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Decisions are faster and less accurate when conditions favor speed, and are slower and
more accurate when they favor accuracy. This speed-accuracy trade-off (SAT) can be
explained by the principles of bounded integration, where noisy evidence is integrated
until it reaches a bound. Higher bounds reduce the impact of noise by increasing
integration times, supporting higher accuracy (vice versa for speed). These computations
are hypothesized to be implemented by feedback inhibition between neural populations
selective for the decision alternatives, each of which corresponds to an attractor in the
space of network states. Since decision-correlated neural activity typically reaches a fixed
rate at the time of commitment to a choice, it has been hypothesized that the neural
implementation of the bound is fixed, and that the SAT is supported by a common
input to the populations integrating evidence. According to this hypothesis, a stronger
common input reduces the difference between a baseline firing rate and a threshold rate
for enacting a choice. In simulations of a two-choice decision task, we use a reduced
version of a biophysically-based network model (Wong and Wang, 2006) to show that a
common input can control the SAT, but that changes to the threshold-baseline difference
are epiphenomenal. Rather, the SAT is controlled by changes to network dynamics. A
stronger common input decreases the model’s effective time constant of integration and
changes the shape of the attractor landscape, so the initial state is in a more error-prone
position. Thus, a stronger common input reduces decision time and lowers accuracy. The
change in dynamics also renders firing rates higher under speed conditions at the time
that an ideal observer can make a decision from network activity. The difference between
this rate and the baseline rate is actually greater under speed conditions than accuracy
conditions, suggesting that the bound is not implemented by firing rates per se.
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1. INTRODUCTION
In decision making experiments, subjects make faster, less accu-
rate decisions when conditions favor speed, and make slower,
more accurate decisions when conditions favor accuracy (e.g.,
Bogacz et al., 2010a; Heitz and Schall, 2012). These data describe
the speed-accuracy trade-off (SAT) and can be explained by the
principles of bounded integration. According to these princi-
ples, noisy evidence for the alternatives of a decision is integrated
until the running total for one of the alternatives reaches a crite-
rion level. The running total is referred to as a decision variable
and the criterion is referred to as the bound. A higher bound
allows evidence to be integrated for longer, increasing the percent-
age of correct decisions. A lower bound has the opposite effect.
These abstract models have been invaluable in characterizing the
computations underlying decisions and the SAT (see Smith and
Ratcliff, 2004; Ratcliff and McKoon, 2008; Bogacz et al., 2010b).

The computations characterized by bounded integration mod-
els are hypothesized to be implemented by competitive interac-
tions between neural populations selective for the alternatives of

a decision (Usher and McClelland, 2001; Wang, 2002; Machens
et al., 2005; Bogacz et al., 2006; Wong and Wang, 2006; Standage
et al., 2011; You and Wang, 2013). According to this widely held
hypothesis, temporal integration and competitive interactions are
supported by recurrent excitation and feedback inhibition respec-
tively, where each population implements a decision variable and
a choice is made when the aggregate firing rate of one of the
populations reaches a threshold. This hypothesis is supported by
electrophysiological recordings from several cortical areas in non-
human primates performing decision tasks, where the spike rates
of neurons responsive to the chosen alternative (target-in neu-
rons) increase over several hundreds of milliseconds prior to the
animal’s choice, and the spike rates of neurons unresponsive to
the chosen alternative (target-out neurons) are much lower (e.g.,
Roitman and Shadlen, 2002; Thomas and Pare, 2007; Bollimunta
and Ditterich, 2011; Ding and Gold, 2012).

