2,012 research outputs found

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201

    Finding kk Simple Shortest Paths and Cycles

    Get PDF
    The problem of finding multiple simple shortest paths in a weighted directed graph G=(V,E)G=(V,E) has many applications, and is considerably more difficult than the corresponding problem when cycles are allowed in the paths. Even for a single source-sink pair, it is known that two simple shortest paths cannot be found in time polynomially smaller than n3n^3 (where n=Vn=|V|) unless the All-Pairs Shortest Paths problem can be solved in a similar time bound. The latter is a well-known open problem in algorithm design. We consider the all-pairs version of the problem, and we give a new algorithm to find kk simple shortest paths for all pairs of vertices. For k=2k=2, our algorithm runs in O(mn+n2logn)O(mn + n^2 \log n) time (where m=Em=|E|), which is almost the same bound as for the single pair case, and for k=3k=3 we improve earlier bounds. Our approach is based on forming suitable path extensions to find simple shortest paths; this method is different from the `detour finding' technique used in most of the prior work on simple shortest paths, replacement paths, and distance sensitivity oracles. Enumerating simple cycles is a well-studied classical problem. We present new algorithms for generating simple cycles and simple paths in GG in non-decreasing order of their weights; the algorithm for generating simple paths is much faster, and uses another variant of path extensions. We also give hardness results for sparse graphs, relative to the complexity of computing a minimum weight cycle in a graph, for several variants of problems related to finding kk simple paths and cycles.Comment: The current version includes new results for undirected graphs. In Section 4, the notion of an (m,n) reduction is generalized to an f(m,n) reductio

    Replacement Paths via Row Minima of Concise Matrices

    Full text link
    Matrix MM is {\em kk-concise} if the finite entries of each column of MM consist of kk or less intervals of identical numbers. We give an O(n+m)O(n+m)-time algorithm to compute the row minima of any O(1)O(1)-concise n×mn\times m matrix. Our algorithm yields the first O(n+m)O(n+m)-time reductions from the replacement-paths problem on an nn-node mm-edge undirected graph (respectively, directed acyclic graph) to the single-source shortest-paths problem on an O(n)O(n)-node O(m)O(m)-edge undirected graph (respectively, directed acyclic graph). That is, we prove that the replacement-paths problem is no harder than the single-source shortest-paths problem on undirected graphs and directed acyclic graphs. Moreover, our linear-time reductions lead to the first O(n+m)O(n+m)-time algorithms for the replacement-paths problem on the following classes of nn-node mm-edge graphs (1) undirected graphs in the word-RAM model of computation, (2) undirected planar graphs, (3) undirected minor-closed graphs, and (4) directed acyclic graphs.Comment: 23 pages, 1 table, 9 figures, accepted to SIAM Journal on Discrete Mathematic
    corecore