34 research outputs found

    Speed-accuracy strategy regulations in prefrontal tumor patients

    Get PDF
    The ability to flexibly switch between fast and accurate decisions is crucial in everyday life. Recent neuroimaging evidence suggested that left lateral prefrontal cortex plays a role in switching from a quick response strategy to an accurate one. However, the causal role of the left prefrontal cortex in this particular, non-verbal, strategy switch has never been demonstrated. To fill this gap, we administered a perceptual decision-making task to neuro-oncological prefrontal patients, in which the requirement to be quick or accurate changed randomly on a trial-by-trial basis. To directly assess hemispheric asymmetries in speed-accuracy regulation, patients were tested a few days before and a few days after surgical excision of a brain tumor involving either the left (N=13) or the right (N=12) lateral frontal brain region. A group of age- and education-matched healthy controls was also recruited. To gain more insight on the component processes implied in the task, performance data (accuracy and speed) were not only analyzed separately but also submitted to a diffusion model analysis. The main findings indicated that the left prefrontal patients were impaired in appropriately adopting stricter response criteria in speed-to-accuracy switching trials with respect to healthy controls and right prefrontal patients, who were not impaired in this condition. This study demonstrates that the prefrontal cortex in the left hemisphere is necessary for flexible behavioral regulations, in particular when setting stricter response criteria is required in order to successfully switch from a speedy strategy to an accurate one

    Past, present and future in exercise-cognition research

    Get PDF
    Early research into the effects of acute exercise on cognition were atheoretical and of poor design. In the 1990s and 2000s, cognitive-energetical theories and the catecholamines hypothesis have been developed as rationales for effects of acute exercise on cognition. It was claimed that acute exercise was a stressor and as such would affect cognition in an inverted-U manner, the same as other stressors. However, the inverted-U effect was rarely supported. Later research has somewhat consistently shown that moderate intensity, short to moderate duration exercise induces improved cognitive performance. However, the effects of heavy exercise and long-duration, moderate intensity exercise treatments remain somewhat equivocal, except for autonomous tasks which are facilitated. Recent research suggests that undertaking exercise, while simultaneously carrying out a motor task, is more beneficial than simply exercising before undertaking the cognitive tasks. Research examining the effect of chronic exercise on cognition was also originally atheoretical and poorly designed. Improved research designs have led to some consistency in findings and the evidence for chronic exercise having a facilitative effect on cognition is fairly consistent but only a small to moderate improvement has been demonstrated. Human studies provide a prima facie case for brain derived neurotrophic factor being a mediator in the chronic exercise-cognition interaction and evidence from animal studies strongly supports this. Recent work provides support for claims that exercise, while simultaneously undertaking a motor task, is more beneficial than simply exercising

    Neural dynamics implement a flexible decision bound with a fixed firing rate for choice: a model-based hypothesis

    Get PDF
    Decisions are faster and less accurate when conditions favour speed, and are slower and more accurate when they favour accuracy. This speed-accuracy trade-off (SAT) can be explained by the principles of bounded integration, where noisy evidence is integrated until it reaches a bound. Higher bounds reduce the impact of noise by increasing integration times, supporting higher accuracy (vice versa for speed). These computations are hypothesized to be implemented by feedback inhibition between neural populations selective for the decision alternatives, each of which corresponds to an attractor in the space of network states. Since decision-correlated neural activity typically reaches a fixed rate at the time of commitment to a choice, it has been hypothesized that the neural implementation of the bound is fixed, and that the SAT is supported by a common input to the populations integrating evidence. According to this hypothesis, a stronger common input reduces the difference between a baseline firing rate and a threshold rate for enacting a choice. In simulations of a two-choice decision task, we use a reduced version of a biophysically-based network model (Wong & Wang, 2006) to show that a common input can control the SAT, but that changes to the threshold-baseline difference are epiphenomenal. Rather, the SAT is controlled by changes to network dynamics. A stronger common input decreases the model’s effective time constant of integration and changes the shape of the attractor landscape, so the initial state is in a more error-prone position. Thus, a stronger common input reduces decision time and lowers accuracy. The change in dynamics also renders firing rates higher under speed conditions at the time that an ideal observer can make a decision from network activity. The difference between this rate and the baseline rate is actually greater under speed conditions than accuracy conditions, suggesting that the bound is not implemented by firing rates per se

    On the role of stigmergy in cognition

    Get PDF
    Cognition in animals is produced by the self- organized activity of mutually entrained body and brain. Given that stigmergy plays a major role in self-organization of societies, we identify stigmergic behavior in cognitive systems, as a common mechanism ranging from brain activity to social systems. We analyze natural societies and artificial systems exploiting stigmergy to produce cognition. Several authors have identified the importance of stigmergy in the behavior and cognition of social systems. However, the perspective of stigmergy playing a central role in brain activity is novel, to the best of our knowledge. We present several evidences of such processes in the brain and discuss their importance in the formation of cognition. With this we try to motivate further research on stigmergy as a relevant component for intelligent systems.info:eu-repo/semantics/acceptedVersio