Under several task paradigms, target-in activity of putative
integrator neurons has been shown to reach an approximately
fixed rate at the time of commitment to a choice (the choice
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threshold), regardless of the speed or accuracy of decisions
(Hanes and Schall, 1996; Shadlen and Newsome, 2001; Roitman
and Shadlen, 2002; Churchland et al., 2008; Purcell et al., 2010;
Ding and Gold, 2012). These data have been interpreted as indi-
cating that the neural implementation of the bound is fixed
across conditions emphasizing speed over accuracy or vice versa
(see Bogacz et al., 2010b). Under the assumption of linear inte-
gration, adjusting the starting point of a decision variable is
equivalent to adjusting the bound, so it has been hypothesized
that subjects trade speed and accuracy by adjusting the “base-
line” rate of integrator populations, i.e., the activity on which a
decision variable builds (see Bogacz et al., 2010b). According to
this hypothesis, the SAT is controlled by a cognitive signal pro-
jecting uniformly to all integrator populations, where a stronger
(weaker) signal favors speed (accuracy) by decreasing (increasing)
the difference between the choice threshold and baseline activ-
ity (the threshold-baseline difference). We refer to this possibility
as the threshold-baseline hypothesis (a.k.a. the changing-baseline
hypothesis, Bogacz et al., 2010b). Several recent neuroimaging
(Forstmann et al., 2008; Ivanoff et al., 2008; van Veen et al.,
2008; Wenzlaff et al., 2011) and electrophysiological (Heitz and
Schall, 2012; Hanks et al., 2014) studies have provided evidence
for such a signal, reporting higher baseline (pre-stimulus) activity
in decision-correlated cortical areas under speed conditions than
accuracy and/or neutral conditions.

Here, we present an alternative hypothesis that does not
assume linear integration. As above, we assume that a cogni-
tive signal controls the SAT by projecting uniformly to integrator
populations, but the underlying mechanism is grounded in the
framework of attractor dynamics (e.g., Machens et al., 2005;
Bogacz et al., 2006; Wong and Wang, 2006; Standage et al., 2011;
You and Wang, 2013; see Wang, 2008, 2012 for review). According
to this framework, integration times are determined by the non-
linear dynamics of decision circuitry, where stronger and weaker
dynamics furnish shorter and longer integration times respec-
tively (Wong and Wang, 2006; Standage et al., 2011). The SAT
can therefore be accomplished by any mechanism that modulates
the strength of dynamics within and between neural populations
selective for the decision alternatives (see Standage et al., 2014).
Spatially non-selective excitation provides just such a mecha-
nism (Salinas and Abbott, 1996), where a stronger (weaker)
signal corresponds to speed (accuracy) conditions (Furman and
Wang, 2008; Roxin and Ledberg, 2008). Of course, this input also
entails higher (lower) baseline activity under speed (accuracy)
conditions. In attractor network models, higher (lower) baseline
activity will indeed decrease (increase) the threshold-baseline dif-
ference, but this decrease (increase) is epiphenomenal. The SAT is
supported by the resulting changes to network dynamics.

Below, we use a neurally-derived model (Wong and Wang,
2006) to demonstrate that adjusting the strength of spatially non-
selective excitation can control the SAT (Furman and Wang, 2008;
Roxin and Ledberg, 2008). We demonstrate that this signal raises
(lowers) the baseline activity of integrator populations, consis-
tent with higher (lower) baseline activity under speed (accuracy,
neutral) conditions in SAT experiments (Forstmann et al., 2008;
Ivanoff et al., 2008; van Veen et al., 2008; Wenzlaff et al., 2011;
Heitz and Schall, 2012; Hanks et al., 2014). We use a fixed

choice threshold in the model, so the spatially non-selective sig-
nal decreases (increases) the threshold-baseline difference under
speed (accuracy) conditions, relative to a neutral condition.
We demonstrate that the threshold-baseline difference cannot
account for the SAT in the model, since raising (lowering) the
threshold to compensate for the higher (lower) baseline activity
under the speed (accuracy) condition does not “untrade” speed
and accuracy, i.e., reinstating the threshold-baseline difference of
the neutral condition does not recover the neutral behavior of the
model. Using dynamic systems analysis, we show that a higher
(lower) baseline decreases (increases) the effective time constant
of integration of the network under speed (accuracy) conditions,
accounting for the SAT in a manner consistent with a flexible
bound, while also changing the shape of the decision space so
as to further decrease (increase) accuracy. Finally, we show that
decision-selective firing rates in the model are actually higher
(lower) under speed (accuracy) conditions at the time at which
an ideal observer can discriminate between the rates of the inte-
grator populations; as is the difference between these rates and
the baseline rate (the discrimination-baseline difference). Thus,
the discrimination-baseline difference increases under speed con-
ditions and decreases under accuracy conditions, opposite to
the principles of the threshold-baseline hypothesis. Our analysis
explains these observations.

