, 2011.
[cited at p. 11]

[152] R. Strzodka, M. Shaheen, and D. Pajak. Time skewing made simple. In
Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP 2011), pages 295–296, New York, NY, USA, 2011. ACM.
[cited at p. 86, 94]

[153] R. Strzodka, M. Shaheen, D. Pajak, and H. Seidel. Cache oblivious parallel-
ograms in iterative stencil computations. In Proc. ACM Int’l Conference on
Supercomputing (ICS 2010), pages 49–59, New York, NY, USA, 2010. ACM.
[cited at p. 86, 102, 103]

[154] M. Stürmer. A framework that supports in writing performance-
optimized stencil-based codes. Technical report, Universität Erlangen, In-
stitut für Informatik, 2010. [cited at p. 52, 86, 105]

[155] Y. Tang, R. Chowdhury, B. Kuszmaul, C. Luk, and C. Leiserson. The
Pochoir Stencil Compiler. In Proc. ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA 2011), pages 117–128. ACM, 2011.
[cited at p. 52, 85, 102]

[156] TCPP. NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed
Computing Core Topics for Undergraduates. http://www.cs.gsu.edu/

˜tcpp/curriculum/index.php. Accessed August 2011. [cited at p. 237]

[157] The Cetus Team. Cetus – A Source-to-Source Compiler Infrastructure
for C Programs. http://cetus.ecn.purdue.edu/. Accessed July 2011.
[cited at p. 24, 189]

[158] S. Teixeira. Visual Studio 2010 Brings Parallelism Mainstream. Dr. Dobb’s,
April 19 2010. [cited at p. 237]

[159] A. Tiwari and J. Hollingsworth. Online Adaptive Code Generation and
Tuning. In Proc. IEEE Int’l Parallel & Distributed Processing Symposium
(IPDPS 2011), May 2011. [cited at p. 129, 130, 136]

[160] S. Tomov, J. Dongarra, and M. Baboulin. Towards Dense Linear Alge-
bra for Hybrid GPU Accelerated Manycore Systems. Parallel Computing,
36:232–240, June 2010. [cited at p. 51]

[161] TOP500.org. TOP500 Supercomputer Sites. http://www.top500.org. Ac-
cessed July 2011. [cited at p. 15, 23, 40, 154]

[162] J. Treibig, G. Wellein, and G. Hager. Efficient Multicore-Aware Paralleliza-
tion Strategies for Iterative Stencil Computations. Journal of Computational

254 BIBLIOGRAPHY

Science, 2(2):130 – 137, 2011. Simulation Software for Supercomputers.
[cited at p. 99]

[163] D. Unat, X. Cai, and S. Baden. Mint: Realizing CUDA Performance in 3D
Stencil Methods with Annotated C. In Proc. ACM Int’l Conference on Su-
percomputing (ICS 2011), pages 214–224, New York, NY, USA, 2011. ACM.
[cited at p. 52, 86]

[164] J. van der Zee. Heating the Patient: a Promising Approach? Ann. Oncol.,
13(8):1173–1184, 2002. [cited at p. 175]

[165] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An
Annotated Bibliography. SIGPLAN Notices, 35(6):26–36, 2000. [cited at p. 43]

[166] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A Library of Automati-
cally Tuned Sparse Matrix Kernels. J. Phys. Conf. Ser., 16(1):521, 2005.
[cited at p. 51, 128]

[167] J. Wawrzynek, D. Patterson, M. Oskin, S. Lu, C. Kozyrakis, J. Hoe,
D. Chiou, and K. Asanović. RAMP: Research Accelerator for Multiple
Processors. IEEE Micro, 27:46–57, March 2007. [cited at p. 236]

[168] M. Wehner, L. Oliker, and J. Shalf. Towards Ultra-High Resolution Mod-
els of Climate and Weather. Int. J. High Perform. C., 22(2):149–165, 2008.
[cited at p. 9, 236]

[169] S. Weinbaum and L. M. Jiji. A New Simplified Bioheat Equation for the
Effect of Blood Flow on Local Average Tissue Temperature. J. Biomech.
Eng.-T. ASME, 107(2):131–139, 1985. [cited at p. 178]

[170] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske. Efficient
temporal blocking for stencil computations by multicore-aware wavefront
parallelization. In Proc. IEEE Int’l Computer Software and Applications Con-
ference (COMPSAC 2009), pages 579–586, 2009. [cited at p. 86, 99]

[171] C. Whaley and J. Dongarra. Automatically tuned linear algebra software.
In Proc. ACM/IEEE Int’l Conference for High Performance Computing, Net-
working, Storage and Analysis (SC 2009), pages 1–27, Washington, DC, USA,
1998. IEEE Computer Society. [cited at p. 51]

[172] R. C. Whaley and A. Petitet. Minimizing Development and Maintenance
Costs in Supporting Persistently Optimized BLAS. Softw. Pract. Exper.,
35:101–121, February 2005. [cited at p. 51, 128]

[173] GCC Wiki. Interprocedural optimizations. http://gcc.gnu.org/

wiki/Interprocedural_optimizations, 2008. Accessed August 2011.
[cited at p. 33]

BIBLIOGRAPHY 255

[174] Wikipedia. Microprocessor chronology. http://en.wikipedia.org/wiki/
Microprocessor_chronology, August 17, 2011. Accessed August 2011.
[cited at p. 12]

[175] Wikipedia. Transistor count. http://en.wikipedia.org/wiki/

Transistor_count, June 19, 2011. Accessed August 2011. [cited at p. 12]

[176] S. Williams. Auto-tuning Performance on Multicore Computers. PhD the-
sis, EECS Department, University of California, Berkeley, December 2008.
[cited at p. 51, 63, 74, 84, 109, 129]

[177] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. Sci-
entific computing kernels on the Cell processor. Int. J. Parallel Program.,
35(3):263–298, 2007. [cited at p. 97]

[178] D. Wohlfeld, F. Lemke, S. Schenk, H. Froening, and U. Bruening. High
Density Active Optical Cable — From a New Concept to a Prototype. In
Proc. SPIE Conference on Optoelectronic Interconnects and Component Integra-
tion, volume 7944, pages 1–7, 2011. [cited at p. 15]

[179] M. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis,
Stanford University, Stanford, CA, USA, 1992. [cited at p. 39, 40]

[180] M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm
to Maximize Parallelism. IEEE Trans. Parallel Distrib. Syst., 2:452–471, Oc-
tober 1991. [cited at p. 39, 40]

[181] M. Wolf and M. Lam. A data locality optimizing algorithm. SIGPLAN
Not., 26:30–44, May 1991. [cited at p. 90]

[182] M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cam-
bridge, MA, USA, 1990. [cited at p. 36]

