103 research outputs found

    Small Worlds: Strong Clustering in Wireless Networks

    Full text link
    Small-worlds represent efficient communication networks that obey two distinguishing characteristics: a high clustering coefficient together with a small characteristic path length. This paper focuses on an interesting paradox, that removing links in a network can increase the overall clustering coefficient. Reckful Roaming, as introduced in this paper, is a 2-localized algorithm that takes advantage of this paradox in order to selectively remove superfluous links, this way optimizing the clustering coefficient while still retaining a sufficiently small characteristic path length.Comment: To appear in: 1st International Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks (LOCALGOS 2007), 2007, IEEE Compuster Society Pres

    On Distributed Computation in Noisy Random Planar Networks

    Full text link
    We consider distributed computation of functions of distributed data in random planar networks with noisy wireless links. We present a new algorithm for computation of the maximum value which is order optimal in the number of transmissions and computation time.We also adapt the histogram computation algorithm of Ying et al to make the histogram computation time optimal.Comment: 5 pages, 2 figure

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    Starling flock networks manage uncertainty in consensus at low cost

    Get PDF
    Flocks of starlings exhibit a remarkable ability to maintain cohesion as a group in highly uncertain environments and with limited, noisy information. Recent work demonstrated that individual starlings within large flocks respond to a fixed number of nearest neighbors, but until now it was not understood why this number is seven. We analyze robustness to uncertainty of consensus in empirical data from multiple starling flocks and show that the flock interaction networks with six or seven neighbors optimize the trade-off between group cohesion and individual effort. We can distinguish these numbers of neighbors from fewer or greater numbers using our systems-theoretic approach to measuring robustness of interaction networks as a function of the network structure, i.e., who is sensing whom. The metric quantifies the disagreement within the network due to disturbances and noise during consensus behavior and can be evaluated over a parameterized family of hypothesized sensing strategies (here the parameter is number of neighbors). We use this approach to further show that for the range of flocks studied the optimal number of neighbors does not depend on the number of birds within a flock; rather, it depends on the shape, notably the thickness, of the flock. The results suggest that robustness to uncertainty may have been a factor in the evolution of flocking for starlings. More generally, our results elucidate the role of the interaction network on uncertainty management in collective behavior, and motivate the application of our approach to other biological networks.Comment: 19 pages, 3 figures, 9 supporting figure

    Femtocell Congestion Mitigation Technique using Poisson Point Process

    Get PDF
    The idea of femtocell technology came in order to boost the signal strength of indoor Universal Mobile Telecommunication System (UMTS) users. The number of subscribers a femtocell device can accommodate is closed from the manufactures’ end in order to check the capacity limit. The challenge with this form of technology is that only registered subscribers are permitted to gain access. This study seeks to enable flexibility in the control of its capacity limit by employing Poisson Point Process as a congestion control tool. The outcome of the study showed that the spatial Poisson Point Process can effectively be used to control the capacity limit of femtocell device, using co-channel interference technique. This will enable the device to operate as an open system while controlling the capacity limit. Keywords: Femtocell, Poisson Point Process, Cellular Network, Home Node

    Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs

    Full text link
    In this paper, we present Batch Informed Trees (BIT*), a planning algorithm based on unifying graph- and sampling-based planning techniques. By recognizing that a set of samples describes an implicit random geometric graph (RGG), we are able to combine the efficient ordered nature of graph-based techniques, such as A*, with the anytime scalability of sampling-based algorithms, such as Rapidly-exploring Random Trees (RRT). BIT* uses a heuristic to efficiently search a series of increasingly dense implicit RGGs while reusing previous information. It can be viewed as an extension of incremental graph-search techniques, such as Lifelong Planning A* (LPA*), to continuous problem domains as well as a generalization of existing sampling-based optimal planners. It is shown that it is probabilistically complete and asymptotically optimal. We demonstrate the utility of BIT* on simulated random worlds in R2\mathbb{R}^2 and R8\mathbb{R}^8 and manipulation problems on CMU's HERB, a 14-DOF two-armed robot. On these problems, BIT* finds better solutions faster than RRT, RRT*, Informed RRT*, and Fast Marching Trees (FMT*) with faster anytime convergence towards the optimum, especially in high dimensions.Comment: 8 Pages. 6 Figures. Video available at http://www.youtube.com/watch?v=TQIoCC48gp

    Randomized Initialization of a Wireless Multihop Network

    Full text link
    Address autoconfiguration is an important mechanism required to set the IP address of a node automatically in a wireless network. The address autoconfiguration, also known as initialization or naming, consists to give a unique identifier ranging from 1 to nn for a set of nn indistinguishable nodes. We consider a wireless network where nn nodes (processors) are randomly thrown in a square XX, uniformly and independently. We assume that the network is synchronous and two nodes are able to communicate if they are within distance at most of rr of each other (rr is the transmitting/receiving range). The model of this paper concerns nodes without the collision detection ability: if two or more neighbors of a processor uu transmit concurrently at the same time, then uu would not receive either messages. We suppose also that nodes know neither the topology of the network nor the number of nodes in the network. Moreover, they start indistinguishable, anonymous and unnamed. Under this extremal scenario, we design and analyze a fully distributed protocol to achieve the initialization task for a wireless multihop network of nn nodes uniformly scattered in a square XX. We show how the transmitting range of the deployed stations can affect the typical characteristics such as the degrees and the diameter of the network. By allowing the nodes to transmit at a range r= \sqrt{\frac{(1+\ell) \ln{n} \SIZE}{\pi n}} (slightly greater than the one required to have a connected network), we show how to design a randomized protocol running in expected time O(n3/2log2n)O(n^{3/2} \log^2{n}) in order to assign a unique number ranging from 1 to nn to each of the nn participating nodes
    corecore