Our simulations show that under the framework of attractor
dynamics, there is no discrepancy between a flexible bound and
a fixed choice threshold. The bound—or the difference between
the bound and the starting point of a decision variable—is a
computational device for controlling the duration of evidence
accumulation in abstract models. It can be implemented by the
effective time constant of integration of decision circuitry, with
corresponding changes to the decision space. This space and its
time evolution are emergent properties of network dynamics and
are qualitatively different than the synaptic current required to
elicit choice behavior.

2. A COMMON INPUT TO INTEGRATORS CONTROLS THE
SAT IN AN ATTRACTOR MODEL, BUT NOT BY THE
THRESHOLD-BASELINE DIFFERENCE

In their seminal study, Wong and Wang (2006) used ana-
lytic methods to reduce a biophysically-based cortical network
model (Wang, 2002) to a 2-variable system, tractable for analysis
(depicted in Figure 1A). They showed that each of the popu-
lations selective for the decision alternatives corresponds to a
stable state in the space of possible states of network activity,
i.e., each population corresponds to an attractor (Figures 1B,C).
The attractors are separated by an unstable “saddle” steady state
with two manifolds: a stable manifold that draws the network
toward the saddle point, and an unstable manifold that repels
it toward one of the stable attractors (Figure 1C). They further
calculated the time constants of these two manifolds, showing
that the dynamics in the vicinity of the saddle support inte-
gration times much longer than the time constants of decay of
contributing biophysical processes, such as those of neurons and
synapses.

We used Wong and Wang’s (2006) model in simulations of a 2-
choice random dot motion (RDM) task (Supplementary Material
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FIGURE 1 | (A) The reduced model by Wong and Wang (2006),
approximating a biophysically-based cortical network model (left of the
thick arrow) with a 2-variable system (right). The thick arrow depicts the
derivation of the latter from the former. The large oval on the left depicts
a network of cortical pyramidal neurons. Inside the oval, the three open
circles depict the target and distractor populations with selective input T
and D respectively, and a population unresponsive to the evidence for
either alternative. Looping arcs depict recurrent synapses, which are
stronger within each selective population (thicker arcs). All pyramidal
neurons excite a common inhibitory pool, which uniformly inhibits all
pyramidal neurons. Excitatory and inhibitory synapses are depicted by
arrows and closed circles respectively, small black dots depict individual
neurons, and BG refers to background input. (B) Cartoon depiction of an
attractor “energy landscape” for 2-choice decisions, where the energy
decreases over time. An unstable steady state (high energy) separates
two stable attractors (low energy), corresponding to the target and

distractor stimuli. Conceptually, a ball placed between the two attractors
will eventually role one way or the other, depicted by the dashed arrows.
The ball enters an attractor basin sooner (later) under speed (accuracy)
conditions because the dynamics evolve more quickly (slowly). Below the
cartoon, the firing rates of target (blue) and distractor (red) neural
populations are plotted over time during two decision trials,
corresponding to the ball rolling into the target attractor basin (left) and
the distractor attractor basin (right). (C) Decision space for two choices.
Stable (solid) and unstable (dashed) manifolds of the saddle point
(intersection of the manifolds, see text). The system moves toward this
state along the stable manifold and is repelled along the unstable
manifold. The firing rates of the winning populations in the two decision
trials in (B) are plotted against each other, superimposed on the decision
space, along with two noise-free trajectories (gray) with initial conditions
inside each attractor basin. On each trial, the network state moves along
the stable manifold before being repelled toward an attractor.