[183] L. Wolsey. Integer Programming. John Wiley & Sons, Inc., 1998.
[cited at p. 130]

[184] D. Wonnacott. Time skewing for parallel computers. In Proc. Int’l Workshop
on Compilers for Parallel Computing (CPC 1999), pages 477–480. Springer-
Verlag, 1999. [cited at p. 94]

[185] D. Wonnacott. Using time skewing to eliminate idle time due to mem-
ory bandwidth and network limitations. In Proc. IEEE Int’l Parallel &
Distributed Processing Symposium (IPDPS 2000), Cancun, Mexico, 2000.
[cited at p. 94]

256 BIBLIOGRAPHY

[186] P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess,
R. Felix, and P. Schlag. Hyperthermia in Combined Treatment of Cancer.
Lancet Oncol., 3:487–497, 2002. [cited at p. 175]

[187] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Tita-
nium: A High-Performance Java Dialect. Concurrency–Pract. Ex., 10(11-
13):825–836, 1999. [cited at p. 29]

[188] A. Yzelman and R. Bisseling. Cache-Oblivious Sparse Matrix–Vector Mul-
tiplication by Using Sparse Matrix Partitioning Methods. SIAM J. Scientific
Computing, 31(4):3128–3154, 2009. [cited at p. 47]

Appendices

Appendix A

Patus Usage

A.1 Code Generation

The PATUS code generator is invoked by the following command:

java -jar patus . jar codegen

--stencil=�Stencil File� --strategy=�Strategy File�
--architecture=�Architecture Description File� ,�Hardware Name�
[--outdir=�Output Directory�] [--generate=�Target�]
[--kernel�file=�Kernel Output File Name�]
[--compatibility={ C � Fortran }]
[--unroll=�UnrollFactor1� ,�UnrollFactor2� , . . .]
[--use�native�simd�datatypes={ yes � no }]
[--create�validation={ yes � no }]
[--validation�tolerance=�Tolerance�]
[--debug=�DebugOption1� , [�DebugOption2� , [. . . ,

[�DebugOptionN�] . . .]]

--stencil=�Stencil File�

Specifies the stencil specification file for which to generate
code.

--strategy=�Strategy File�

The Strategy file describing the parallelization/optimization
strategy.

--architecture=�Architecture Description File�,�Hardware Name�

260 APPENDIX A. PATUS USAGE

The architecture description file and the name of the selected
architecture (as specified in the name attribute of the architectureType
element).

--outdir=�Output Directory�

The output directory into which the generated files will be
written. Optional; if not specified the generated files will be
created in the current directory.

--generate=�Target�

The target that will be generated. �Target� can be one of:

• benchmark

This will generate a full benchmark harness. This is the
default setting.

• kernel

This will only generate the kernel file.

--kernel-file=�Kernel Output File Name�

Specifies the name of the C source file to which the generated
kernel is written. The suffix is appended or replaced from the
definition in the hardware architecture description.
Defaults to kernel.c.

--compatibility={C � Fortran}

Selects whether the generated code has to be compatible with
Fortran (Omits the double pointer output type in the kernel
declaration; therefore multiple time steps are not supported.)
Defaults to C.

--unroll=�UnrollFactor1�,�UnrollFactor2�,...

A list of unrolling factors applied to the inner most loop nest
containing the stencil computation. The unrolling factors are
applied to all the dimensions.

--use-native-simd-datatypes={yes � no}

A.2. AUTO-TUNING 261

Specifies whether the native SSE data type is to be used in the
kernel signature. If set to yes, this also requires that the fields
are padded correctly in unit stride direction.
Defaults to no.

--create-validation={yes � no}

Specifies whether to create code that will validate the result.
If �Target� is not benchmark, this option will be ignored.
Defaults to yes.

--validation-tolerance=�Tolerance�

Sets the tolerance for the relative error in the validation. This
option is only relevant if validation code is generated
(--create-validation=yes).
Defaults to yes.

--debug=�DebugOption1�,[�DebugOption2�,[...,[�DebugOptionN�]...]]

Specifies debug options (as a comma-separated list) that will
influence the code generator. Valid debug options (for�DebugOptionI�,
I � 1, . . . , N) are:

• print-stencil-indices

This will insert a printf statement for every stencil cal-
culation with the index into the grid array at which the
result is written.

• print-validation-errors

Prints all values if the validation fails. The option is ig-
nored if no validation code is generated.

A.2 Auto-Tuning

The PATUS auto-tuner is invoked on the command line like so:

java -jar patus . jar autotune

�Executable Filename�
�Param1 � �Param2 � . . . �ParamN �
[�Constraint1� �Constraint2� . . . �ConstraintM�]
[-m�Method�]

262 APPENDIX A. PATUS USAGE

�Executable Filename� is the path to the file name of the benchmark
executable. The benchmark executable must expose the tunable param-
eters as command line parameters. The PATUS auto-tuner only gener-
ates numerical parameter values. If the benchmark executable requires
strings, these must be mapped from numerical values internally in the
benchmarking program.

The parameters ParamI, I � 1, . . . , N, define integer parameter ranges
and have the following syntax:

�StartValue�:[[*]�Step�:]�EndValue�[!]

or

�Value1�[,�Value2�[,�Value3�...]][!]

The first version, when no asterisk * in the �Step� is specified, enumer-
ates all values in

�a :� �StartValue�� k � �Step� : k � N0 and a � �EndValue�	.

If no �Step� is given, it defaults to 1. If there is an asterisk * in front of
the �Step�, the values enumerated are

�a :� �StartValue� � �Step�k : k � N0 and a � �EndValue�	.

In the second version, all the comma-separated values�Value1�,�Value2�,
. . . are enumerated.

If the optional ! is appended to the value range specification, each of
the specified values is guaranteed to be used, i.e., an exhaustive search is
used for the corresponding parameter.

Example A.1: Specifying parameter ranges.

1:10 enumerates all the integer numbers between and in-
cluding 1 and 10.

2:2:41 enumerates the integers 2, 4, 6, . . . , 38, 40.

1:*2:128 enumerates some powers of 2, namely 1, 2, 4, 8, 16, 32,
64, 128.

A.2. AUTO-TUNING 263

Optional constraints can be specified to restrict the parameter values.
The syntax for the constraints is

C�ComparisonExpression�

where �ComparisonExpression� is an expression which can contain arith-
metic operators +, -, *, and /, as well as comparison operators <, <=, ==,
>=, >, !=, and variables $1, . . . , $N, which correspond to the parameters
�Param1 �, . . .�ParamN �.

Example A.2: Constraints examples.

C$2<=$1 forces the second parameter to be less or
equal to the first.

C($2+$1-1)/$1>=24 forces $2�$1�1
$1 �

�
$2
$1

�
� 24.

