9,212 research outputs found

    Snow Leopard Permutations and Their Even and Odd Threads

    Full text link
    Caffrey, Egge, Michel, Rubin and Ver Steegh recently introduced snow leopard permutations, which are the anti-Baxter permutations that are compatible with the doubly alternating Baxter permutations. Among other things, they showed that these permutations preserve parity, and that the number of snow leopard permutations of length 2n−12n-1 is the Catalan number CnC_n. In this paper we investigate the permutations that the snow leopard permutations induce on their even and odd entries; we call these the even threads and the odd threads, respectively. We give recursive bijections between these permutations and certain families of Catalan paths. We characterize the odd (resp. even) threads which form the other half of a snow leopard permutation whose even (resp. odd) thread is layered in terms of pattern avoidance, and we give a constructive bijection between the set of permutations of length nn which are both even threads and odd threads and the set of peakless Motzkin paths of length n+1n+1.Comment: 25 pages, 6 figures. Version 3 is modified to use standard Discrete Mathematics and Theoretical Computer Science but is otherwise unchange

    Baxter permutations rise again

    Get PDF
    AbstractBaxter permutations, so named by Boyce, were introduced by Baxter in his study of the fixed points of continuous functions which commute under composition. Recently Chung, Graham, Hoggatt, and Kleiman obtained a sum formula for the number of Baxter permutations of 2n − 1 objects, but admit to having no interpretation of the individual terms of this sum. We show that in fact the kth term of this sum counts the number of (reduced) Baxter permutations that have exactly k − 1 rises

    Bijections for Baxter Families and Related Objects

    Get PDF
    The Baxter number can be written as Bn=∑0nΘk,n−k−1B_n = \sum_0^n \Theta_{k,n-k-1}. These numbers have first appeared in the enumeration of so-called Baxter permutations; BnB_n is the number of Baxter permutations of size nn, and Θk,l\Theta_{k,l} is the number of Baxter permutations with kk descents and ll rises. With a series of bijections we identify several families of combinatorial objects counted by the numbers Θk,l\Theta_{k,l}. Apart from Baxter permutations, these include plane bipolar orientations with k+2k+2 vertices and l+2l+2 faces, 2-orientations of planar quadrangulations with k+2k+2 white and l+2l+2 black vertices, certain pairs of binary trees with k+1k+1 left and l+1l+1 right leaves, and a family of triples of non-intersecting lattice paths. This last family allows us to determine the value of Θk,l\Theta_{k,l} as an application of the lemma of Gessel and Viennot. The approach also allows us to count certain other subfamilies, e.g., alternating Baxter permutations, objects with symmetries and, via a bijection with a class of plan bipolar orientations also Schnyder woods of triangulations, which are known to be in bijection with 3-orientations.Comment: 31 pages, 22 figures, submitted to JCT

    Baxter permutations and plane bipolar orientations

    Full text link
    We present a simple bijection between Baxter permutations of size nn and plane bipolar orientations with n edges. This bijection translates several classical parameters of permutations (number of ascents, right-to-left maxima, left-to-right minima...) into natural parameters of plane bipolar orientations (number of vertices, degree of the sink, degree of the source...), and has remarkable symmetry properties. By specializing it to Baxter permutations avoiding the pattern 2413, we obtain a bijection with non-separable planar maps. A further specialization yields a bijection between permutations avoiding 2413 and 3142 and series-parallel maps.Comment: 22 page

    A Note on Flips in Diagonal Rectangulations

    Get PDF
    Rectangulations are partitions of a square into axis-aligned rectangles. A number of results provide bijections between combinatorial equivalence classes of rectangulations and families of pattern-avoiding permutations. Other results deal with local changes involving a single edge of a rectangulation, referred to as flips, edge rotations, or edge pivoting. Such operations induce a graph on equivalence classes of rectangulations, related to so-called flip graphs on triangulations and other families of geometric partitions. In this note, we consider a family of flip operations on the equivalence classes of diagonal rectangulations, and their interpretation as transpositions in the associated Baxter permutations, avoiding the vincular patterns { 3{14}2, 2{41}3 }. This complements results from Law and Reading (JCTA, 2012) and provides a complete characterization of flip operations on diagonal rectangulations, in both geometric and combinatorial terms
    • …
    corecore