Section 1). We ran 1000 trials for each motion coherence c ∈
{0, 1, 2, 4, 8, 16, 32}%, where the motion stimulus was provided
for 5s following a 2.5s pre-stimulus interval. We refer to the inte-
grator population receiving the stronger (weaker) stimulus as the
target (distractor) population. We modeled speed and accuracy
conditions by increasing and decreasing a uniform input to the
two populations respectively, relative to a neutral condition. To
this end, we adjusted the mean background current I0, captur-
ing the total input current from upstream neurons other than
those encoding motion stimuli. This current therefore subsumes
the hypothesized cognitive signal controlling the SAT. Because

the model’s parameter values and corresponding dynamics are
rigorously described by Wong and Wang (2006), we used the
same parameter values here (excepting I0 and its corresponding
standard deviation, see Supplementary Material Section 1).

Unsurprisingly, the spatially non-selective current I0 produced
higher and lower pre-stimulus (baseline) firing rates under speed
and accuracy conditions respectively, compared to the neutral
condition. Baseline rates can be seen to the left of the vertical
line in Figure 2A for an example coherence value (c = 4%, see
Figure caption). The resulting SAT can be seen in Figures 2B,C,
where the psychometric curve is shifted to the right and left
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FIGURE 2 | Trading speed and accuracy as a function spatially

non-selective input I0. Simulated neural activity (A) and resulting
psychometric (B) and chronometric (C) curves for neutral (I0 = 321pA,
medium gray), speed (I0 = 325pA, black) and accuracy (I0 = 316pA, light
gray) conditions. (A) Trial-averaged firing rates for coherence c = 4%. For
each condition, the upper and lower curves show the mean rate over all
correct trials for the target and distractor populations respectively. The
vertical line at 0ms indicates the time of simulated motion onset. To the left
of this line, pre-stimulus/baseline firing rates are higher (lower) under speed
(accuracy) conditions compared to the neutral condition. Thus, the
threshold-baseline difference is smaller (larger) under speed (accuracy)
conditions. The solid horizontal line shows the “default” choice threshold
θ = 15Hz used by Wong and Wang (2006). The dashed horizontal lines
depict other possible thresholds. (B) The percentage of correct trials as a
function of coherence. The data are fitted with a Weibull function for each
condition. Error bars show standard error. The solid vertical line indicates
coherence c = 4%, corresponding to the firing rates in (A). The dotted lines
indicate the coherence value at 75% accuracy (see Figure 3A). (C) Mean
decision times over coherence for correct (solid) and error (dashed) trials for
each condition. Error bars show standard error. The vertical line indicates
coherence c = 4%, corresponding to the firing rates in (A).

under speed and accuracy conditions respectively; and for cor-
rect and error trials, mean decisions times are shorter and longer
respectively. Thus, Figure 2 shows that by raising and lowering
baseline activity, uniform input to both integrator populations
controls the SAT. At first glance, these results appear to support
the threshold-baseline hypothesis.

However, the threshold-baseline hypothesis dictates that
the speed and accuracy of decisions are determined by the
threshold-baseline difference. According to this hypothesis, a
fixed threshold-baseline difference will produce uniform decision
making performance, regardless of the rate of baseline activ-
ity. The threshold-baseline hypothesis therefore requires that any
changes to the speed or accuracy of decisions resulting from
a change in baseline activity (with a fixed threshold) can be
“reversed” by an equal change to the threshold. We therefore
increased the threshold under the speed condition by the differ-
ence between baseline activity under speed and neutral conditions
(�ns, the mean difference over the last 1000 ms of the pre-
stimulus interval), and we decreased the threshold under the
accuracy condition by the difference between baseline activity
under neutral and accuracy conditions (�na). These adjustments
to the threshold did not recover the psychometric and chrono-
metric curves produced under the neutral condition, i.e., the
black and light gray curves in Figures 2B,C do not overlay the
medium gray curves. Denoting the threshold used by Wong and
Wang (2006) as θ (vertical line in Figure 3), increasing (decreas-
ing) θ by �ns (�na) under the speed (accuracy) condition has
almost no effect on performance. The same is true for any value
of the choice threshold above θ . For thresholds below θ , the effect
of these adjustments increases with decreasing threshold, but
the psychometric (Figure 3A) and chronometric (Figures 3B,C)
curves under speed and accuracy conditions do not come close to
overlaying the neutral curves. For the lowest value of the thresh-
old, there is a moderate effect on the psychmetric curves (the
difference between the solid and dotted curves for speed and
accuracy conditions), but such a low threshold does not allow a
firing-rate excursion, so this moderate effect can only be achieved
if the model deviates from the neural data on which the threshold-
baseline hypothesis is founded, i.e., a fixed rate of target-in
activity that is much higher than target-out activity at the time
of commitment to a choice (e.g., Shadlen and Newsome, 2001;
Roitman and Shadlen, 2002; Thomas and Pare, 2007; Purcell et al.,
2010; Bollimunta and Ditterich, 2011; Ding and Gold, 2012). See
the Discussion for other issues with such a low threshold. The
psychometric and chronometric curves break down for thresh-
olds lower than those in the figure. Note that Figures 3B,C show
results for coherence values of c = 1% and c = 32% respectively.
Values in between these extremes yield the same qualitative result.
These results demonstrate that the threshold-baseline hypothesis
does not account for the SAT under the principles of the attractor
framework.