The PATUS auto-tuner supports a range of search methods. The method
can be selected by -m�Method� where �Method� is one of

• ch.unibas.cs.hpwc.patus.autotuner.DiRectOptimizer

DIRECT method

• ch.unibas.cs.hpwc.patus.autotuner.ExhaustiveSearchOptimizer

exhaustive search

• ch.unibas.cs.hpwc.patus.autotuner.GeneralCombinedElimination-

Optimizer

general combined elimination

• ch.unibas.cs.hpwc.patus.autotuner.GreedyOptimizer

greedy search

• ch.unibas.cs.hpwc.patus.autotuner.HookeJeevesOptimizer

Hooke-Jeeves algorithm

• ch.unibas.cs.hpwc.patus.autotuner.MetaHeuristicOptimizer

genetic algorithm

• ch.unibas.cs.hpwc.patus.autotuner.RandomSearchOptimizer

draws 500 random samples

264 APPENDIX A. PATUS USAGE

• ch.unibas.cs.hpwc.patus.autotuner.SimplexSearchOptimizer

simplex search (aka Nelder-Mead method)

These are Java class paths to IOptimizer implementations; this allows to
extend range of methods easily. Please refer to Chapter 8 for a discussion
and comparison of the methods. If no method is specified, the greedy
algorithm is used by default.

Appendix B

Patus Grammars

B.1 Stencil DSL Grammar

In the following, the EBNF grammar for the PATUS stencil specifications
syntax is given. The grayed out identifiers have not yet been specified or
implemented and will be added eventually in the future.

�Stencil� ::= ‘stencil’ �Identifier� ‘{’ [�Options�] �DomainSize�
�NumIterations� �Operation� �Boundary� [�Filter�] [
�StoppingCriterion�] ‘}’

�DomainSize� ::= ‘domainsize’ ‘=’ �Box� ‘;’
�NumIterations� ::= ‘t max’ ‘=’ �IntegerExpr� ‘;’
�Operation� ::= ‘operation’ �Identifier� ‘(’ �ParamList� ‘)’ ‘{’ {

�Statement� } ‘}’

�ParamList� ::= { �GridDecl� � �ParamDecl� }
�Statement� ::= �LHS� ‘=’ �StencilExpr� ‘;’
�LHS� ::= �StencilNode� � �VarDecl�
�StencilExpr� ::= �StencilNode� � �Identifier� � �NumberLiteral� �

�FunctionCall� � (�UnaryOperator� �StencilExpr�) � (�StencilExpr�
�BinaryOperator� �StencilExpr�) � ‘(’ �StencilExpr� ‘)’

�StencilNode� ::= �Identifier� ‘[’ �SpatialCoords� [‘;’ �TemporalCoord�] [
‘;’ �ArrayIndices�] ‘]’

�SpatialCoords� ::= (‘x’ � ‘y’ � ‘z’ � ‘u’ � ‘v’ � ‘w’ � ‘x’ �IntegerLiteral�) [
�Offset�]

�TemporalCoord� ::= ‘t’ [�Offset�

266 APPENDIX B. PATUS GRAMMARS

�ArrayIndices� ::= �IntegerLiteral� { ‘,’ �IntegerLiteral� }
�Offset� ::= �UnaryOperator� �IntegerLiteral�

�FunctionCall� ::= �Identifier� ‘(’ [�StencilExpr� { ‘,’ �StencilExpr� }] ‘)’

�IntegerExpr� ::= �Identifier� � �IntegerLiteral� � �FunctionCall� � (
�UnaryOperator� �IntegerExpr�) � (�IntegerExpr� �BinaryOperator�
�IntegerExpr�) � ‘(’ �IntegerExpr� ‘)’

�VarDecl� ::= �Type� �Identifier�

�Box� ::= ‘(’ �Range� { ‘,’ �Range� ‘)’

�Range� ::= �IntegerExpr� ‘..’ �IntegerExpr�

�GridDecl� ::= [�Specifier�] �Type� ‘grid’ �Identifier� [‘(’ �Box� ‘)’] [
�ArrayDecl�]

�ParamDecl� ::= �Type� ‘param’ �Identifier� [�ArrayDecl�]

�ArrayDecl� ::= ‘[’ �IntegerLiteral� { ‘,’ �IntegerLiteral� } ‘]’

�Specifier� ::= ‘const’

�Type� ::= ‘float’ � ‘double’

�UnaryOperator� ::= ‘+’ � ‘-’

�BinaryOperator� ::= ‘+’ � ‘-’ � ‘*’ � ‘/’ � ‘ˆ’

B.2 Strategy DSL Grammar

The following EBNF grammar specifies the PATUS Strategy syntax. Again,
as the project matures, the specification might change so that yet missing
aspects of parallelization and optimization methods can be specified as
PATUS Strategies.

�Strategy� ::= ‘strategy’ �Identifier� ‘(’ �ParamList� ‘)’
�CompoundStatement�

�ParamList� ::= �SubdomainParam� { ‘,’ �AutoTunerParam� }
�SubdomainParam� ::= ‘domain’ �Identifier�

�AutoTunerParam� ::= ‘auto’ �AutoTunerDeclSpec� �Identifier�

�AutoTunerDeclSpec� ::= ‘int’ � ‘dim’ � (‘codim’ ‘(’ �IntegerLiteral� ‘)’)

�Statement� ::= �DeclarationStatement� � �AssignmentStatement� �

�CompoundStatement� � �IfStatement� � �Loop�

�DeclarationStatement� ::= �DeclSpec� �Identifier� ‘;’

�AssignmentStatement� ::= �LValue� ‘=’ �Expr� ‘;’

B.2. STRATEGY DSL GRAMMAR 267

�CompoundStatement� ::= ‘{’ { �Statement� } ‘}’

�IfStatement� ::= ‘if’ ‘(’ �ConditionExpr� ‘)’ �Statement� [‘else’
�Statement�]

�Loop� ::= (�RangeIterator� � �SubdomainIterator�) [‘parallel’ [
�IntegerLiteral�] [‘schedule’ �IntegerLiteral�]] �Statement�

�RangeIterator� ::= ‘for’ �Identifier� ‘=’ �Expr� ‘..’ �Expr� [‘by’ �Expr�]

�SubdomainIterator� ::= ‘for’ �SubdomainIteratorDecl� ‘in’ �Identifier� ‘(’
�Range� ‘;’ �Expr� ‘)’

�SubdomainIteratorDecl� ::= �PointDecl� � �PlaneDecl� �

�SubdomainDecl�

�PointDecl� ::= ‘point’ �Identifier�

�PlaneDecl� ::= ‘plane’ �Identifier�

�SubdomainDecl� ::= ‘subdomain’ �Identifier� ‘(’ �Range� ‘)’

