10,617 research outputs found

    The observables of a dissipative quantum system

    Get PDF
    A time-dependent product is introduced between the observables of a dissipative quantum system, that accounts for the effects of dissipation on observables and commutators. In the tt \to \infty limit this yields a contracted algebra. The general ideas are corroborated by a few explicit examples.Comment: 4 page

    Diagonalization of system plus environment Hamiltonians

    Full text link
    A new approach to dissipative quantum systems modelled by a system plus environment Hamiltonian is presented. Using a continuous sequence of infinitesimal unitary transformations the small quantum system is decoupled from its thermodynamically large environment. Dissipation enters through the observation that system observables generically decay completely into a different structure when the Hamiltonian is transformed into diagonal form. The method is particularly suited for studying low-temperature properties. This is demonstrated explicitly for the super-Ohmic spin-boson model.Comment: 4 pages, Latex, uses Revte

    Quantum thermodynamics of nonequilibrium. Onsager reciprocity and dispersion-dissipation relations

    Get PDF
    1A generalized Onsager reciprocity theorem emerges as an exact consequence of the structure of the nonlinear equation of motion of quantum thermodynamics and is valid for all the dissipative nonequilibrium states, close and far from stable thermodynamic equilibrium, of an isolated system composed of a single constituent of matter with a finite-dimensional Hilbert space. In addition, a dispersion-dissipation theorem results in a precise relation between the generalized dissipative conductivity that describes the mutual interrelation between dissipative rates of a pair of observables and the codispersions of the same observables and the generators of the motion. These results are presented together with a review of quantum thermodynamic postulates and general results.openopenG.P. BERETTABeretta, Gian Paol

    An Open-System Quantum Simulator with Trapped Ions

    Full text link
    The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating the systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we report the first realization of a toolbox for simulating an open quantum system with up to five qubits. Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate this engineering by the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see publication. Manuscript + Supplementary Informatio

    Resummation for Nonequilibrium Perturbation Theory and Application to Open Quantum Lattices

    Full text link
    Lattice models of fermions, bosons, and spins have long served to elucidate the essential physics of quantum phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has opened new vistas to investigate nonequilibrium phenomena and dissipative phase transitions in interacting many-body systems. We present a framework for the treatment of such open quantum lattices based on a resummation scheme for the Lindblad perturbation series. Employing a convenient diagrammatic representation, we utilize this method to obtain relevant observables for the open Jaynes-Cummings lattice, a model of special interest for open-system quantum simulation. We demonstrate that the resummation framework allows us to reliably predict observables for both finite and infinite Jaynes-Cummings lattices with different lattice geometries. The resummation of the Lindblad perturbation series can thus serve as a valuable tool in validating open quantum simulators, such as circuit-QED lattices, currently being investigated experimentally.Comment: 15 pages, 9 figure

    Density matrix operatorial solution of the non--Markovian Master Equation for Quantum Brownian Motion

    Full text link
    An original method to exactly solve the non-Markovian Master Equation describing the interaction of a single harmonic oscillator with a quantum environment in the weak coupling limit is reported. By using a superoperatorial approach we succeed in deriving the operatorial solution for the density matrix of the system. Our method is independent of the physical properties of the environment. We show the usefulness of our solution deriving explicit expressions for the dissipative time evolution of some observables of physical interest for the system, such as, for example, its mean energy.Comment: 16 pages, 1 figur

    Limits of control for quantum systems: kinematical bounds on the optimization of observables and the question of dynamical realizability

    Get PDF
    In this paper we investigate the limits of control for mixed-state quantum systems. The constraint of unitary evolution for non-dissipative quantum systems imposes kinematical bounds on the optimization of arbitrary observables. We summarize our previous results on kinematical bounds and show that these bounds are dynamically realizable for completely controllable systems. Moreover, we establish improved bounds for certain partially controllable systems. Finally, the question of dynamical realizability of the bounds for arbitary partially controllable systems is shown to depend on the accessible sets of the associated control system on the unitary group U(N) and the results of a few control computations are discussed briefly.Comment: 5 pages, orginal June 30, 2000, revised September 28, 200
    corecore