3. THE SAT IS CONTROLLED BY NETWORK DYNAMICS
Returning to Figure 2A, the mean firing rates following motion
onset (to the right of the vertical line) point to the mechanism
by which the spatially non-selective input I0 controls the SAT in
the model. The rate of increase of target activity is higher and
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A B C

FIGURE 3 | (A) The value of simulated motion coherence at which accuracy
equals 75% for a range of choice thresholds under speed (black), neutral
(medium gray) and accuracy (light gray) conditions (see dashed lines in
Figure 2B). Dotted curves show results for simulations in which the
threshold was raised (speed condition) and lowered (accuracy condition) by
�ns and �na respectively (see text). Solid curves show results for the
corresponding unadjusted threshold. Adjusting the choice threshold makes

little difference to accuracy, i.e., the solid and dotted curves are similar for
speed and accuracy conditions, and do not overlay the neutral curve. (B,C)

Mean decision times over all trials for coherence c = 1% (B) and c = 32%
(C). Conventions are the same as in (A). Adjusting the threshold by �ns and
�na makes little difference to decision times, regardless of the threshold
chosen. The solid vertical line in each panel indicates the threshold used by
Wong and Wang (2006).

lower under speed and accuracy conditions respectively, relative
to the neutral condition. The different rates of increase reflect
the dynamics furnished by the different values of I0 under speed,
accuracy and neutral conditions. As shown by Wong and Wang
(2006), the dynamics in the vicinity of the saddle point deter-
mine the length of time the network can integrate evidence, which
can be approximated by the time constant of the unstable man-
ifold (the effective time constant of integration, Supplementary
Material Section 2). Wong and Wang (2006) calculated this time
constant for several values of the strength of recurrent excita-
tion, showing the consequent changes to the speed and accuracy
of decisions (see their Figure 11). Figure 4A shows these calcula-
tions for our changes to I0. Under speed and accuracy conditions,
higher and lower values of I0 furnish shorter and longer time con-
stants respectively, relative to the neutral condition. Here, it is
worth noting that the effective time constant behaves in exactly
the same way as the bound of bounded integration models,
decreasing (increasing) integration time under speed (accuracy)
conditions (Figure 4A). Additionally, the shape of the attractor
landscape changes with I0. Figures 4B–D show that for a given
task difficulty (c = 4% in the figure), higher values of I0 push the
stable manifold toward the midline at low rates below the sad-
dle point. Since the network approaches the saddle from below
(Figure 1C) and since errors occur when noise pushes the state
of the network over the stable manifold (Wong and Wang, 2006),
this re-positioning of the stable manifold further lowers (raises)
accuracy under speed (accuracy) conditions. This mechanism is
evident in Figures 4B–D, in which the solid circle in each panel
shows the mean initial state of the network (immediately prior
to the onset of evidence). With increasing I0, the stable manifold
moves toward this initial state, which becomes increasingly pre-
carious. Thus, a common input to integrators controls the rate of
baseline activity, but the SAT does not result from the consequent
changes to the threshold-baseline difference. The SAT results from
the changes to network dynamics.