�Range� ::= �Vector� { �UnaryOperator� �ScaledBorder� }
�Vector� ::= �Subvector� [‘...’ [‘,’ �Subvector�]]

�Subvector� ::= (‘:’ { ‘,’ �ScalarList� }) � �DimensionIdentifier� �

�DomainSizeExpr� � �BracketedVector� � �ScalarList�

�ScalarList� ::= �ScalarRange� { ‘,’ �ScalarRange� }
�DimensionIdentifier� ::= �Expr� [‘(’ �Vector� ‘)’]

�DomainSizeExpr� ::= �SizeProperty� [‘(’ �Vector� ‘)’]

�BracketedVector� ::= ‘(’ �Vector� { ‘,’ �Vector� } ‘)’

�ScalarRange� ::= �Expr� [‘..’ �Expr�]

�SizeProperty� ::= (‘stencil’ � �Identifier�) ‘.’ (‘size’ � ‘min’ � ‘max’)

�ScaledBorder� ::= [�Expr� �MultiplicativeOperator�] �Border� [
�MultiplicativeOperator� �Expr�]

�Border� ::= �StencilBoxBorder� � �LiteralBorder�

�StencilBoxBorder� ::= ‘stencil’ ‘.’ ‘box’ [‘(’ �Vector� ‘)’]

�LiteralBorder� ::= ‘(’ �Vector� ‘)’ ‘,’ ‘(’ �Vector� ‘)’

�LValue� ::= �GridAccess� � �Identifier�

�GridAccess� ::= �Identifier� ‘[’ �SpatialIndex� ‘;’ �Expr� { ‘;’ �Expr� } ‘]’

�SpatialIndex� ::= �Identifier� � �Range�

�Expr� ::= �Identifier� � �NumberLiteral� � �FunctionCall� � (
�UnaryOperator� �Expr�) � (�Expr� �BinaryOperator� �Expr�) � ‘(’
�Expr� ‘)’

268 APPENDIX B. PATUS GRAMMARS

�FunctionCall� ::= �Identifier� ‘(’ [�Expr� { ‘,’ �Expr� }] ‘)’

�ConditionExpr� ::= �ComparisonExpr� � (�ConditionExpr�
�LogicalOperator� �ConditionExpr�)

�ComparisonExpr� ::= �Expr� �ComparisonOperator� �Expr�

�UnaryOperator� ::= ‘+’ � ‘-’

�MultiplicativeOperator� ::= ‘*’

�BinaryOperator� ::= ‘+’ � ‘-’ � ‘*’ � ‘/’ � ‘%’

�LogicalOperator� ::= ‘��’ � ‘&&’

�ComparisonOperator� ::= ‘�’ � ‘�=’ � ‘==’ � ‘�=’ � ‘�’ � ‘!=’

Appendix C

Stencil Specifications

C.1 Basic Differential Operators

C.1.1 Laplacian

1: stencil laplacian

2: {
3: domainsize = (1 . . N , 1 . . N , 1 . . N) ;
4: t_max = 1 ;
5:
6: operation (float grid u , float param alpha , float param beta)
7: {
8: u [x , y , z ; t+1] =
9: alpha * u [x , y , z ; t] +

10: beta * (
11: u [x+1 , y , z ; t] + u [x�1, y , z ; t] +
12: u [x , y+1 , z ; t] + u [x , y�1, z ; t] +
13: u [x , y , z+1; t] + u [x , y , z�1; t]) ;
14: }
15: }

C.1.2 Divergence

1: stencil divergence

2: {
3: domainsize = (1 . . x_max , 1 . . y_max , 1 . . z_max) ;
4: t_max = 1 ;
5:
6: operation (
7: float grid u (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max +1) ,

270 APPENDIX C. STENCIL SPECIFICATIONS

8: const float grid ux (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max +1) ,
9: const float grid uy (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max +1) ,

10: const float grid uz (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max +1) ,
11: float param alpha , float param beta , float param gamma)
12: {
13: u [x , y , z ; t] =
14: alpha * (ux [x+1 , y , z] � ux [x�1, y , z]) +
15: beta * (uy [x , y+1 , z] � uy [x , y�1, z]) +
16: gamma * (uz [x , y , z+1] � uz [x , y , z�1]) ;
17: }
18: }

C.1.3 Gradient

1: stencil gradient

2: {
3: domainsize = (1 . . x_max , 1 . . y_max , 1 . . z_max) ;
4: t_max = 1 ;
5:
6: operation (
7: const float grid u (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max +1) ,
8: float grid ux (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max +1) ,
9: float grid uy (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max +1) ,

10: float grid uz (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max +1) ,
11: float param alpha , float param beta , float param gamma)
12: {
13: ux [x , y , z ; t] = alpha * (u [x+1 , y , z] + u [x�1, y , z]) ;
14: uy [x , y , z ; t] = beta * (u [x , y+1 , z] + u [x , y�1, z]) ;
15: uz [x , y , z ; t] = gamma * (u [x , y , z+1] + u [x , y , z�1]) ;
16: }
17: }

C.2 Wave Equation

1: stencil wave

2: {
3: domainsize = (1 . . N , 1 . . N , 1 . . N) ;
4: t_max = 1 0 0 ;
5:
6: operation (float grid u , float param c2dt_h2)
7: {
8: u [x , y , z ; t+1] = 2 * u [x , y , z ; t] � u [x , y , z ; t�1] +
9: c2dt_h2 * (

10: �15/2 * u [x , y , z ; t] +
11: 4/3 * (
12: u [x+1 , y , z ; t] + u [x�1, y , z ; t] +

C.3. COSMO 271

13: u [x , y+1 , z ; t] + u [x , y�1, z ; t] +
14: u [x , y , z+1; t] + u [x , y , z�1; t]
15:)
16: �1/12 * (
17: u [x+2 , y , z ; t] + u [x�2, y , z ; t] +
18: u [x , y+2 , z ; t] + u [x , y�2, z ; t] +
19: u [x , y , z+2; t] + u [x , y , z�2; t]
20:)
21:) ;
22: }
23: }

C.3 COSMO

C.3.1 Upstream

1: stencil upstream_5_3d

2: {
3: domainsize = (1 . . x_max , 1 . . y_max , 1 . . z_max) ;
4: t_max = 1 ;
5:
6: operation (double grid u , double param a)
7: {
8: u [x , y , z ; t+1] = a * (
9: �2 * (u [x�3, y , z ; t] + u [x , y�3, z ; t] + u [x , y , z�3; t]) +

10: 15 * (u [x�2, y , z ; t] + u [x , y�2, z ; t] + u [x , y , z�2; t]) +
11: �60 * (u [x�1, y , z ; t] + u [x , y�1, z ; t] + u [x , y , z�1; t]) +
12: 20 * u [x , y , z ; t] +
13: 30 * (u [x+1 , y , z ; t] + u [x , y+1 , z ; t] + u [x , y , z+1; t]) +
14: �3 * (u [x+2 , y , z ; t] + u [x , y+2 , z ; t] + u [x , y , z+2; t]) ;
15: }
16: }

