28,791 research outputs found

    Demonstrating Quantum Error Correction that Extends the Lifetime of Quantum Information

    Full text link
    The remarkable discovery of Quantum Error Correction (QEC), which can overcome the errors experienced by a bit of quantum information (qubit), was a critical advance that gives hope for eventually realizing practical quantum computers. In principle, a system that implements QEC can actually pass a "break-even" point and preserve quantum information for longer than the lifetime of its constituent parts. Reaching the break-even point, however, has thus far remained an outstanding and challenging goal. Several previous works have demonstrated elements of QEC in NMR, ions, nitrogen vacancy (NV) centers, photons, and superconducting transmons. However, these works primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to extend the lifetime of quantum information over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of coherent states, or cat states of a superconducting resonator. Moreover, the experiment implements a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode, and correct. As measured by full process tomography, the enhanced lifetime of the encoded information is 320 microseconds without any post-selection. This is 20 times greater than that of the system's transmon, over twice as long as an uncorrected logical encoding, and 10% longer than the highest quality element of the system (the resonator's 0, 1 Fock states). Our results illustrate the power of novel, hardware efficient qubit encodings over traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming the basic concepts to exploring the metrics that drive system performance and the challenges in implementing a fault-tolerant system

    Spatiotemporal Orthogonal Polynomial Approximation for Partial Differential Equations

    Full text link
    Starting with some fundamental concepts, in this article we present the essential aspects of spectral methods and their applications to the numerical solution of Partial Differential Equations (PDEs). We start by using Lagrange and Techbychef orthogonal polynomials for spatiotemporal approximation of PDEs as a weighted sum of polynomials. We use collocation at some clustered grid points to generate a system of equations to approximate the weights for the polynomials. We finish the study by demonstrating approximate solutions of some PDEs in one space dimension.Comment: 9 pages, 9 figure

    Limitations of Passive Protection of Quantum Information

    Full text link
    The ability to protect quantum information from the effect of noise is one of the major goals of quantum information processing. In this article, we study limitations on the asymptotic stability of quantum information stored in passive N-qubit systems. We consider the effect of small imperfections in the implementation of the protecting Hamiltonian in the form of perturbations or weak coupling to a ground state environment. We prove that, regardless of the protecting Hamiltonian, there exists a perturbed evolution that necessitates a final error correcting step when the state of the memory is read. Such an error correction step is shown to require a finite error threshold, the lack thereof being exemplified by the 3D compass model. We go on to present explicit weak Hamiltonian perturbations which destroy the logical information stored in the 2D toric code in a time O(log(N)).Comment: 17 pages and appendice

    Density Matrix Renormalization Group for Dummies

    Get PDF
    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.Comment: 29 pages, 9 figures. Published version. An open source version of the code can be found at http://qti.sns.it/dmrg/phome.htm
    • …
    corecore