Increasing I0 not only re-positions the stable manifold, but
also re-positions the saddle point, so that both populations fire

at higher rates (Figures 4B–D). This change in position of the
saddle dictates that firing rates will be higher when the network
begins its descent into an attractor basin under speed conditions.
In other words, firing rates will be higher when decision-selective
rates separate from those of the competing population. To con-
firm this effect, we used signal detection theory to determine
when an ideal observer can discriminate target activity from dis-
tractor activity in the model under speed, accuracy and neutral
conditions (Supplementary Material Section 3). Signal detection
theory is commonly used to estimate the time of target selection
from neural data (Thompson et al., 1996; Cohen et al., 2009)
and assumes that a downstream circuit makes decisions by dis-
criminating the activity of neural populations selective for the
alternatives (see Standage and Pare, 2011). Firing rates at the time
of discrimination were higher under speed conditions and lower
under accuracy conditions (Figure 5).

Next, we subtracted the baseline rate under speed, accuracy
and neutral conditions from the corresponding rate at dis-
crimination time (the discrimination-baseline difference). The
discrimination-baseline difference was larger under speed condi-
tions and smaller under accuracy conditions. Because decisions
are over when the firing rates separate, the rate at this time
approximates a “decision threshold,” as opposed to the choice
threshold (see the Discussion). To summarize: the difference
between this decision threshold and baseline activity is larger
under speed conditions and smaller under accuracy conditions
in the model. Thus, stronger (weaker) non-selective input under
speed (accuracy) conditions modulates decision-selective firing
rates in a manner opposite to the principles of the threshold-
baseline hypothesis. We confirmed these findings with an alter-
native method, in which decision times (and correctness) were
determined by the last intersection of target and distractor activity
on each trial, i.e., decisions were made when target and distractor
activity separated for the final time. The mean rate at the time
of separation was higher (lower) under speed (accuracy) condi-
tions, as was the difference between this rate and the baseline
rate (not shown). Importantly, our analysis in this section makes
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A B

C D

FIGURE 4 | (A) The time constant of the unstable manifold of the saddle
point (see Figure 1) for speed (black), neutral (medium gray) and accuracy
(light gray) conditions, as a function of coherence. The time constant
determines the time over which the system is repelled from the saddle
toward an attractor corresponding to the target or the distractor (Figure 1C; T
and D in B–D). (B–D) Stable (solid) and unstable (dashed) manifolds of the

saddle for the accuracy (B, I0 = 316pA), neutral (C, I0 = 321pA) and speed (D,
I0 = 325pA) conditions for coherence c = 4%. At low rates below the saddle,
the stable manifold is pushed closer to the midline with increasing I0, while
rates at the saddle increase. Solid circles show the initial state of the
network. Insets show close-ups of the stable manifold and the midline at
frequencies ≤ 5 Hz.

two predictions for electrophysiological studies of the SAT: (1)
target-in and target-out data will separate at higher (lower) rates
under speed (accuracy) conditions, and (2) the discrimination-
baseline difference will be larger (smaller) under speed (accuracy)
conditions.

4. DISCUSSION AND CONCLUSIONS
We have demonstrated that spatially non-selective excitation can
control the SAT in an attractor model (Figures 2B,C), as shown
previously (Furman and Wang, 2008; Roxin and Ledberg, 2008).
The non-selective input increases and decreases baseline activ-
ity under speed and accuracy conditions respectively (Figure 2A),
which unavoidably decreases and increases the difference between
baseline activity and a fixed choice threshold. The threshold-
baseline difference, however, does not control the SAT in the
model (Figure 3). Rather, an increase (decrease) in non-selective
input increases (decreases) the strength of network dynamics,
which decreases (increases) the effective time constant of integra-
tion (Figure 4A) and renders the initial state of the network closer

to (farther from) the stable manifold of the saddle, the crossing of
which results in errors (Figures 4B–D).