C.3.2 Tricubic Interpolation

1: stencil tricubic_interpolation

2: {
3: domainsize = (1 . . x_max , 1 . . y_max , 1 . . z_max) ;
4: t_max = 1 ;
5:
6: operation (double grid u ,
7: const double grid a , const double grid b , const double grid c)
8: {
9: double w1_a = 1 . 0 / 6 . 0 * a [x , y , z] * (a [x , y , z] + 1 . 0) * (a [x , y , z] + 2 . 0) ;

10: double w2_a = �0.5*(a [x , y , z] �1 . 0) * (a [x , y , z] + 1 . 0) * (a [x , y , z] + 2 . 0) ;
11: double w3_a = 0 . 5 * (a [x , y , z] �1 .0) * a [x , y , z] * (a [x , y , z] + 2 . 0) ;

272 APPENDIX C. STENCIL SPECIFICATIONS

12: double w4_a = �1 .0/6 .0* (a [x , y , z] �1 .0) * a [x , y , z] * (a [x , y , z] + 1 . 0) ;
13:
14: double w1_b = 1 . 0 / 6 . 0 * b [x , y , z] * (b [x , y , z] + 1 . 0) * (b [x , y , z] + 2 . 0) ;
15: double w2_b = �0.5*(b [x , y , z] �1 . 0) * (b [x , y , z] + 1 . 0) * (b [x , y , z] + 2 . 0) ;
16: double w3_b = 0 . 5 * (b [x , y , z] �1 .0) * b [x , y , z] * (b [x , y , z] + 2 . 0) ;
17: double w4_b = �1 .0/6 .0* (b [x , y , z] �1 .0) * b [x , y , z] * (b [x , y , z] + 1 . 0) ;
18:
19: double w1_c = 1 . 0 / 6 . 0 * c [x , y , z] * (c [x , y , z] + 1 . 0) * (c [x , y , z] + 2 . 0) ;
20: double w2_c = �0.5*(c [x , y , z] �1 . 0) * (c [x , y , z] + 1 . 0) * (c [x , y , z] + 2 . 0) ;
21: double w3_c = 0 . 5 * (c [x , y , z] �1 .0) * c [x , y , z] * (c [x , y , z] + 2 . 0) ;
22: double w4_c = �1 .0/6 .0* (c [x , y , z] �1 .0) * c [x , y , z] * (c [x , y , z] + 1 . 0) ;
23:
24: u [x , y , z ; t+1] =
25: w1_a * w1_b * w1_c * u [x�1, y�1, z�1; t] +
26: w2_a * w1_b * w1_c * u [x , y�1, z�1; t] +
27: w3_a * w1_b * w1_c * u [x+1 , y�1, z�1; t] +
28: w4_a * w1_b * w1_c * u [x+2 , y�1, z�1; t] +
29: . . . // etc. for all 64 combinations of w?_a * w?_b * w?_c

30: // and u[x+d1 , y+d2 , z+d3; t], d1 ,d2 ,d3=-1,0,1,2

31: }
32: }

C.4 Hyperthermia

1: stencil hyperthermia

2: {
3: domainsize = (1 . . x_max , 1 . . y_max , 1 . . z_max) ;
4: t_max = 1 ;
5:
6: operation (
7: float grid T (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max +1) ,
8: const float grid c (0 . . x_max+1 , 0 . . y_max+1 , 0 . . z_max + 1) [9])
9: {

10: T [x , y , z ; t+1] =
11:
12: // center point

13: T [x , y , z ; t] * (c [x , y , z ; 0] * T [x , y , z ; t] + c [x , y , z ; 1]) +
14: c [x , y , z ; 2] +
15:
16: // faces

17: c [x , y , z ; 3] * T [x�1, y , z ; t] +
18: c [x , y , z ; 4] * T [x+1 , y , z ; t] +
19: c [x , y , z ; 5] * T [x , y�1, z ; t] +
20: c [x , y , z ; 6] * T [x , y+1 , z ; t] +
21: c [x , y , z ; 7] * T [x , y , z�1; t] +
22: c [x , y , z ; 8] * T [x , y , z+1; t] ;

C.5. IMAGE PROCESSING 273

23: }
24: }

C.5 Image Processing

C.5.1 Blur Kernel

1: stencil blur

2: {
3: domainsize = (1 . . width , 1 . . height) ;
4: t_max = 1 ;
5:
6: operation (float grid u , float param sigma)
7: {
8: float f0 = 1 / (2 * sigma ˆ 2) ;
9: float s0 = exp (0 * f0) ;

10: float s1 = exp (�1 * f0) ;
11: float s2 = exp (�2 * f0) ;
12: float s4 = exp (�4 * f0) ;
13: float s5 = exp (�5 * f0) ;
14: float s8 = exp (�8 * f0) ;
15: float f = 1 / (s0 + 4 * (s1 + s2 + s4 + s8) + 8 * s5) ;
16:
17: u [x , y ; t+1] = f * (
18: s0 * u [x , y ; t] +
19: s1 * (u [x � 1 , y ; t] + u [x + 1 , y ; t] +
20: u [x , y � 1 ; t] + u [x , y + 1 ; t]) +
21: s2 * (u [x � 1 , y � 1 ; t] + u [x + 1 , y � 1 ; t] +
22: u [x � 1 , y + 1 ; t] + u [x + 1 , y + 1 ; t]) +
23: s4 * (u [x � 2 , y ; t] + u [x + 2 , y ; t] +
24: u [x , y � 2 ; t] + u [x , y + 2 ; t]) +
25: s5 * (
26: u [x � 2 , y � 1 ; t] + u [x � 1 , y � 2 ; t] +
27: u [x + 1 , y � 2 ; t] + u [x + 2 , y � 1 ; t] +
28: u [x � 2 , y + 1 ; t] + u [x � 1 , y + 2 ; t] +
29: u [x + 1 , y + 2 ; t] + u [x + 2 , y + 1 ; t]
30:) +
31: s8 * (u [x � 2 , y � 2 ; t] + u [x + 2 , y � 2 ; t] +
32: u [x � 2 , y + 2 ; t] + u [x + 2 , y + 2 ; t])
33:) ;
34: }
35: }

C.5.2 Edge Detection

1: stencil edge

274 APPENDIX C. STENCIL SPECIFICATIONS

2: {
3: domainsize = (1 . . width , 1 . . height) ;
4: t_max = 1 ;
5:
6: operation (float grid u)
7: {
8: u [x , y ; t+1] =
9: �12 * u [x , y ; t] +