    Neural Correlates of the Difference between Working Memory Speed and Simple Sensorimotor Speed: An fMRI Study

    Get PDF
    The difference between the speed of simple cognitive processes and the speed of complex cognitive processes has various psychological correlates. However, the neural correlates of this difference have not yet been investigated. In this study, we focused on working memory (WM) for typical complex cognitive processes. Functional magnetic resonance imaging data were acquired during the performance of an N-back task, which is a measure of WM for typical complex cognitive processes. In our N-back task, task speed and memory load were varied to identify the neural correlates responsible for the difference between the speed of simple cognitive processes (estimated from the 0-back task) and the speed of WM. Our findings showed that this difference was characterized by the increased activation in the right dorsolateral prefrontal cortex (DLPFC) and the increased functional interaction between the right DLPFC and right superior parietal lobe. Furthermore, the local gray matter volume of the right DLPFC was correlated with participants' accuracy during fast WM tasks, which in turn correlated with a psychometric measure of participants' intelligence. Our findings indicate that the right DLPFC and its related network are responsible for the execution of the fast cognitive processes involved in WM. Identified neural bases may underlie the psychometric differences between the speed with which subjects perform simple cognitive tasks and the speed with which subjects perform more complex cognitive tasks, and explain the previous traditional psychological findings

    Trait anxiety, infrequent emotional conflict, and the emotional face Stroop task

    Get PDF
    Research shows that anxiety may relate to any or all of the following: goal conflict resolution; distraction, and the automatic detection of threat-related stimuli. To investigate these relationships we used a modified Stroop task where fearful and happy emotional target faces are overlaid with either emotionally neutral, emotionally congruent or emotionally incongruent distracting words. A trait anxiety related speed-accuracy trade-off seemed to primarily reduce accuracy during incongruent trials with target fearful faces overlaid with the emotionally conflicting word happy. We offer an explanation of this effect based upon theories of how positive stimuli and threat-related stimuli differentially affect information processing. Future studies should seek to verify how the anxiety related speed-accuracy trade-off mechanism is activated, and elucidate how and when positive stimuli affect anxiety more than threat-related stimuli do

    Eeg-Derived Estimators of Present and Future Cognitive Performance

    Get PDF
    Previous electroencephalography (EEG)-based fatigue-related research primarily focused on the association between concurrent cognitive performance and time-locked physiology. The goal of this study was to investigate the capability of EEG to assess the impact of fatigue on both present and future cognitive performance during a 20-min sustained attention task, the 3-choice active vigilance task (3CVT), that requires subjects to discriminate one primary target from two secondary non-target geometric shapes. The current study demonstrated the ability of EEG to estimate not only present, but also future cognitive performance, utilizing a single, combined reaction time (RT), and accuracy performance metric. The correlations between observed and estimated performance, for both present and future performance, were strong (up to 0.89 and 0.79, respectively). The models were able to consistently estimate “unacceptable” performance throughout the entire 3CVT, i.e., excessively missed responses and/or slow RTs, while acceptable performance was recognized less accurately later in the task. The developed models were trained on a relatively large dataset (n = 50 subjects) to increase stability. Cross-validation results suggested the models were not over-fitted. This study indicates that EEG can be used to predict gross-performance degradations 5–15 min in advance

    Gain Modulation by an Urgency Signal Controls the Speed–Accuracy Trade-Off in a Network Model of a Cortical Decision Circuit

    Get PDF
    The speed–accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time

    The frontal aslant tract (FAT) and its role in speech, language and executive function

    Get PDF
    In this review, we examine the structural connectivity of a recently-identified fiber pathway, the frontal aslant tract (FAT), and explore its function. We first review structural connectivity studies using tract-tracing methods in non-human primates, and diffusion-weighted imaging and electrostimulation in humans. These studies suggest a monosynaptic connection exists between the lateral inferior frontal gyrus and the pre-supplementary and supplementary motor areas of the medial superior frontal gyrus. This connection is termed the FAT. We then review research on the left FAT's putative role in supporting speech and language function, with particular focus on speech initiation, stuttering and verbal fluency. Next, we review research on the right FAT's putative role supporting executive function, namely inhibitory control and conflict monitoring for action. We summarize the extant body of empirical work by suggesting that the FAT plays a domain general role in the planning, timing, and coordination of sequential motor movements through the resolution of competition among potential motor plans. However, we also propose some domain specialization across the hemispheres. On the left hemisphere, the circuit is proposed to be specialized for speech actions. On the right hemisphere, the circuit is proposed to be specialized for general action control of the organism, especially in the visuo-spatial domain. We close the review with a discussion of the clinical significance of the FAT, and suggestions for further research on the pathway
    corecore