Our findings are consistent with the hypothesis that a cognitive
signal controls the SAT by adjusting a uniform input to integra-
tor populations (see Bogacz et al., 2010b; Standage et al., 2014).
This hypothesis is supported by neuroimaging (Forstmann et al.,
2008; Ivanoff et al., 2008; van Veen et al., 2008; Wenzlaff et al.,
2011) and electrophysiological (Heitz and Schall, 2012; Hanks
et al., 2014) data from SAT tasks, where pre-stimulus activa-
tion has been shown to be higher (lower) under speed (accuracy,
neutral) conditions. Like the threshold-baseline hypothesis, our
results are consistent with these data. Our results conflict with
the threshold-baseline hypothesis because the changes in network
dynamics engendered by a uniform input dwarf the correspond-
ing changes to the threshold-baseline difference. A related reason
is that the choice threshold is qualitatively different than the
bound of bounded integration models. The rate of target-in activ-
ity at the time of commitment to a choice has been shown to be
considerably higher than the rate at which this activity separates
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FIGURE 5 | The mean firing rate of the target population at the time at

which an ideal observer can discriminate target activity from

distractor activity, calculated across all positive coherence values. The
rate is higher (lower) under speed (accuracy) conditions.

from target-out activity (see e.g., Shadlen and Newsome, 2001;
Roitman and Shadlen, 2002; Bollimunta and Ditterich, 2011;
Ding and Gold, 2012). Under the framework of attractor dynam-
ics, this excursion of target-in activity corresponds to the repul-
sion of a decision network from the saddle along its unstable
manifold. Thus, these neural data suggest that the choice thresh-
old is much higher than the saddle. As such, changes to the choice
threshold will not influence decision accuracy over a broad range,
unlike the bound of bounded integration models. This effect is
clear in Figure 2A. As noted in Section 3, the rate at which target
and distractor activity separates can be thought of as a “deci-
sion threshold,” but our simulations predict that this rate is not
fixed across speed and accuracy conditions. Indeed, we predict
that it changes (Figure 5) in a manner opposite to a flexible
bound (e.g., Ratcliff and McKoon, 2008; Bogacz et al., 2010a).
Our findings therefore suggest that the bound is not implemented
in terms of firing rates per se. In this regard, the astute reader
may have noticed our use of the term “choice threshold” when
referring to decision-selective firing rates at the time of commit-
ment to a choice, as opposed to the more conventional “deci-
sion threshold.” We believe the latter term is misleading in this
context.

There are potential advantages to choice thresholds being
higher than decision thresholds. For example, a high choice
threshold alleviates the need for fine tuning (Roxin and Ledberg,
2008). Furthermore, the difference between the choice threshold
and a decision threshold provides a buffer between decisions and
their enactment. This buffer may confer advantages to decision
makers. For instance, a high choice threshold gives an upstream
decision variable the opportunity to suppress its competitors,
that is, the choice is not made until the “winning” integrator

population is firing at a high rate and the losing populations
are firing at much lower rates. Thresholds are hypothesized to
be implemented by networks with very strong dynamics (Simen,
2012), which are poorly suited to decision making (Standage and
Pare, 2011), i.e., they implement an all-or-none response to a crit-
ical level of input. If the respective rates of the choice threshold
and the decision threshold were similar (a small buffer), then
the difference between the decision variables would be smaller
when the largest one reaches the choice threshold, increasing
the possibility that the thresholding circuit would inadvertently
choose the wrong decision variable. Simultaneous electrophys-
iological recordings from decision circuitry and thresholding
circuitry would be informative in this regard. It seems unlikely
that target-in activity in one structure would coincide with target-
out activity in the other, even infrequently. Another possibility
is that thresholding circuitry implements an ideal observer of
integrator circuitry, where back-projections from the former to
the latter account for the excursion of decision-selective activity
prior to choice selection (see Simen, 2012). Under this sce-
nario, bidirectionally-coupled decision circuits would collectively
implement both integration and choice, a compelling possibility
that warrants further investigation.