10: 2 * (u [x � 1 , y ; t] + u [x + 1 , y ; t] +
11: u [x , y � 1 ; t] + u [x , y + 1 ; t]) +
12: u [x � 1 , y � 1 ; t] + u [x + 1 , y � 1 ; t] +
13: u [x � 1 , y + 1 ; t] + u [x + 1 , y + 1 ; t] ;
14: }
15: }

C.6 Cellular Automata

C.6.1 Conway’s Game of Life

1: stencil game_of_life

2: {
3: domainsize = (1 . . width , 1 . . height) ;
4: t_max = 1 ;
5:
6: operation (float grid u)
7: {
8: // some large number

9: float C = 100000000000000000000;
10:
11: // count the number of live neighbors

12: float L =
13: u [x � 1 , y � 1 ; t] + u [x , y � 1 ; t] + u [x + 1 , y � 1 ; t] +
14: u [x � 1 , y ; t] + u [x + 1 , y ; t] +
15: u [x � 1 , y + 1 ; t] + u [x , y + 1 ; t] + u [x + 1 , y + 1 ; t] ;
16:
17: // apply the rules

18: u [x , y ; t+1] = 1 / (1 + (u [x , y ; t] + L � 3) * (L � 3) * C) ;
19: }
20: }

C.7 Anelastic Wave Propagation

C.7.1 uxx1

1: stencil pmcl3d_uxx1

2: {

C.7. ANELASTIC WAVE PROPAGATION 275

3: domainsize = (nxb . . nxe , nyb . . nye , nzb . . nze) ;
4: t_max = 1 ;
5:
6: operation (
7: const float grid d1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
8: float grid u1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
9: const float grid xx (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,

10: const float grid xy (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
11: const float grid xz (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
12: float param dth)
13: {
14: float c1 = 9 . / 8 . ;
15: float c2 = �1 ./24 . ;
16:
17: float d = 0 . 2 5 *
18: (d1 [x , y , z] + d1 [x , y�1,z] + d1 [x , y , z�1] + d1 [x , y�1,z�1]) ;
19: u1 [x , y , z ; t+1] = u1 [x , y , z ; t] + (dth / d) * (
20: c1 * (
21: xx [x , y , z] � xx [x�1,y , z] +
22: xy [x , y , z] � xy [x , y�1,z] +
23: xz [x , y , z] � xz [x , y , z�1]) +
24: c2 * (
25: xx [x+1 ,y , z] � xx [x�2,y , z] +
26: xy [x , y+1 ,z] � xy [x , y�2,z] +
27: xz [x , y , z+1] � xz [x , y , z�2])
28:) ;
29: }
30: }

C.7.2 xy1

1: stencil pmcl3d_xy1

2: {
3: domainsize = (nxb . . nxe , nyb . . nye , nzb . . nze) ;
4: t_max = 1 ;
5:
6: operation (
7: const float grid mu (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
8: float grid xy (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
9: const float grid u1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,

10: const float grid v1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
11: float param dth)
12: {
13: float c1 = 9 . / 8 . ;
14: float c2 = �1. / 2 4 . ;
15:
16: float xmu = 2 . / (1 . / mu [x , y , z] + 1 . / mu [x , y , z�1]) ;

276 APPENDIX C. STENCIL SPECIFICATIONS

17:
18: xy [x , y , z ; t+1] = xy [x , y , z ; t] + dth * xmu * (
19: c1 * (
20: u1 [x , y+1 , z] � u1 [x , y , z] +
21: v1 [x , y , z] � v1 [x�1, y , z]
22:) +
23: c2 * (
24: u1 [x , y+2 , z] � u1 [x , y�1, z] +
25: v1 [x+1 , y , z] � v1 [x�2, y , z]
26:)
27:) ;
28: }
29: }

C.7.3 xyz1

1: stencil pmcl3d_xyz1

2: {
3: domainsize = (nxb . . nxe , nyb . . nye , nzb . . nze) ;
4: t_max = 1 ;
5:
6: operation (
7: const float grid mu (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
8: const float grid lam (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
9: const float grid u1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,

10: const float grid v1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
11: const float grid w1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
12: float grid xx (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
13: float grid yy (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
14: float grid zz (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
15: float param dth)
16: {
17: float c1 = 9 . / 8 . ;
18: float c2 = �1 ./24 . ;
19:
20: float b = 8 . / (
21: 1 . / lam [x , y , z] + 1 . / lam [x+1 , y , z] +
22: 1 . / lam [x , y�1, z] + 1 . / lam [x+1 , y�1, z] +
23: 1 . / lam [x , y , z�1] + 1 . / lam [x+1 , y , z�1] +
24: 1 . / lam [x , y�1, z�1] + 1 . / lam [x+1 , y�1, z�1]
25:) ;
26:
27: float a = b + 2 . * 8 . / (
28: 1 . / mu [x , y , z] + 1 . / mu [x+1 , y , z] +
29: 1 . / mu [x , y�1, z] + 1 . / mu [x+1 , y�1, z] +
30: 1 . / mu [x , y , z�1] + 1 . / mu [x+1 , y , z�1] +
31: 1 . / mu [x , y�1, z�1] + 1 . / mu [x+1 , y�1, z�1]

C.7. ANELASTIC WAVE PROPAGATION 277

32:) ;
33:
34: // find xx stress

35: xx [x , y , z ; t+1] = xx [x , y , z ; t] + dth * (
36: a * (
37: c1 * (u1 [x+1 , y , z] � u1 [x , y , z]) +
38: c2 * (u1 [x+2 , y , z] � u1 [x�1, y , z])
39:) +
40: b * (
41: c1 * (
42: v1 [x , y , z] � v1 [x , y�1, z] +
43: w1 [x , y , z] � w1 [x , y , z�1]
44:) +
45: c2 * (
46: v1 [x , y+1 , z] � v1 [x , y�2, z] +
47: w1 [x , y , z+1] � w1 [x , y , z�2]
48:)
49:)
50:) ;
51:
52: // find yy stress

53: yy [x , y , z ; t+1] = yy [x , y , z ; t] + dth * (
54: a * (
55: c1 * (v1 [x , y , z] � v1 [x , y�1, z]) +
56: c2 * (v1 [x , y+1 , z] � v1 [x , y�2, z])
57:) +
58: b * (
59: c1 * (
60: u1 [x+1 , y , z] � u1 [x , y , z] +
61: w1 [x , y , z] � w1 [x , y , z�1]
62:) +
63: c2 * (
64: u1 [x+2 , y , z] � u1 [x�1, y , z] +
65: w1 [x , y , z+1] � w1 [x , y , z�2]
66:)
67:)
68:) ;
69:
70: // find zz stress

71: zz [x , y , z ; t+1] = zz [x , y , z ; t] + dth * (
72: a * (
73: c1 * (w1 [x , y , z] � w1 [x , y , z�1]) +
74: c2 * (w1 [x , y , z+1] � w1 [x , y , z�2])
75:) +
76: b * (
77: c1 * (
78: u1 [x+1 , y , z] � u1 [x , y , z] +

278 APPENDIX C. STENCIL SPECIFICATIONS

79: v1 [x , y , z] � v1 [x , y�1, z]
80:) +
81: c2 * (
82: u1 [x+2 , y , z] � u1 [x�1, y , z] +
83: v1 [x , y+1 , z] � v1 [x , y�2, z]
84:)
85:)
86:) ;
87: }
88: }

C.7.4 xyzq

1: stencil pmcl3d_xyzq

2: {
3: domainsize = (nxb . . nxe , nyb . . nye , nzb . . nze) ;
4: t_max = 1 ;
5:
6: operation (
7: const float grid mu (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
8: const float grid lam (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
9: float grid r1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,

10: float grid r2 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
11: float grid r3 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
12: float grid xx (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
13: float grid yy (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
14: float grid zz (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
15: const float grid u1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
16: const float grid v1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
17: const float grid w1 (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
18: const float grid qp (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
19: const float grid qs (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
20: const float grid tau (�1 . . nxt+2 , �1 . . nyt+2 , �1 . . nzt +2) ,
21: float param dh , float param dt , float param dth ,
22: float param nz)
23: {
24: float c1 = 9 . / 8 . ;
25: float c2 = �1 ./24 . ;
26:
27: float d = 8 . / (
28: 1 . / mu [x , y , z] + 1 . / mu [x+1 , y , z] +
29: 1 . / mu [x , y�1, z] + 1 . / mu [x+1 , y�1, z] +
30: 1 . / mu [x , y , z�1] + 1 . / mu [x+1 , y , z�1] +
31: 1 . / mu [x , y�1, z�1] + 1 . / mu [x+1 , y�1, z�1]
32:) ;
33:
34: float a2 = 2 * d ;

C.7. ANELASTIC WAVE PROPAGATION 279

35: float c = a2 + 8 . / (
36: 1 . / lam [x , y , z] + 1 . / lam [x+1 , y , z] +
37: 1 . / lam [x , y�1, z] + 1 . / lam [x+1 , y�1, z] +
38: 1 . / lam [x , y , z�1] + 1 . / lam [x+1 , y , z�1] +
39: 1 . / lam [x , y�1, z�1] + 1 . / lam [x+1 , y�1, z�1]
40:) ;
41:
42: float qpa = 0 .125 * (
43: qp [x , y , z] + qp [x+1 , y , z] +
44: qp [x , y�1, z] + qp [x+1 , y�1, z] +
45: qp [x , y , z�1] + qp [x+1 , y , z�1] +
46: qp [x , y�1, z�1] + qp [x+1 , y�1, z�1]
47:) ;
48:
49: float qsa = 0 .125 * (
50: qs [x , y , z] + qs [x+1 , y , z] +
51: qs [x , y�1, z] + qs [x+1 , y�1, z] +
52: qs [x , y , z�1] + qs [x+1 , y , z�1] +
53: qs [x , y�1, z�1] + qs [x+1 , y�1, z�1]
54:) ;
55:
56: // (we can ’t handle indirect grid accesses for the time being)

57: // float tauu = tau[((coords1 * nxt + this.x) % 2) +

58: // 2 * ((coords2 * nyt + this.y) % 2) +

59: // 4 * ((nz + 1 - (coords3 * nzt + this.z)) % 2)];

60:
61: float vxx = c1 * (u1 [x+1 , y , z] � u1 [x , y , z]) +
62: c2 * (u1 [x+2 , y , z] � u1 [x�1, y , z]) ;
63: float vyy = c1 * (v1 [x , y , z] � v1 [x , y�1, z]) +
64: c2 * (v1 [x , y+1 , z] � v1 [x , y�2, z]) ;
65: float vzz = c1 * (w1 [x , y , z] � w1 [x , y , z�1]) +
66: c2 * (w1 [x , y , z+1] � w1 [x , y , z�2]) ;
67:
68: float a1 = �qpa * c * (vxx + vyy + vzz) / (2 . * dh) ;
69:
70: // float x1 = tauu / dt + 0.5;

71: float x1 = tau [x , y , z] / dt + 0 . 5 ;
72: float x2 = x1 � 1 ; // (tauu/dt) -(1./2.)

73:
74: // normal stress xx, yy and zz

75: xx [x , y , z ; t+1] = xx [x , y , z ; t] + dth * (c * vxx + (c � a2) *
76: (vyy + vzz)) + dt * r1 [x , y , z ; t] ;
77: yy [x , y , z ; t+1] = yy [x , y , z ; t] + dth * (c * vyy + (c � a2) *
78: (vxx + vzz)) + dt * r2 [x , y , z ; t] ;
79: zz [x , y , z ; t+1] = zz [x , y , z ; t] + dth * (c * vzz + (c � a2) *
80: (vxx + vyy)) + dt * r3 [x , y , z ; t] ;
81:

280 APPENDIX C. STENCIL SPECIFICATIONS

82: float hdh = �d * qsa / dh ;
83: r1 [x , y , z ; t+1] = (x2 * r1 [x , y , z ; t] � hdh * (vyy + vzz) + a1)/ x1 ;
84: r2 [x , y , z ; t+1] = (x2 * r2 [x , y , z ; t] � hdh * (vxx + vzz) + a1)/ x1 ;
85: r3 [x , y , z ; t+1] = (x2 * r3 [x , y , z ; t] � hdh * (vxx + vyy) + a1)/ x1 ;
86:
87: xx [x , y , z ; t+1] = xx [x , y , z ; t+1] + dt * r1 [x , y , z ; t + 1] ;
88: yy [x , y , z ; t+1] = yy [x , y , z ; t+1] + dt * r2 [x , y , z ; t + 1] ;
89: zz [x , y , z ; t+1] = zz [x , y , z ; t+1] + dt * r3 [x , y , z ; t + 1] ;
90: }
91: }