Another perspective on the difficulties of equating the dif-
ference between the bound and the starting point of a decision
variable with the threshold-baseline difference relates to lev-
els of abstraction in models of brain function (Marr, 1982;
Trappenberg, 2010). From this perspective, bounded integration
models can be considered algorithms that characterize the com-
putations underlying decisions. They have been (and continue
to be) invaluable for our understanding of decision processing
and the SAT, but it is not necessary to attribute direct biological
correlates to each of their parameters. Qualitatively, the effective
time constant of integration under speed and accuracy conditions
changes in the same manner as the bound (Figure 4A) and there-
fore provides a plausible neural implementation of this abstract
term, but the corresponding changes to the attractor basins show
that this interpretation may be overly simplistic (Figures 4B–D).
Note that we do not suggest the twain shall never meet. Far
from it, formal equivalence has been shown between different
classes of (linear) bounded integration models and the (non-
linear) biophysically-based model on which our simulations are
based (Bogacz et al., 2006). The constraints under which these
models are equivalent define the relationship between decision
models at these two levels of abstraction, allowing the system-
atic consideration of one class in terms of the other. Where earlier
work has largely considered the commonalities between classes
of model, e.g., the range of parameters under which non-linear,
feedback-inhibition models are well-approximated by linear inte-
gration models (Usher and McClelland, 2001; Bogacz et al., 2006),
we have focused on their differences. In this sense, we have shown
what is lost in translation in relation to the SAT, suggesting that
caution is warranted when interpreting neural data in terms of
models that are purposefully simplified. Note that earlier dis-
cussions of the threshold-baseline hypothesis have made it clear
that changes to the bound and the starting point of a decision
variable are not equivalent in all abstract models (Bogacz et al.,
2010b). For more extensive treatment of the constraints of the
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threshold-baseline hypothesis in relation to implementation-level
models, see Marshall et al. (2012).

It is possible that a different kind of threshold-baseline differ-
ence could account for the SAT. If the baseline rate of thresholding
circuitry were increased (decreased) under speed (accuracy) con-
ditions, then lower rates of integrator activity would be sufficient
to elicit choice behavior, i.e., to drive the relevant motor cir-
cuitry (see Standage et al., 2014 for review). As such, a cognitive
signal controlling the SAT could bypass integrator populations.
However, the rates of integrator populations at the time of com-
mitment to a choice would be lower under speed conditions and
higher under accuracy conditions, which conflicts with recent
electrophysiological recordings from putative integrator neurons
showing the opposite profile of activity (Heitz and Schall, 2012).
Notably, these data also show higher (lower) baseline rates and
a higher (lower) rate of increase under speed (accuracy) condi-
tions, suggesting that speed and accuracy conditions do modulate
integrator neurons. These findings are qualitatively reproduced by
our simulations (Figure 2A).

Finally, we do not suggest that single-circuit attractor mod-
els provide a complete picture of decision making. For example,
these models produce slower mean decision times on error tri-
als than correct trials because the network state has to cross
the unstable manifold (Wong and Wang, 2006; Standage et al.,
2011), but error trials are faster than correct trials under some
task paradigms (see Smith and Ratcliff, 2004). Such shortcom-
ings point to the need for coupled-circuit models (e.g., Lo and
Wang, 2006; Standage et al., 2013). The recent surge in neu-
roimaging studies of decision making and the SAT represents an
important direction in this regard, identifying contributing brain
regions and pointing to their respective roles in decision pro-
cessing (Forstmann et al., 2008; Ivanoff et al., 2008; van Veen
et al., 2008; Forstmann et al., 2010; van Maanen et al., 2011;
Wenzlaff et al., 2011; Green et al., 2012; Ho et al., 2012). Guided by
these data, models of distributed decision circuitry are an exciting
direction in decision neuroscience (Frank, 2006; Lo and Wang,
2006; Bogacz and Gurney, 2007). Simulations of the bidirectional
coupling between circuits supporting evidence integration and
choice may be highly informative about the relationship between
decision bounds and choice thresholds.
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