Index

codim, 116
dim, 116
domainsize, 111
domain, 116
operation, 111
parallel, 121
stencil, 115
subdomain, 116

accelerator, 13
affinity, 104
algorithm engineering, 53
AltiVec, 41
ALWAN, 28
AMD Opteron, 149, 156
Amdahl’s law, 18
anelastic wave propagation, 178
architecture description, 120
arithmetic intensity, 71
ATLAS, 126
auto-tuning, 77, 125, 203
automatic parallelization, 23, 36, 39
AVX, 41

back-end, 120, 197
backtracking, 50
benchmark, 155, 162, 163, 176, 180
benchmarking harness, 77, 200
bioheat equation, 175
BLAS, 46
blocking

spatial, 87
temporal, 89, 97

blocking, temporal, 95
boundary condition, 69

branch-and-bound, 50

C/C++, 32
cache blocking, 88, 113
cache bypass, 106
cache-oblivious, 99
cancer treatment, 173
Cell broadband engine, 13
cellular automaton, 66
Cetus, 24, 187
Chapel, 30
CHiLL, 125
CHOMBO, 86
circular queue, 95, 117
clock frequency, 10
Co-Array Fortran, 29
Coco/R, 187
code generator, 194
code variants, 219
combinational logic, 50
combinatorial optimization, 128
compiler, 32
compute balance, 72
constraints, 79
CORALS, 85, 100
CUDA, 27, 32, 85, 122, 151

data locality, 35
dense linear algebra, 46
dependence, 36
Dijkstra’s algorithm, 55
DIMACS challenge, 56
DIRECT, 135
direct search, 129
Dirichlet boundary condition, 69

282 INDEX

distance vector, 38
divergence, 64, 66
domain decomposition, 121
DRAM, 14
dwarf, 45
dynamic programming, 50

earthquake simulation, 178
edge detection, 66
evolutionary algorithm, 135
exa-scale, 9
exhaustive search, 129

fabrication process, 10
fault tolerance, 14
FEM, 49
Fermi, 152, 163
FFT, 47
FFTW, 126
finite difference, 64, 74
finite state machines, 50
Fortran, 32
frequency scaling, 10
fused multiply-add, 196

Game of Life, 66
gate length, 10
Gauss-Seidel iteration, 68
Gaussian blur, 66
general combined elimination, 130
genetic algorithm, 135
global view, 27, 30
GPU, 13, 41, 80, 122, 151, 163
gradient, 64, 66
gradient-free, 128
graph traversal, 50
graphical models, 50
graphics processing cluster, 152
greedy heuristic, 130
Gustafson-Barsis’s law, 23

hardware mapping, 121
hardware model, 120
Hooke-Jeeves algorithm, 131
HPCS, 28
HT Assist, 149
Hyper Threading, 150
HYPERcollar, 174

hyperthermia, 173
HyperTransport, 149

image processing, 64
index calculation, 123, 209
instruction level parallelism, 35
integer programming, 128
Intel Nehalem, 150, 162
interconnect, 15
internal representation, 189

Jacobi iteration, 68
Java Concurrency, 25

Laplacian, 64, 66, 69
leakage power, 11
legality, 36
lexicographically positive, 38
LINPACK, 72
loop

fission, 36
fusion, 35
invariant code motion, 35
peeling, 36
reordering, 35
skewing, 36, 40
splitting, 36
tiling, 35, 41, 88
transformation, 34, 90
unrolling, 35, 216

Magny Cours, 149, 156
MapReduce, 49
Maxima, 187
memory, 14
memory access transformation, 34
memory gap, 14
memory object, 205, 206
MIC, 13, 41
Mint, 85
MKL, 126
Moore’s law, 10
motif, 45
MPI, 25, 26
multicore era, 24

N-body simulation, 48, 126
Nehalem, 150, 162

INDEX 283

Nelder-Mead method, 134
NUMA, 81, 104, 149, 188, 226
NVIDIA, 151

online tuning, 128
OpenCL, 28
OpenMP, 26, 122
optimization, 129, 215
optimizing compiler, 33
OSKI, 126

PATUS, 61, 74, 109, 187
PATUS code generator, 76, 194
Panorama, 86
parallelism level, 120
parallelization, 39
PDE, 63, 64, 74
PGAS, 29
PLuTo, 24
Pochoir, 84
polyhedral model, 39
Powell method, 133
PRAM, 53
preload memory object, 208
Probe Filter, 149
projection mask, 206
pthreads, 25

Quick Path Interconnect, 150

RAM, 53
range iterator, 192
register blocking, 216
reuse direction, 207
reuse mask, 207
root domain, 116

scaling
strong, 22
weak, 22

search method, 128, 129
semiconductor, 10
shared memory, 153
shortest path problem, 55
SIMD, 40, 152, 220
simplex search, 134
skewing, 40
software prefetching, 107

sparse linear algebra, 47
spatial blocking, 87
spectral method, 47
SPIRAL, 126
SPMD model, 25
SSE, 40
STARGATES, 86
stencil, 63, 189
stencil computation, 63
stencil node, 191, 206
stencil specification, 75, 109
Strategy, 76, 113, 115
strategy, 113, 192
STREAM, 72, 147, 151
Stream Processor, 152
streaming multiprocessor, 152
strong scaling, 22
structured grid, 48, 63
subdomain iterator, 116, 121, 192, 205–

207
sweep, 68, 110

technology node, 10
temporal blocking, 89, 95, 97
Tesla, 151, 163
thread affinity, 104
tiling, 41
time blocking, 117
time skewing, 90
Titanium, 29
Tofu, 15
transformation

legality, 36
loop, 34
memory access, 34

transistor, 10
trapezoid, 99

unimodular model, 39
unstructured grid, 49
UPC, 29

vectorization, 40, 220

wave equation, 74
wavefront parallelization, 97
weak scaling, 22

284 INDEX

X10, 31
Xeon, 150, 162

Curriculum Vitae

Personal Data

Name Matthias-Michael Christen

Date of birth April 17, 1980, Zürich, Switzerland

Parents Sophie and Walter Christen-Tchung

Nationality Swiss

Citizenship Affoltern BE, Switzerland

Family Status unmarried

Education

1987 – 1999 Waldorf School in Adliswil ZH and Basel (Switzer-
land)

1999 – 2000 Gymnasium am Kirschgarten, Basel (Switzerland)

2000 – 2006 Diploma in Mathematics, minors in Computer Sci-
ence and Musicology at the University of Basel
(Switzerland)

2007 – 2011 Ph.D. candidate in Computer Science at the Univer-
sity of Basel (Switzerland)

Summer 2009 and
Fall 2010

Internships at the Lawrence Berkeley National Lab-
oratory, Berkeley CA (USA)

22 Sept. 2011 Ph.D. examination, University of Basel (Switzer-
land)

I enjoyed attending the lectures of the following professors and lecturers:

W. Arlt, H. Burkhart, N. A’Campo, D. Cohen, F.-J. Elmer, M. Grote, M. Guggisberg,
M. Haas, L. Halbeisen, H.-C. Im Hof, A. Iozzi, J. Königsmann, H. Kraft, E. Lederer,
Y. Lengwiler, D. Masser, D. Muller, O. Schenk, M. Schmidt, A. C. Shreffler, J. Stenzl,
C. Tschudin, J. Willimann, C. Wattinger.

